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Content of this lecture, this lecture, we are going to cover the joint decision-making problem 

for cost optimization that is cost minimization in IoT edge computing is modelled and is 

taking into account various processing the latency, energy consumption and task throw rate. 

Using this, we will discuss a predictive offloading algorithm, which is based on the deep 

reinforcement learning and long short-term memory.  

This particular algorithm that is predictive offloading algorithm predicts the edge servers load 

in real time and allocate the resources in advance, thereby improving the accuracy and that is 

the convergence accuracy and the speed of offloading process.  
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So, let us get started with the introduction of this particular problem setting. Now, modelling 

the problem of computing offloading in a multi edge multi device computing scenario often is 

a nonlinear optimization problem. Moreover, the goal of task offloading is minimizing the 

long-term cost in terms of latency and energy consumption, by predicting the characteristics 

of the tasks and its server loads tasks are dynamically offloaded to an optimal edge server.  

So, in the decision model, the prediction is combined with task decision to dynamically 

allocate resources for different tasks to further reduce the latency and improve the service 

quality. In summary, we need to say that we are considering the computing or the task 

offloading in multi edge and multi device scenario.  

So, meaning to say if you recall the architecture or the model architecture of the edge cloud, 

what you will find is that there are multiple devices at the lowest level or let us say the layer 

number one these are all IoT devices. Now, the task of these IoT devices because of 

constraints of battery or the energy and also the latency, these tasks are offloaded to the edge. 

Now, the edge is a multi-edge maybe that it is not only single node, but multiple nodes out 

there. 

So, multi devices and multi edge task offloading problem is around the goal of minimizing 

the long term costs in terms of latency and energy. So, the cost function is a is a function of 

minimizing the latency and energy consumption jointly. So, this is the aim of computing or a 



task offloading from IoT device to the edge. So, the edge we are considering here as multi 

edge.  

Now, what is happening is that this particular task offloading is incurring latency of 

transferring the data from IoT to the edge for computation. So, it requires the network latency 

that is in the terms of network latency is incurred. And also, it requires some amount of 

energy. So, energy is also required here in the task offloading.  

So, how to minimize these two things, that is the overhead of task offloading is to be 

minimized. So, this is done with the help of the predictions. So, by predicting the 

characteristics of the task and the edge server load, why because, so, this is an edge server. 

So, this is an edge server load which is occurring at the at the edge and also the IoT will now 

generate the task.  

So, there are two characteristics that is the task the characteristics of the task which are being 

generated out of these IoT devices and also the server loads the edge server load there are two 

aspects and these characteristics needs to be used in the predictions. So, once these 

characteristics of the task, incoming task at the user devices and the edge server load, these 

tasks are dynamically offloaded to the optimal edge server.  

If these two things are being understood, then using the way of prediction they can be 

offloaded to the optimal edge server. So, therefore, the in the decision model, the prediction 

is combined with a task decision to dynamically allocate the resources for different tasks to 

further reduce the latency and improve the service quality, meaning to say that this particular 

task allocation or task offloading if it is combined with the predictions.  

And then in that case, it will further there is a scope of further reducing the latency and 

improve the service quality, how that is all done, we are going to discuss this aspect in this 

particular issue.  
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So, therefore, let us understand through the motivation that the task offloading can result in 

the additional transmission delays and the energy consumption that I have already stated in 

the previous slide. Therefore, this aspect into the task offloading which is incurring the 

additional transmission delays and energy consumption, how this is we overcome reduced to 

a minimum value.  

So, therefore, task offloading problem is modelled as joint decision making problem for cost 

minimization considering the processing latency and energy consumption and task throw rate. 

tasks throw rate means, we will understand here this particular term with the help of that 

prediction models or the constraints based on this particular task or are the computation 

constraints if it is not met then those particular kinds of offloading will be of wastage that is 

called task throw rate.  

So, the online predictive offloading algorithm often is based on deep reinforcement learning 

and long short-term memory that is LSTM. So, both of them is used to solve this kind of 

predictive task offloading problem. So, we are now formulating this task offloading as a 

predictive task of flooding with using deep reinforcement learning DRL and LSTM.  

Now, such a model which is from the deep learning and the machine learning, it has a 

training phase of this particular predictive task offloading algorithm. In the training phase, the 

algorithm predicts the load of the edge server in the real time using LSTM algorithm and 



improve the convergence accuracy and the speed of deep reinforcement learning in the 

offloading process.  

So, therefore, based on the characteristics of the edge server and the characteristics of the 

load happening, these two things are being used with the LSTM for making the predictions of 

edge server load and the incoming load in the real time, and using this that deep 

reinforcement learning based offloading will be now seen as improvement in terms of 

convergence accuracy and the speed of offloading process decision making.  

Whereas, in the testing phase, the LSTM network will predict the characteristics of the next 

task and the DRL decision making Decision model allocates the computational resources for 

the task in advance. So, if it is done in advance, then it will reduce the response delay and 

improving the offloading process.  

Therefore, we are going to see that this additional transmission delay and energy 

consumption is quite reduced with the help of LSTM base predictions, that is the prediction 

for the edge server loads in during the training phase and in the testing phase, it will be 

LSTM network will predict the characteristics of the next task.  
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Now, let us understand the system model. So, the model is built on multi terminal that is 

multiple IoT devices and multi edge network scenario. Now, here let us understand that here 

we have to now consider that the terminal layers devices are denoted by different values 1, 2, 

3 and so, on up to M. So, that is shown over here.  



So, we see that these terminal devices are nothing but let us see the mobile devices or IoT 

devices which are m in number. So, m different devices are denoted by a set a set of terminal 

devices. Now, the element of this particular set is either an IoT device or a mobile device, let 

us assume that it is a mobile device.  

So, on each mobile device, there exists a task queue and a computation queue which is shown 

in this particular figure. So, on a particular mobile device, there exists a transmission queue, 

there is a task queue and a computation queue. So, the task queue stores the transmission 

queue and the computation queue, transmission queue. So, the transmission queue stores 

transmission queue stores the task to be offloaded.  

So, here those tasks which require to be offloaded on the edge will be stored over here, the 

computation queue processes that task locally that is on the mobile device now, we have to 

now consider the set of edge layer servers which are denoted by capital N. So, that is n 

different edge server nodes are there. So, there will be a mapping from the task transmission 

queue to the edge nodes.  

Now, the multiple computation queues are included in each now, every edge node will have 

the multiple computation queue in each edge server for parallel computation of the 

transmission queue offloading task. So, here we can see this particular edge cloud system 

with a mobile device and an edge node is shown over here.  
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So, let us see about the task model. So, that means for any mobile device, the tasks are 

generated in different time slots and are identified by a particular time set that is 1, 2, 3 and 

so, on up to T. Now, each arriving task is first stored in the corresponding mobile device task 

cache queue and then the decision model gives where the task will be offloaded to be 

executed.  

Now, for a particular time slot T out of the total time the new task is generated by the 

terminal device and let us say that for that is m is denoted as this. So, the task which is 

generated by the mobile device is defined as the task model which has the following three 

components.  

The first component is the size of the task data, and the second component is called the 

computational resource required per bit and the third one is the maximum tolerated delay of 

the task. So, that particular task model has three different characteristics and all these 

characteristics is defined under the task model.  
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Now, let us see about the decision model. Now, when the terminal device m has a new task 

that we have defined in the previous slide in a time slot, that decision model has to give the 

offloading scheme that is xt of m is either from 0 or 1. So, that is indicates whether the 

current task is offloaded or not.  

So, if xt of m is equal to 0 this indicates that the task is executed on the mobile device that is 

a local computation. Whereas, if xt of m is 1 that indicate that task will be offloaded to an 



edge server. Whereas, yt of mn which is also from 0 and 1 represents the edge server to 

which the task is offloaded for the execution.  

So, once it is decided the set of tasks which are to be offloaded to the edge server, the now 

the mapping of these tasks to the server is to be done in this case. So, therefore, this yt mn 

represents the edge server to which that task is being offloaded. So, m means mn task and n 

means that nth edge server where this particular thing will be offloaded. So, if yt mn is equal 

to 1 that is the task m is offloaded to the edge server n for the execution.  

So, the tasks in this model or atomic level tasks that means they cannot be they are 

indivisible. Now, each offloaded task can be executed in only one edge server and the tasks 

offloaded to the edge server for the executions are often constrained by this particular 

equation, you will see that the summation of all n is from this particular set, if it is 1 and m is 

from that is mobile from the mobile devices set nt is from time slot and xt of m is equal to 1 

that is it is decided that the task is to be offloaded.  
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Now computation model that is called the terminal layer computing model. So, the task 

generated by the t time slot must wait until the computation queue is free to execute the 

computation therefore, the waiting delays are calculated in this particular manner. So, the 

processing delay in the computation delay is also being calculated.  

And if you calculate the total energy consumption of a particular device, which is required for 

a task to be executed locally is mentioned here in this particular equation.  
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Now, the computational model where an edge layer computing model which we are now 

considering, the processing latency of the task at the edge layer is mentioned and the 

completion time for the edge layer task is also mentioned over here total delay of the task on 

an edge server and is now mentioned.  

Now, energy consumption incurred when the tasks are offloaded to the to the edge server is 

given by this particular equation. And this denotes the waiting energy consumption 

transmission consumption and edge node computation consumption of the task respectively.  
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Now, let us understand the goal. So, overall model of the system is a trade-off between the 

time delay and the energy consumption of the task computation to create the minimization of 

a cost problem. So, the solution goal is to minimize the total cost of the task generated in the 

system or this period of time.  
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So, let us see the prediction model that is called a task prediction model. So, that decision 

process is required after the task generation and there will be a certain time delay from the 

task generation to give this particular decision. Although the task generation is dynamic and 

random process considering the long-term nature of the task, it will have a strong correlation 

with the time therefore, based on the history of the user devices, we can predict the task that 

will be generated in the next time slot.  

So, that is the premise that if we know the characteristics of that particular devices, so, using 

that particular history and having a machine learning model, it can predict the tasks that will 

be generated in the next time slot. So, this is shown in this particular figure, now, we can 

predict the information of the future tasks by the prediction model. So, therefore, we are 

discussing about task prediction model and then determine the decision and allocate the 

computing resources upfront for that particular task. So, that is what shown were here.  

Now, if we have a predictive model task predictive model, which is based on LSTM then it 

can predict the next task information and this will be used in making the decision and even 

when a new task when the real task comes this particular prediction and the actual process, 

actual task requirements are now compared as an error.  



If the error is within a particular amount that is called a threshold, then we have to follow 

these decisions which we have taken beforehand using the prediction model about predicting 

the task and therefore, follow that particular task offloading based on the a priori decision 

making, I add this task information to the training samples and so, on.  

If the error is not within the threshold that means, our prediction is going wrong then in that 

case, we have to put this new task information into the decision model to making the decision 

and then follow the rest of the other steps that is we have already taken. So, if the error is 

within the between the real task and the predicted task is within allowed threshold, the task is 

directly offloaded and computed according to the assign decision information.  

Now, if this is done, then it is going to save time and therefore latency. It In terms of task 

allocation, so, otherwise the offloading decision is given using the decision model and the 

information of a new task is added in the in the historical data as the training samples. So, by 

training the LSTM network, the weights and the biases of each gate in the network are 

updated to improve the accuracy of the prediction model.  

So, that is quite important to understand that here in this particular problem, we are using 

LSTM base task prediction model and this particular task prediction model that means, is 

able to decide about the resources which are required for a new task to be arrived beforehand 

and that task allocation is almost finalized provided it is the real task is the air is within the 

threshold.  
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So, therefore, the node prediction model also let us see about that. So, historical load 

sequence data is long and used to train LSTM load prediction model. So, the predicted idle 

server is obtained from the train model using historical sequence data as the input. So, the 

predicted idle server is used as the offload the computing node when the training DRL. So, 

DRL training process involves selecting the actions with a certain probability epsilon.  

Now, when the random action is selected, the size comparison between the random value and 

the probability that is epsilon is used to determine whether the random action or a predicted 

action is going to take. So, epsilon greedy approach is used here for exploration purposes and 

otherwise it will be exploitation on purpose. So, using the prediction action and pre-selected 

idle server can reduce the number of explorations by the agent and improve the convergence 

in this particular offloading decision making. So, offloading decision is illustrated over here.  

Now, you can see that as far as the environment is concerned LSTM based prediction model 

is used and it is able to predict upfront beforehand. Now, this particular prediction Action. 

Now, as far as is used in the deep reinforcement learning, so, the states of a deep 

reinforcement learning will now use the action. So, there are two ways. So, it uses an epsilon 

greedy approach in DRL. So, it says that the values of epsilon that means, it is able to support 

exploration and exploitation.  
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So, let us see about the first part which is called a model training. So, the goal of DRL is to 

maximize the total reward by making the optimal actions. So, DRL uses epsilon greedy 

strategies for exploration and exploitation. So, exploration involves the random selection of 



any action with the probability in the expectation of a higher reward, while exploitation 

selects the action with the largest action estimate.  

So, this is targeting strategy fully explores the environment state but requires extensive 

exploration and a low data utilization. So, therefore, the model the action selection is the 

offloading decision of the task with the action in space known whether to execute locally or 

to offload to an edge server. So, during stochastic exploration LSTM is used to predict the 

load of the edge server and give an optimal action.  

So, optimal server at the next time slot is created based on historical load situation to obtain a 

higher reward and avoid the edge server load imbalance. So, let us see this particular model 

training phase. So, there is a LSTM and based on this historical load, it will make a prediction 

and this prediction is combined into the action and this will be fed to the agent whereas, the 

entire enrolment is being captured as a part of the state and is given to the deep you know 

network for selecting that particular.  

So, as I told you that this particular LSTM during the training process will take the 

information historical load of the edge servers and based on that it trains this particular model 

of deep reinforcement learning here in this case, this training processes happening let us see 

the offloading process.  
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So, when offloading process then, LSTM prediction model uses the task record or a task 

history that will be from the mobile devices or from the devices. So, each mobile device will 



generate a different type of task at different time slots and there is a system response delay to 

the task decision request and the waiting delay in the queue between the generation of the 

task and giving a decision.  

So, the edge system processes the data from the mobile device and stores the process records. 

Based on these historical records, the feature information of the next arriving can be 

predicted by LSTM. So, this particular LSTM base prediction of the next task is fed to the 

state here in deep reinforcement learning. So, the predicted information is given to the deep 

reinforcement learning to make the offloading scheme for the predicted task.  

Now, when the real task arrives, the offloading decision is given directly, if the error between 

the real task and the predicted task is within the allowed range, thereby improving the 

convergence time and thereby latency. Now, if the error is not within that allowed range, the 

decision is made according to the real task using the decision model and this particular 

sample will be stored here for further improvement of that prediction model.  

So, this illustrates the offloading decision phase. So, here you can see that now, this LSTM 

based task prediction model is fed that is, it will predict the task information and that is given 

to the state. So, therefore, DRL using the predicted task is fed to the state and then it will be 

evaluated based on the actual task arrival. And then the difference between the predicted and 

the actual is being used to measure with the help of a threshold if it is within the threshold 

and the predicted is more accurate and whatever DRL has taken the decision.  
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So, now, let us understand more about more detail about the DRL. So, that is nothing but a 

deep Q network. So, typical deep Q network is often composed of agent the state, action and 

reward. So, the policy is formulated as a mapping from a state to the action of the states to the 

action to obtain the reward or. So, the world is given over the state and a particular action 

denotes the reward that can be obtained by choosing the action in a given state st.  

So, this particular reward function is used and summation of all the rewards is the long-term 

reward which is shown over here. Now, when the state space and action space dimensions are 

large, then it is difficult to put these action space into the Q table in a normal reinforcement 

learning situation. Now, to solve this, the deep Q networks model in a DRL combines a 

neural network also deep neural network and with the Q learning algorithm and therefore, 

this Q table are put into the queue networks uses the neural network to fit the optimal Q 

functions.  

So, therefore, there are two neural networks with the same structure, but a different parameter 

in DQN one is called target network the other is called a main network both are being 

maintained simultaneously. Now, when iteratively updating the network, the algorithm first 

uses the target network to generate the target key values with the label f of t and uses the loss 

function to update the parameters of the main network. 

So, just see that the target network and the main network, both are used at the same point of 

time here in maintaining the Q values and these parameters are updated in the main network. 

So, after the introduction of the target network, the target Q values are generated by the target 

network remains constant in time, which can reduce the correlation between the current Q 

values and the target Q values and improve the stability of this particular algorithm.  
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Now, let us see about the use of replay memory in this algorithm. So, in order to break the 

correlation within the data deep Q network uses the experience replay method to solve this 

problem. So, after interacting with the environment, the agent is installed in the replay buffer 

in this particular form. So, you can see that state at a time t Action t will make the next state 

and the reward at a time t.  

So, when executing these valuation updates, the agent randomly selects a small set of 

experience tuples from the replay buffer, and then the algorithm updates the network 

parameter by optimizing this particular loss function. So, using experience replay can not 

only make this training more efficient, but also reduce the problem of overfitting that 

generates during by the training process.  
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Therefore, it is proposed to solve this overfitting or over estimation problem with the help of 

double DQN. So, DQN takes the maximum value with a with a maximum each time and the 

difference between this maximum value and the weighted average value will introduce an 

error and this particular error will lead to an over estimation after a long-time accumulation.  

Therefore, double DQN is composed of two networks QA and QB that we call it utilizes 

these two network to proceed the state valuation and action output alternatively, that is one 

network is used to select out the action and the other network is used to update the key values 

according to the selected action.  

So, double DQN makes this learning process more stable and reliable by separating two steps 

of selecting the action corresponding to the Q value and evaluating the Q values 

corresponding to that particular action. This eliminates the overestimation brought by the 

greedy epsilon, greedy algorithm and obtains more accurate Q estimation.  

So, instead of finding the label values of the parameter update directly from the target 

network double DQ one finds the action corresponding to the maximum Q value in QA and 

then uses the selected action to compute the target value and update in QB.  
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Now, duelling DQN compared to the DQN duelling DQ and considers the Q network into 

two parts, the first part only relates to the state s and a specific action to be adopted has 

nothing to do with this part and call value function apart noted by the second part is related to 

both state and action and this part is called action advantage function. So, all these things is 

expressed using an expression of a Q values.  
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Now, let us see about the decision model elements here in this case, so agent means that each 

mobile device is considered or as an agent that selects the next action according to the current 

state of the environment and improve the ability of the agent to make the decision by 



continuously interacting with the environment. So, the goal of the agent is to make the 

optimal action at any state and thus minimizing the total cost in this edge computing system.  

Whereas as far as the states are concerned the beginning of each timeslot each agent observes 

the state and it includes the properties of mobile device that is waiting que state, the 

transmission queue state and the bandwidth information and the real time load of the edge 

nodes all are the estates and are closely related to the action to be selected by the agent let us 

see about the action. 

So based on the current state, the agent first decides whether the newly generated task needs 

to be offloaded for the configuration or not, if it needs to be offloaded is it chooses which 

server to offload, it also chooses the appropriate transmission power when offloading the 

transmission. So, all these are part of particular action.  
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Now, let us consider about the reward function. So, reward after observing the state at a time 

slot t the agent takes an action according to the policy and that receives a reward at a time slot 

t plus 1. So, while updating the scheduling policy network to make the optimal decision at the 

next time slot, so, the goal of each agent here is to maximize its long-term discounted reward 

by optimizing the mapping from stage to action.  

So, the agent tends to make this optimal decision in its continuous interaction with the 

environment. So, the reward function is therefore shown here in this particular manner.  
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So, the entire online predictive task offloading algorithm is now put together here and let us 

discuss about that. So, input is that input different tasks at each time slots output is optimal 

offloading decision and a total cost. So, you have to initialize QA, QB and s and initialize the 

replay memory D to the capacity N. Now, for each episode from 1 to M.  

Now, we need to do initialize the sequences and pre-processors the sequence for each time 

slot t, we have to know use the probability 1 minus epsilon, to select a random action or 

LSTM predict action and generate another random number. So that random number is if it is 

greater than epsilon, then random action is selected that is st.  

And if it is less than epsilon then predicted action selection is done. Otherwise select an 

action such that it will be the maximum of that Q value to a maximum of QA or are it is B. 

Then it is if it is in B then it is maximum of or B is equal to maxim of QA here in QB. Now, 

we have to execute the action at and receive the reward and the next state and this will be 

stored in the replay memory.  
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Now, randomly sampled this mini batch of the experience from D and then perform the 

gradient descent on the loss function with respect to the network parameter. Now, then we 

have to choose A which is based on the QA network or and QB network and observe the 

value of reward function and as price or the next state.  

Now, if an update A is done in this Bellman equation, and if you update B, then you will 

follow this Bellman equation and this particular algorithm, now, you can understand that it 

uses the LSTM based task predictions here.  
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Now, let us see this particular kind of problem how experiments will be done. So, a lot of 

data sets are available in public. So, let us see that we use data set using the Google cluster 

information, which includes the information about arrival time, data size, processing, time 

and so on. And therefore, considering the following simulation parameters which are 

available in the literature.  
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So, this particular task prediction for this kind of problem, which are available in the 

literature is shown here about different values and the training process of LSTM and DRL we 

have explained. 



 

(Refer Slide Time: 36:34)  

 

So, when performing the training on DRL. So it will offload the decision model and it takes a 

longer time to explore and select the better result due to the initial random selection actions of 

the agent. Now, we predict the server load based on the edge server record history and based 

on these prediction results, the server predicts to be non-ideal is selected with a certain 

probability as the as the offload choice for the next moment. 

So, therefore, you can see that there are two different historical data sets are maintained, 

whether it is at the training phase or at the testing phase. So, this solution allows the agent to 

effectively avoid selecting the servers with a high load and thus reducing the task processing 

latency and task dropping rates.  

Now, here LSTM is used for a load prediction and compare the impact of decision with a 

with a load prediction that is LSTM plus DRL. And without LSTM, only DRL is used for 

offloading. So, if you if you compare you will find that there is a good amount of possible 

reduction in or overcoming from the two problems which we have stated that is latency and 

energy.  

Now, as a result, DRL is significantly slower than LSTM and DRL for load prediction in the 

earliest stages of the training, after certain training, the average delay, energy consumption 

and the number of throw is reduced rapidly using LSTM for the load predictions.  
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Impact of the task numbers are also studied here. So that means if you consider the data set t 

is called 100 200-500-1000 and compare the performance of DQN with the double DQN 

duelling DQN your optimal prediction algorithm under different time slots. So, what you will 

find that the system will increase the number of time slots increases. So, this predictive task 

offloading will reduce its latency on an average by 6 percent.  

And offloading cost is also reduced by 25 percent.  And task drop rate is also reduced by 31 

percent, which is quite substantial. And therefore, compared to the other algorithm, the cost 

average latency and the task drop rates are quite improved with the help of LSTM based 

prediction model. So, now, let us see about the impact of learning rate and now study the 

convergence of the algorithm at different learning rate. So, the algorithm is able to achieve a 

relatively fast convergence rate and a small convergence cost.  
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Now, let us see some numerical analysis of this LSTM based predictions. Suppose you are 

managing a data centre that provides a cloud computing services to the customers. And now 

you use LSTM model to forecast an hourly CPU utilization of the data centre within the next 

24 hours in order to optimize this resource allocation and minimize the energy consumption.  

Now then, if you have the data set with the hourly CPU utilization data for the last one year, 

which contains let us say 8,760 data points, so you must choose the first 7000 data points for 

training and the remaining 1760 data points for validation. Then you set the batch size to 64 

and the number of epochs to 50.  

Now assuming that the model takes 5 seconds and to process one batch of the data on a GPU. 

So, how long will it take to train the model? Now, this question assumes that the data has 

already been pre-processed and formatted into the LSTM model.  
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So, let us see the problem solution, which is going to give you the insight into these 

numerical calculations. So, the time it takes to train the model can be calculated in this in this 

manner. So, batch size if you keep 64 and the number of training points, let us say you keep 

7000 number of epochs 50 And the number of iterations per epochs.  

So, that is nothing, but the number of training data points divided by the batch size, it comes 

out to be around 109, that is number of iterations per epoch. So, the number of iterations is 

equal to number of epochs into number of iterations per epoch that is 5450 and time taken to 

process one batch of the data on the GPU is 5 seconds.  

So, the total time taken to train the model will be 5 multiplied by the batch size multiplied by 

total number of iterations, that comes out to be 20 point 4 days for full pledged convergence 

based training therefore, it will take approximately this much of days to train the LSTM base 

model using the given data set and batch size and the number of iterations are here.  
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Now, let us summarize this entire lecture that in this lecture, we have considered the 

computational offloading problem, which is very important in bringing up this edge 

computing. So, this optimization objective is to minimize the long-term cost by directly 

optimizing task latency energy consumption and discard task discard rate.  

So, so, the model combines this that is a prediction model of LSTM networks and the 

addition model of deep Q network. So, this prediction-based algorithm that is task of learning 

algorithm is based on deep reinforcement learning has the advantage if let us say that you 

combine it with double DQN and duelling DQN.  

So, that means, advanced level of advanced models are more complicated complex models 

are at advantages. So, that is the training speed and accuracy of deep reinforcement learning 

models are quite improved with the help of LSTM prediction capabilities. So, the proposed. 

So, this particular algorithm produces the offloading decision delay of the task in the actual 

inference model.  

So, therefore, this can be taken forward in the development of edge computing and therefore, 

will improve the performance in the real IoT applications with the help of edge computing. 

Thank you.  


