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Ramsey Numbers, Large Cuts in Graphs 

 

Last time we started probabilistic methods. First example we took is Ramsey number. So, 

you saw that in the complete graph on 6 vertices, no matter how you colour the edges, red or 

blue, there is always a monochromatic triangle. So, let us now generalise this in a far 

reaching way, using probability and other tricks.  
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So, we want K n to have either a red, let us say this complete subgraph on k vertices, small k 

vertices, or a blue K l, for any colouring. This is our goal. So, essentially, this is a question on 

given k, small k and l; what n to pick? So that, no matter how you colour the edges, red or 

blue, you will get either this coloured complete graph or this coloured complete graph. So, 

we define, smallest such n is called Ramsey number R k, l.  

 

So, Ramsey number is the smallest n which is a function of k and l of course, such that, no 

matter how you colour the edges, there is always a monochromatic complete subgraph of the 

respective size, either small k or l. So, obviously, first question that arises here is why should 

such a number exist? So, does k, l exist? Even existence is not clear. And how large? If it 

exists, how big is it, as a function of small k and l?  



And we have just shown that R 3 3 is less than equal to 6. You can actually show that it is 

exactly 6, but we have at least shown before that 6 vertices are enough to get monochromatic 

triangle. So, in fact, this is equal to 6. So, keeping that in mind, let us study R k k first, where 

small k and l, we are taking them equal. So, let us first understand this, what is happening. 
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So, we will first actually prove a lower bound using probability, and then we will show an 

upper bound using averaging argument like before. So, let us randomly colour the edges in K 

n. Let us call this graph G, which is V, E, vertices V, edges E. So, vertices are 1 to n, and 

edges are all possible. Obviously, we do not know whether this n exists for R k k, but 

suppose it exists, then look at the graph G, randomly colour it with red and blue colours, the 

edges.  

 

And let us estimate the probability that G has a monochromatic subgraph k, subgraph of size 

small k. What is the chance of there being a monochromatic subgraph? So, first observation 

is, any subset of size small k of the vertices, the probability that this S, particular fixed S is 

monochromatic is how much? So, it can be either red or blue; so, that is 2, and 2 times. What 

is the chance that all these edges are red? So, how many edges are there?  

 

Number of edges, k choose 2. So, that is, each edge can be red or blue; so, it is 2 raised to k 

choose 2. So, this is the probability. This is actually, as k grows, this is a very small 

probability that this particular subset is monochromatic, but you should not be misled by this 

little probability, because the number of subsets is large. So, overall, what is the chance that 

some subset is monochromatic? So, let us analyse that.  



So, this implies by the union bound that probability that there exists an S which is 

monochromatic; so, this is just summing over all the subsets; so, which gives you n choose k 

times 2 raised to 1 - k choose 2. This is the probability that there is some monochromatic 

subset of size small k, red or blue, complete subgraph. So, this means that, if the RHS 

expression is less than 1, then there exists a bad colouring such that G has no monochromatic 

complete subgraph of size small k.  

 

So, this probability is less than 1, then actually there is a positive chance. So, less than 1 

means, the opposite probability is positive. So, there is a positive chance that for all the 

subsets, the colouring makes each of them non-monochromatic. So, in particular, if you take 

n to be 2 raised to k - 1 by 2, you take the ceiling of this. So, if n is this much, then you can 

see that n choose k 2 raised to 1 - k chose 2 is less than 1, which means that; so, K n has a 

colouring to avoid a complete subgraph of size small k that is monochromatic. So, which 

means that, if this n exists, it has to be bigger than this exponential bound, it has to be quite 

large.  
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So, which means that R k k has to be bigger than 2 raised to k - 1 by 2. So, this still does not 

prove that R k k exists, but if it exists, it is quite large; this is exponentially large. So, in other 

words, what we have shown is that Ramsey numbers are very large. You need actually very 

large graphs, so that any 2 colouring gives you a complete monochromatic subgraph that is 

complete.  

 



In fact, what this argument shows, this is a randomised algorithm to find bad colourings. If 

this bound n choose k 2 raised to 1 minus k choose 2 is smaller than 1. If it is sufficiently 

smaller than 1, then, what it is saying is that, when you pick a random colouring, it will be 

bad. So, this actually is a probabilistic algorithm, fast algorithm, which is an interesting thing; 

I mean, you are actually looking for the bad colouring in a huge space; the number of 

possible colourings is like 2 raised to n square.  

 

So, number of colourings is around 2 raised to number of edges, which is 2 raised to n choose 

2, which is like 2 raised to n square by 2. So, this is a very big space, but the time that this 

algorithm is taking is only polynomial in n. So, this is a very fast algorithm compared to the 

space that it is looking at. So, I leave you with this exercise that R k, l indeed exists and it is 

actually smaller than k + l choose k, kind of this, k + l - 2 choose k - 1.  

 

So, it is this binomial number. So, hint is, you basically attempt in a similar way as you did in 

case 6, you used pigeonhole principle or averaging principle to look at the neighbours of first 

vertex. So, you look at vertex 1; and these are the neighbours. These are all red edges. To see 

the neighbours of 1 via red edges, they are more than blue edges; so, you get this 

neighbourhood of 1. And let us call this graph G prime.  

 

Now, what happens here is, if you show that the graph G prime is large, either you want k - 1 

monochromatic; I mean, k - 1 complete subgraph of colour red, having k - 1 vertices, then 

you can use these red edges to get a complete subgraph of size k. So, if the vertices are R k - 

1 l in this, then G prime has either k - 1 red colour or k l blue. So, if you find k l blue, then 

you are done. If you find k - 1 red, complete subgraph monochromatic, then you can use the 

red edges.  

 

So, basically, you use induction. So, use induction here; that is the full hint. So, using this 

idea, you can actually look at the neighbours of 1 and then accordingly show that R k, l = k + 

l - 2 choose k - 1 actually works. And this is in fact implied by R k l greater than equal to R k 

- 1 l + R k l - 1. This is the hint for the induction. So, if you take a function R k l which 

satisfies this property, then you can either look at the red neighbours of 1 or the blue 

neighbours of 1; one of them will satisfy, will help you go 1 step down in the induction 

argument. So, what have we learnt then?  
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So, let us now join all these conclusions, combine these conclusions to deduce theorem 1, 

which says that R k, k, it has to be at least 2 raised to k - 1 by 2 ceiling, which we showed by 

probabilistic argument. And it does not exceed 2k - 2 k - 1 by using this R k, l formula or 

upper bound. So, this is around 2 raised to k - 1. So, you have a pretty good idea of what this 

R k, k Ramsey number is.  

 

It is at least square root 2 raised to k - 1, and it is at most 2 raised to k - 1. So, that is a 

beautiful way to get these 2 bounds, and a good understanding of R k, k. So, that is the first 

example. Let us move to the second example of probabilistic methods, which will be cuts in a 

graph. In the first example, we looked at colouring in a graph; now we look at some other 

property called cut in a graph. This is again to do with the edges. So, what is this?  

 

Let G be an undirected graph. So, for a subset A of V, define cut introduced by A, subset A 

of vertices to be essentially the edges which go out of A to A compliment. So, the edges that 

go from A to A compliment; let me draw this for clarity. This is A; this is A complement. So, 

V - A. And this is u here, and this is v. So, this is called a crossing edge. So, you want to 

collect the crossing edges to define the cut.  

 

So, I will also need the other direction. So, either u in A, v in A bar; or u in A bar, v in A; 

those are the cases. So, now, cut of A is also an undirected subgraph of G. So, u will be given 

in the input G, A is not really known; you want to find in A such that the cut is maximised; it 

is the max cut problem. That is the question. So, how large is cut, as A varies. So, you want 

the largest, the max cut. So, max cut is an important computer science problem.  



So, you want to maximise the cut over subset A of vertices. Now, remember that number of 

A is just too much, this is 2 raised to n. So, number of subsets A of V is 2 raised to n. So, this 

is exponentially many. So, how do you search in this space for the best A possible, with the 

largest cut. In fact, a priori it is not even clear a theoretical lower bound on the cut. It seems 

to depend too much on the input graph. So, now we will prove an interesting lower bound 

and also give an probabilistic algorithm. So, let us try a heuristic first.  
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So, instead of trying to analyse it very properly, let us just jump in and say that we will pick 

these edges of the cut, or we will pick the subset A in a random way. We will look at a vertex 

u and decide whether to put it in A or A bar. So, first step is, you initialise set A to be empty; 

it has nothing. For each vertex, what you do is, add v in A with probability half. This is a 

trivial step; you can achieve it by just tossing a fair coin.  

 

So, if the coin gives you head, you decide to put vertex v in A. If it is tails, then you do not 

put it in A; you have basically put it in A compliment in a way. And just do this for all the 

vertices and finally return the cut. So, that is the heuristic. This is the simplest probabilistic 

algorithm you can think of for this problem; just picking A randomly. That is really the idea 

here. Now, is it any good?  

 

Is this heuristic algorithm giving us new knowledge about the cut and how big a cut? So, let 

us analyse defining the main random variable here we are interested in, which is the cut size. 

And for edges in the graph; so, given graph is v, e, right? Edges are e. So, for every edge, 



define a random variable which is 1 if e is in the cut, and it is 0 otherwise. So, it simply 

indicates whether this edge was chosen.  

 

Well not chosen; so, the n points of the edge e. One of them was chosen in e, and the other 

was not. So, that indication is given by the random variable X e. And then, the sum of this, 

these X e's is the size of the cut. That is another random variable which is sum. So, let us 

remember that. So, X is equal to sum of X e over all the edges. And the other thing is, if you 

look at its expectation, this is the main thing. What is this cut expected to be?  

 

So, we look at the expectation over these coin tosses that we did. So, expectation of X e is 

basically probability that; since it is an indicator variable 1 0, it is just probability whether e 

was put in the cut. Now, e has obviously 2 vertices, 2 different vertices; and independently, 

one was put in A and the other was put in A compliment. So, there are 2 possibilities. This 

event has basically partitions into 2 events, and so, say e = u, v; u goes in A, v does not; so, 

that is half times half probability.  

 

And it is the same for every e. This is happening by linearity of expectation, it does not 

require any assumption. So, you get in the end, number of edges by 2, which is amazing. So, 

you know that this heuristic algorithm which is just being random A, actually gives you a cut 

half the size, half the number of edges. So, this is not at all clear when we define cut that such 

a thing exists. So, that is our theorem 2.  
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Given G, a cut of size half the number of edges at least can be found efficiently. That is a 

randomised algorithm, and it is very fast. So, although the number of subsets is 2 raised to n, 

your algorithm is not doing that. It is actually polynomial in n. And it is very interesting. So, 

this is an example of probabilistic method. It is actually telling you existence of A. So, thus, it 

proves the existence of A such that the cut is at least half the number of edges.  

 

And it is proving this apparently without using any graph theory. This is a very simple 

heuristic. So, this brings us to the end of second application. And the third application we will 

do is about sum-free subsets. 


