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So, in the algorithm, this output is 2 raised to T + 0.5; maximum value of z is T. So, that is 

our d hat. 
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Now, let us compare it with 3d and d by 3. So, let a be the smallest integer, such that 2 raised 

to a + 0.5 is just above 3d. It is kind of log; we are looking at log of 3d. And similarly, what 

symmetric thing is; let b be the largest, such that 2 raised to b + 0.5 is just behind d by 3. This 

is again, d is kind of log of d by 3. Now, we want to compare T with a and b; how much of 

difference is possible?  

 

So, first is the probability that d hat exceeds 3d, which means that T exceeds a. So, what is 

that? So, if T exceeds a, then basically Y a is positive. And positive means, Y a can only be 

an integer; so, it is at least 1. Now, what is the probability that this random variable Y a is 1 

or large. So, there we use concentration inequality. So, you can write this as bounded by 

expectation of Y a by 1. That is Markov inequality.  

 



So, expectation, you understand, d over 2 raised to a. Now, what is d over 2 raised to a? So, 

the way we defined a, we actually get a bound, square root 2 by 3; that is less than 1. So, the 

chance that d hat, the output exceeds 3d, it is more than 3 times d is sufficiently away from 1. 

This is what we learn. And similarly, we can do the other part.  
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So, probability that d hat is less than equal to d by 3, this is probability that; d hat less than 

equal to d by 3 means that T is less than equal to b, which means, the way we define Y, it 

means that Y b + 1 is 0. And what concentration inequalities should be used here? So, we can 

use here Chebyshev inequality. So, you need knowledge of variance and expectation. So, 

probability that Y b + 1 minus the expectation of b + 1; Y b + 1 is 0 and expectation is d over 

2 raised to b + 1; so, there is enough gap.  

 

That is what we will utilise. So, what is the chance that there is this gap between Y b + 1 and 

its expectation? So, that chance is limited by variance, which is; so, variance is in fact this d 

over 2 raised to b + 1. So, this is 2 raised to b + 1 by d. And 2 raised to b + 1 by d comes out 

to be again square root by 3. So, in other words, what you have now is probability that d hat 

is smaller than a saviour; it is between 3d and d by 3.  

 

This is at least 1 minus 2 square root 2 by 3. That is positive. So, there is a good chance that 

the algorithm is actually outputting and a good estimate for d; but this probability is not close 

to 1, right? It is more like close to 0, although it is a constant, positive constant. You can 

actually boost it by the boosting trick. So, the probability can be made 1 minus 2 raised to 

minus k, which means as close to 1 as you want.  



You can boost the success probability by running k independent and parallel copies of the 

algorithm for the stream. The independence part is important, which means that instead of 

picking 1 hash function, you pick k hash functions completely independently, and then use 

this valuation trick. So, you will have k many T's that you will get in the end. And what do 

you output as d hat?  

 

So, there is a nice trick; you output the median of these k answers. So, not the least T or the 

maximum T out of these k, but the median. So, the advantage is that, you can show that the 

median being far away from d, that probability you can bound by Chernoff bound. So, 

Chernoff will give you theorem that the output is between d by 3 and 3d is quite high, as high 

as you want. And how much space is needed?  

 

Well, log n was for the algorithm; so, it is k times log n now. So, k, you can take to be 10. 

And then, the success probability is almost 1 for the output approximating the number of 

distinct elements, while the space is still constant times log n. So, that is an amazing 

algorithm. When we started, it was not clear whether such a thing will exist, but it does. So, 

that is the first algorithm in data streaming.  

 

Second question that we will take up is whether there is an element in the stream that has a 

very high frequency, which basically suggests; in applications, it could suggest an attack, 

some token is appearing too many times; too many requests coming from that client.  
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So, detecting a heavy hitter. So, we want to check whether sigma has elements of unusually 

high frequency? So, perhaps, it is an attack on the server. So, when you have a server and a 

client and many clients are making a request, this algorithm can be used, can be seen as a 

way to detect whether 1 client is sending too much of data, too many requests compared to 

other clients. So, then you can decide to just ban that client.  

 

So, this client is called heavy hitter. How do you detect a heavy hitter? Again, in a very long 

data stream; you cannot really remember what that client did, because there are also many 

clients and there are many requests. So, in terms of data stream model, what you want is, now 

you want to work with frequencies. So, let f j be the frequency of j in the stream sigma. So, 

what is summation of all the frequencies? So, summation of frequencies is m.  

 

That is the length of the stream. So, we call it the first moment, F 1. And the idea is, for the 

algorithm, compare F 1 with the second moment, which is sum of the square of the 

frequencies. So, heuristically, if F 2 is very close to F 1 square, let us say 0.9 times F 1 

square, then it suggests that there is essentially 1 frequency which is very large compared to 

the others.  

 

Obviously, if there is only 1 kind of token, then F 2 is F 1 square; but if there are many 

tokens, then F 2 cannot really be equal to F 1 square; it will always be smaller; but it being 

close to F 1 square, suggests that something is wrong; there is a heavy hitter; implies that 

perhaps a heavy hitter. So, comparison is fine. You can decide how to define heavy hitter in 

terms of F 2, F 1.  

 

This is just 1 option. But the bigger question is, how do you compute F 1 and F 2? So, F 1, 

you can compute just by keeping a counter. It requires log m space. How do you compute F 

2? That is the tough question.  
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So, compute F 1 by a counter in space log m. This is fine. The major question here, the only 

question in this problem is, how do you compute F 2? So, F 2, the problem is that, this is a 

non-linear expression. So, you cannot really divide it into token by token computation. This 

seems to need F j in full. So, unless you have reached the end of the stream and you have 

calculated all the F j's, F 1 to F n, it is not really clear how do you compute the nonlinear 

expressions.  

 

So, counter is not clear. This indeed seems impossible to compute exactly. So, we will see an 

amazing algorithm again, which is by Alon, Matias and Szegedy. So, the AMS99 algorithm 

to compute F 2 uses a hash function h, like the previous algorithm; but unlike the previous 

algorithm, this will have a range plus minus 1, which is very strange. It actually will assign a 

sign to a token, plus sign or minus sign.  

 

And hash function, the sampling condition is also tougher, it needs 4-independence; from 4-

independent hash family. So, pairwise independent hash family construction, we have seen in 

this course. How will you actually construct 4-wise independent hash family? You really 

have to go beyond matrices for that. So, I will just leave as an exercise; by using cubic 

polynomials modulo a prime. So, it will be a different construction.  

 

These things exist; you can study them independently. AMS algorithm says that you pick a 

random 4-independent hash function h, which assigns signs to your n tokens appearing in this 

long stream of m tokens. h will be very compactly stored; you do not need h values on 1 to n. 



It will just be this cubic polynomial. So, it will be very compact. And you can do 

computations as you see tokens in your stream. That is the beauty of it.  

 

So, first pick random 4-independent hash h compactly stored. Initialise Z to 0, for token j in 

the stream. This is similar to the algorithm we did before. So, when you see token j in the 

stream, you compute the hash function and keep adding. That is it. So, you either will add 1 

or minus 1 depending on image of h. So, you are actually adding these plus minus 1s; so, in 

the end, you may also have a negative number.  

 

Now, what is the meaning of this Z? It is completely unclear; some magical thing. So, the 

output, you simply output the square of this. So, Z may be negative, may be positive, but 

when you square it, it is always non-negative, and that is what you output. Now, the question 

is, what is this to do with F 2? So, is Y related to F 2? That is not at all clear in this algorithm. 

It is a very simple algorithm. But now, all the work will be done in the analysis.  
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So, first property of Z is; which is actually the definition already in the algorithm, that for the 

stream; or let me say j 1 to n. So, for these tokens, h j, image of j under the hash function, this 

will be added as many times as the element appears. So, that is f j; that is by definition. That 

is what the algorithm is doing. And so, what is the expectation of this? By linearity of 

expectation, you get; frequency is fixed, that is not a random variable; h j is; but since h is 

randomly picked, h j is either either 1 or minus 1 with equal probability. So, this is 0.  

 



So, expectation of Z is, what you expect Z to come out is 0. So, can you say the same thing 

about Y? Is Y also expected to be 0? Well, not quite. So, that is what you will now see. It is a 

different game altogether. So, expectation of Y is expectation of this thing squared, Z 

squared. So, Sigma f j h j squared. So, that is expectation of, that inside thing is Sigma f j 

square plus Sigma f i f j; i different from j in h i h j.  

 

So, expectation of Sigma f j square is just F 2, right? So, that is F 2 plus; interesting thing is 

the second thing. So, here, by linearity of expectation, you take it inside. And in fact, I also 

factorise; I express it as h i times h j; expectation of first times expectation of the second. 

Why did I do that? So, this I can do by; since i and j are different and hash function is 4-wise 

independent; in fact, so, it is 2-wise independent.  

 

So, because of that, I can factorise E; and then, again, this part is 0. So, you see that this 

justifies our algorithm; because all those Z is expected to be 0, Z square is not. And this 

should be a big surprise, right? Somehow this probabilistic calculation is telling you that Z 

square is expected to be what you wanted, which is F 2. But now, what is the guarantee that it 

will be close to F 2 in practice? For that, we need concentration inequalities. So, let us do 

that. But this at least tells you that we are on the right track.  
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So, next what we will do is, for concentration inequality, we will compute the variance of Y. 

So, variance is Y square minus expectation of Y whole square, which is expectation of Z to 

the 4 minus this. So, expectation of Z to the 4 is, it is a complicated thing. So, this is f j h j to 

the 4 minus; expectation of Y, we have calculated, that is F 2. Now, the thing is that when 



you expand this out, f j h j to the 4, what you get is F 1 times F 2 times F 3 times F 4; 4 

things.  

 

So, if they are different, then, point is that expectation will factorise. If they are not different, 

then it will not factorise. So, when it factorises, you get 0; when it does not factorise, then 

you are stuck with it. So, you will be stuck with the following terms. So, expectation of f j to 

the 4, you cannot do anything; it is non-zero. And second is, out of 4 things, repetition is 

there. So, let us say F 1 square times F 2 square; those kinds of things.  

 

So, that is f i square f j square. And there is because of this binomial expansion, you will have 

a 3 setting outside, minus F 2 square part. How did we get this? So, this we got by using 4-

wise independence. This is really using 4-wise independence. That is where we need 4-wise 

independence, because you can have in the binomial expansion, F 1 times F 2 times F 3 times 

F 4. So, you need expectation of this to be 0.  

 

So, you actually need them; expectation to factorise over this, so that it is 0. Now, we have 

this highly simplified expression, and let us work it out. So, this is equal to; we can take out 

expectation because these things are actually fixed. So, you have Sigma f j to the 4, then 

Sigma f i square f j square minus the green term, which is what? So, Sigma f j square and f i 

square f j square. That is what F 2 square is.  

 

So, what you are left with is just 2 times f i square f j square. So, that is variance. And this 

you can upper bound by 2 F 2 square. This is, you can see, f i square times f j square is kind 

of coming from F 2 times F 2. So, we have this clear upper bound. And with that, when you 

use Chebyshev; so, Chebyshev concentration inequality, it gives you that probability that the 

output Y is away from the value that we want, F 2. How much away?  

 

Some alpha times F 2 away. So, that is variance of Y, which is 2 F 2 square divided by alpha 

F 2 square. So, Y minus F 2, Y being away from F 2 by let us say 2 times F 2, that probability 

is no more than half. So, this is again going in a very good direction. It is telling you that you 

will have an approximation for F 2. So, this means that Y approximates F 2 well. So, now we 

have guarantees. And the guarantee, you can improve further as we did before. You can 

improve it further by running this algorithm independently and simultaneously.  
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So, again, what you can do is reduce the variance by keeping k independent estimators Y 1 to 

Y k. Instead of computing just a single Y, you compute k independent ones, obviously by 

picking k independent hash functions, 4-wise independent hash functions and output. So, in 

the previous algorithm, in example 1, you outputted median. Here, what you want is this 

Chebyshev bound to improve. So, you want a smaller variance.  

 

So, what you do is, you actually take an average of Y 1 to Y k. So, output Y prime which is 

the average; so, not the median; output the average. So, this has the desired effect of 

expectation being unchanged and variance being; so, variance, remember requires squaring. 

So, actually, you can see, you can show that this variance has reduced by k. So, expectation 

does not change; variance becomes smaller; and hence, when you use Chebyshev inequality, 

the RHS will be now much smaller.  

 

So, you will get the desired probability. And you can take alpha to be as small as you want. 

So, Y will be very good approximation of F 2. So, gives a much better approximation of F 2 

in space k times log m. So, that is it. This finishes streaming algorithms; and in fact, this 

finishes the course also. So, I hope that you like the theory and you also appreciated the 

applications. Okay, thanks. 


