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So, basically, the goal is that as long as you have picked a big enough T, elements of your 

interest in S will be bijectively mapped from S to T. Now, this obviously fails if A is a much 

bigger set.  
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So, clearly, it fails if A is larger than the size of T, because if you are mapping many 

elements to fewer elements, then there will be collisions. So, you want to avoid collisions as 

long as we are interested in few elements of S. That is what hashing achieves in a beautiful 

and very practical way. So, let us see a cryptographic example of why, definition that we 

have pairwise independent hashing. Why is this so important in practice?  

 

So, suppose Alice and Bob want to communicate by a channel that is hijacked by Eve. So, 

hijack means not only can E read what is being sent in the channel, but E can also replace 

that message by her own message; it is completely hijacked. So, given this scenario, how can 

B be sure that he got the message from A and not by E. So, this is a complicated problem. 

Again, this seems almost impossible to solve, because B has only one line of communication 

with A, which is hijacked by E; so, E can do anything; but we can use one loophole, which is 

A and B may share a secret, which E does not know.  

 

So, with that secret, maybe A and B are in a better position. So, the picture is something like 

this. There is A; there is B; there is this communication channel which is hijacked by E. So, 

A wants to send X and some changes have to be made. So, that is X, Y; Y which is hash 

image of X. So, Alice will not just send the message, but also some kind of a signature, using 

a hash function.  

 

And hopefully, by analysing the signature, B will know that it is from A and not from E. So, 

let us see the protocol. In the protocol, A and B keep a secret. So, a random key r, which 

gives access to hash function; that is a hash function. So, let me use that phi small r. So, that 

phi r is the important secret that A and B share. And think of it as a signature that B will see 

from A. Now, why would it work? We have to analyse that. So, let us continue with the 

protocol first. So, now, using this hash function, A sends message X with signature Y, which 

is phi r X.  
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And finally, Bob will check; Bob accepts it only after checking whether Y is the same as phi 

r X. So, note that Bob has X, has Y and also has the hash function. And if this equation Y 

equal to phi r X is satisfied, then Bob is satisfied that it indeed came from A. Otherwise, he 

will know that something bad happened, and probably E trapped the original message and 

sent the corrupted message of own. So, why is this strange protocol supposed to work?  

 

And what is the use of hash, pairwise independent hashing? Let us do that analysis. So, 

suppose E steals X, Y, and sends some different message X prime Y prime on the channel to 

B. Now, B would not know a priori that E has stolen the original message. So, B will, in step 

2, just check Y prime equal to phi r X prime. So, what happens? So, let E be the event that Y 

prime is phi r X prime, in which case B wrongly accepts message X prime, which is different 

from X.  

 

So, let us call it fancy E. This fancy E is the event that B has been fooled by Eve. So, let us 

do this calculation, probability of this event E happening, when Eve has 1. So, let us go over 

all the messages and the signature. So, messages s, signature t, the domain in the range of phi. 

So, s was the correct message that A wanted to send, and it is an image; message is s, 

signature is t, and bad event happened. So, what is that?  

 

So, we are basically summing over all these bad situations. What is the probability? So, that 

is, message is s times the probability that phi r s is t and phi r X prime is Y prime, and X 

prime is different from s. So, this X prime, Y prime is what Bob has already got. So, we are 



fixing X prime, Y prime, because Bob has already seen X prime, Y prime; but Bob does not 

know what was X and Y.  

 

So, you are assuming it to be, X to be as string s, and then, the image of that is t, but it so 

happens that the hash function phi r, it maps X prime to exactly Y prime, even though X 

prime is different from s. So, this is the sum of errors. Notice that these 3 things in the end, 

they are independent of X being s. So, we have written as a product, because phi r is that the, 

it does not depend on what the message was, and X prime also does not depend on that; I 

mean, X prime is different from s; so, this is independent; that is what we are assuming.  

 

So, this sum of errors is less than equal to sum over t, sum over s, probability that X is s 

times. So, what is the chance that s goes maps to t and X prime maps to Y prime? So, this, by 

the property of pairwise independent hashing, is exactly 1 over T square. This is where we 

are using pairwise independence. And we are also using the fact that s and X prime are 

different. If Eve used s equal to X prime, then, there is no problem.  

 

The error only happens when X prime is different. So, that is the case which pairwise 

independence property also captures. So, X has to be one of the s's; so, this sum is 1. So, you 

get sum over 1 over T square, which is 1 over T.  
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So, which means that chances of an evil collision are very small if T is large. So, this is what 

the hash function did. Since E will not know what the hash function is, she will not be able to 

find X prime, Y prime so easily. So, as long as the image of the hash function is large, the 



range is large, probability of collision being discovered by Eve is very little. Maybe I will 

also quickly talk about how a hash function is implemented.  

 

So, at this point, you may not even believe that it exists. We have only defined it, and then we 

saw an application; but should it exist? So, let us see a quick idea to implement. So, let us 

think of S and T as vectors. In fact, they are vector spaces. So, S has a big ambient space; T 

has a small ambient space. And then, the map is a linear transformation. So, phi is a linear 

transformation from vector space S to space T.  

 

So, this is what is best for implementations, linear transformations and vector spaces. So, phi 

in other words, we will implement as a matrix. And then, messages and the signatures will be 

vectors. So, how? So, more concretely, you can take S to be 0 1 to the n. So, F 2 is the field 

of 2 elements. So, F 2 is this binary field. So, when you add, you add basically mod 2. And 

when you multiply, you multiply mod 2.  

 

So, 1 dot 1 is 1, and 0 dot 1 and everything else is, all the other products are 0. And 1 + 1 is 

also 0. So, with that understanding, now, bits have turned into algebraic objects. So, S is F 2 

to the n; T is F 2 to the m; and n is bigger than m. So, large space to small space. Now, phi R 

is a random matrix R. So, it is m cross n, such that this action phi R from S to T is simply 

given by, column vector S will transform to column vector by left multiplication.  

 

s is a column vector with n coordinates, and when you left multiply by R, it becomes a 

column vector with m coordinates. So, a long vector, like, bigger ambient space vector into a 

smaller ambient space vector; this is what is happening. And obviously, you just pick a 

random matrix by flipping mn coins or a coin mn times. You will get this, all these entries of 

R field.  

 

So, it is very easy to randomly sample and it is equally easy to define the action and do this 

computation. So, I will leave it as an exercise. Show that phi R is pairwise independent 

hashing, which means that, as you randomly pick these matrices, m cross n matrices, these 2 

conditions that you had in the definition like pairwise independence and uniform distribution 

of the image, both of them will be satisfied.  

 



They will basically be, I mean, think of it in terms of a single row, the first row of R. So, first 

row has at least 2 random bits, 2 elements. So, when you multiply with s, you can see that; 

with s and with s prime, you will basically get 2 linear equations; and those values will be 

independent. So, this can be done. This is a very useful construction, and it is also done in 

future courses. So, I skip this and I move to a new topic, the last one in this course, which is 

probabilistic methods. 
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So, you may ask, what is new in this title? We have been doing probabilistic methods; we 

have been doing probability all the while; so, difference is that probabilistic methods, we will 

use this term to mean that we are using probability to show that some mathematical object 

exists. It is for the existence. It is not really to compute probability, but to even show 

existence, just show existence.  

 

Probability can be used to prove the existence of important mathematical objects, whose 

definition, nothing to do with probability. We will see many examples of mathematical 

objects whose definition is completely combinatorial, there is no probability; and yet, by 

using probabilistic methods, by using probability, we show that they even exist. The 

existence was not clear from the definition. So, that is the surprise in all these applications.  

 

So, instead of talking about this in more general terms, let us see the examples. First is 

Ramsey number or graph colouring. So, let K n be the complete undirected graph on n 

vertices. So, for example, K 3 is simply a triangle, and K 4 will be a square with both the 

diagonals, and so on. K 2 will be a line segment, and K 1 is just a point, just a vertex. So, 



what we want? We want to look for such subgraphs, graphs or subgraphs of the type K n, in 

coloured graphs.  
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Suppose we colour the edges of a given graph G by red and blue; so, given a graph G, we 

have arbitrarily coloured the edges, only the edges red or blue. So, we are basically, in other 

words, partition the edges into 2 types, then what happens? Then, can we identify these 

complete subgraphs and monochromatic? In fact, let me say that it is K n that we are 

covering. Then, interesting facts about monochromatic complete subgraphs could be shown.  

 

This is what we are after. So, K n, we have coloured the edges. So, now, we will say that, 

okay, there will either be a red or a blue monochromatic subgraph that is again a complete 

graph. So, for example, just to warm you up; colour K 6, complete graph on hexagon. There 

is always either a red K 3, which means triangle; there is either a red triangle or a blue 

triangle; show this.  

 

So, no matter how you colour K 6, the edges, you will not be able to avoid red triangles and 

blue triangles together. So, let me give you a hint, how this will be done. And then, maybe 

you complete it. So, focus on vertex 1; there are 6 vertices. Now, vertex 1 has 5 neighbours 

which have been coloured, these edges have been covered red or blue. So, 3 of them have the 

same colour, let us say red.  

 

So, 2, 3, 4; they are all coloured red. So, either there you will find 3 neighbours, 3 outgoing 

edges which are red or 3 that are blue. That happens by simply just averaging argument or 



pigeonhole principle. And now, what can you say about these 3 edges, 2, 3; 3, 4; 4, 2? So, 

either one of these edges is red, in which case you get a red triangle or all of them are blue. 

So, this implies either red triangle or blue triangle exists. So, that is your hint. So, next time, 

we will generalise this. 


