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Last week we started stochastic process and we defined Markov chain as a sequence of 

random variables where the current variable depends only on the previous one and is 

independent of everything that came prior to that. And then we called it Markov chain. And 

we are especially interested in this course in homogeneous Markov chains, which basically 

means that it does not depend on time; the probability does not depend on time.  

 

So, X K over X K - 1, probability is the same as it was at any given point of time; so, in 

particular, X 1 over X 0. We saw some examples. We saw a way to represent Markov chain, 

homogenous Markov chain. And then we came to transition matrix.  
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So, here, I have to repeat some things. So, Markov chain is equivalent to; whenever I say 

Markov chain, I mean homogeneity implicitly. So, it is equivalent to defining or giving a 

transition matrix; T, right? So, T ij is the probability that j appears given i appeared before. 

And initial probability distribution; so, what was the probability of being in a state out of n 

states or out of these s states, in the very beginning.  

 



So, I said that the initial probability distribution mu; sum of mu i is 1, which is correct. Then 

the rows, each row sum of T is 1; that is also correct; but column sum may not be 1. We do 

not know anything about column sum. So, this matrix T is called stochastic just by the row 

sum being 1. If column sum was also 1, then we call it doubly-stochastic, but this may not be 

doubly-stochastic. So, that was a mistake. And this is important to note.  
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So, for the row sum, we said that you just look at Sigma T ij. And that is, where did you go 

from i? So, you have to go to one of the j's. So, that probability sum is 1 by partition; but you 

cannot do the same thing for column sum, because, there you will be asking how did you 

come to j? But this Sigma T ij as you vary i, you cannot say anything about this probability. 

That was the mistake. So, this column sum may not be 1.  

 

It may be less; it may be more than 1. Then we saw this example of drunkards walk in 1 

dimension. There are many such examples where any physical process which seems 

memoryless is actually Markov chain. Then we went to evolution of a Markov chain. So, that 

happens basically by right multiplication of matrix, transition matrix. And so, the Markov 

chain keeps evolving till n equal to infinity, and then what happens?  

 

So, this P n, probability distribution on the states as n tends to infinity, what is this? So, this 

we started studying as stationary distribution and for that we needed regularity. So, at some 

point of time; so, M to the t should be all positive entries, strictly positive. When that 

happens, we started this Perron-Frobenius theorem, which says that if M is the transition 



matrix of a regular homogeneous Markov chain, then M to the limit exists, limit of M to the n 

exists. In fact, this is just a rank 1 matrix; column vector 1 times a row vector w.  

 

This is what we will show now. This also tells you that; again it reminds you of 

memorylessness, because this w in the end, the stationary distribution we call it, is 

independent of what you started from, what mu you started from. It only depends on 

transition probabilities, not on initial distribution. So, we said that we will work with matrix 

action m. So, M acting on a vector v 0, let us say, gives you v 1.  

 

We will show that the entries of v 1 are getting closer with each matrix action. So, ultimately 

what will happen is, M to the n times v 0 will become a scalar. That is the viewpoint we take. 

So, let us say in v 0, the minimum is small m 0 and the maximum entry is big M 0, and 

similarly for v 1. And let us also assume that matrix M has been entry delta, which we can 

assume to be positive, because of regularity. If any entry is 0, then you basically go to M to 

the t, work with that.  
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Now, delta cannot be more than half, because if the minimum entry is more than half, then 

the row sum will exceed 1; that cannot happen. So, now let us look at the action M times v 0 

given v 1. So, you can very easily estimate that each entry in v 1 upper bound is, if you give 

this big M 0, the biggest, the largest entry in v 0, if you give it more weight, which is 1 minus 

delta, this is at least half, so, this is the larger weight.  

 



And the smaller m 0 part, you give smaller weight delta. So, that is an upper bound. You can 

show that this actually works using the row sum property of M. And symmetrically, the lower 

bound on entries in v 1 is, if you do the opposite. So, you give more weight, 1 minus delta to 

smaller entries like m 0, smaller m 0; and less weight delta to the larger entries like big M 0. 

So, that is the thing we now continue with. So, what does this mean?  

 

This means that the difference of maximum minimum entries in the vector v 1 is less than 

equal to; so, maximum is smaller than the first bound and minimum is at least the second 

bound. So, you take the difference. And what do you get? So, big M 0 times 1 minus 2 delta 

plus small m 0 times 2 delta minus 1, which is M 0 minus small m 0 times 1 minus 2 delta, 

which is less than big M 0 minus small m 0. Since, delta is positive.  

 

If delta was 0, then there would have been no change in the deviation; but since delta is 

positive, the deviation is actually falling. So, in v 1, elements have become a bit closer, and 

you also know how close. So, it is at least by this fraction 1 minus 2 delta. So, let us 

remember this. So, the gap falls, has fallen by the fraction 1 minus 2 delta. So, since this is a 

constant fraction, you repeat this many times. And in fact, in the limit, the deviation becomes 

0. That is the conclusion.  
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So, this implies that limit as n tends to infinity of v n has equal entries, which means v n is a 

scalar. So, scalar depending on this thing that you started with, right? v 0 times 1 bar for c v 

0, a positive constant. So, we have shown that, if you keep doing this action of matrix 



multiplication on the left by M, then ultimately, the column vector that you will get will be 

just all-1 vector multiplied by some constant.  

 

So, that is quite nice, because this tells you that limit as n tends to infinity of v n is limit M to 

the n times v 0 = c 0 times 1 bar. Let us call this equation 1. So, the limit exists and it is 

actually very nice; it is essentially the all-1 vector. So, this was true for any vector v 0. So, 

you can as well vary the, you can look at different actions. So, you can take v 0 to be an 

elementary vector.  

 

So, vary v 0 as a vector with 1 only in the first position, 1 in the second position and 1 in the 

last position. So, these are your s elementary vectors. Then what do you get? So, then, 

equation 1 gives actually an information about limit of M to the n. So, instead of the action of 

M to the n, you can actually now talk about M to the n matrix itself. So, what is this matrix? 

This is essentially M to the n times the first choice of v 0, that gives you the first column.  

 

So, the first column is some constant times 1 bar; the second is c 2 times 1 bar; and finally, c 

s times 1 bar. So, essentially, the rows are equal; that is what has happened. So, this is, in 

other words, multiplication of column 1 bar with row these constants, these scalars, right? 

This you can see just by matrix multiplication definition. And that is what we can call w. This 

is the definition of w.  

 

So, you have complete information about the matrix power, as the power keeps on increasing. 

So, this is Perron-Frobenius theorem, one version. You get the stationary distribution. And 

why is this stationary? Because; did I define stationary before? Yes; because this action on 

the left gives you exactly this. So, recall that, if you now look at initial distribution, 

multiplying on the left then you get the value 1 times w transpose.  

 

So, this w is the stationary distribution. These c 1 to c s, there is a very clear meaning. c i is 

essentially the probability of being in that state, ith state, after infinite applications, infinite 

steps in this Markov process. So, that is what we have shown.  
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So, couple of exercises here, because it is a tricky proof, probably something very new for 

you. So, first exercise is, why did we use the right action M dot v, when the left action is 

more natural? So, Markov chain evolution works with left action, multiplying on the left by 

the previous probability distribution on the states. So, that is more natural. So, why did we 

actually use the right action in this proof?  

 

Why cannot we just work with the left action and get the same statement? So, think about 

this. Second is, so, if M is doubly-stochastic, what happens? So, in the previous proof, M was 

only stochastic, which means that the row sums, every row sum was 1. What happens if you 

also know that the column sums are 1? Then you can actually show that stationary 

distribution is uniform.  

 

So, essentially, you can show that M to the n as n tends to infinity, this is 1 over s times J, 

where J is the all-1 matrix. So, for doubly-stochastic Markov chains or transition matrix, if 

you keep following the process, then, in the end, actually all the probabilities become equal. 

So, this is a simple proof, follows the; I mean you can just invoke this Perron-Frobenius 

theorem twice; one on M as we did and the other on M transpose.  

 

So, I will leave this as an exercise. So, apply the theorem on M and M transpose; that will do 

it. So, this is just scratching the surface of Markov chains. Let us now see some examples of 

this. And there are many good practical examples, physical phenomena which is modelled by 

Markov chains. So, let me give you some stunning examples, depending on how much time 

we have.  
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So, first is the Page Rank algorithm. And let me remark here that random walks in undirected 

graphs give doubly-stochastic. So, if you are doing a random walk in an undirected graph, 

then you actually get symmetric matrix M, which is a doubly-stochastic process. And so, 

basically, if you walk in the graph for a long time, then, if the graph is connected, then you 

will get to the stationary distribution which is uniform.  

 

So, you will be able to visit every vertex; so, visiting all vertices in the end. This is what, this 

is one easy way to interpret what we just did, that a random walk in a graph will ultimately 

result in visiting all the vertices with equal chance. That is an amazing process itself. So, 

now, let us build on that and use it to search webpages in the internet. So, say you want to 

rank pages on the internet.  

 

So, first criteria that you can use is, the more a page is linked by others, the more important it 

is. So, more links to a webpage X means higher rank. So, this is link based criteria. So, more 

pages link out to this webpage X, then it somehow is indicative of the importance of X. But 

this is only the first attempt, this may not be a very good criterion, because maybe people 

just, maybe a group forms in the internet that is linking this maliciously and trying to increase 

the rank.  

 

So, you have to make this criteria more refined. But anyways, you can; let us start with this, 

with something. So, consider the internet graph which has vertices V, edges E. What are the 

edges? So, well, first of all, vertices V are; this is just the set of webpages; and let us call this, 



without loss of generality, label them by 1 to n. And you should think of n as very large, 

many billion. So, it is something like 10 to the 9 or 10 to the 10, 1 billion, 10 billion.  

 

This obviously keeps on increasing with time. So, there is a huge number of pages in the 

internet. And what are the edges? Edges, E has i comma j if and only if page-i links to page-j. 

That is all. That is the internet graph. So, you have, 1 may be linking to 2; 2 linking to 3; 3 

linking to 4; and then, maybe 3 linking to 1. And there might be a vertex 5 which may not 

have any links. Correct?  

 

And similarly, maybe there is 0 who is not linked by anybody, but 0 links 3; but nobody links 

0, right? So, in this, somehow, so, page 3 has 2 links to it; so, page 3 seems important. 0 and 

5 seem not important; nobody is interested in those webpages. 1 has only 1 link; 4 has only 1 

link; 2 has only 1 link. So, by this ranking method, you would give 3 highest rank and 0, 5 

lowest and everything in the middle. That could be the first criterion. But how will you 

compute this rank? What is the algorithm for it? So, this one is obviously simple; it follows 

from the definition. 
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You just have to compute the n degree of a vertex. So, label vertex-i by rank of, rank p i 

which is just counter 1 for every j such that j to i is an edge. So, vertex-i's label is just the in-

degree. So, that is simple, but the issue is this ranking business seems to ignore quality. By 

quality, we mean that, intuitively, if a vertex that is more important is linking to something, 

that should be given more weight.  

 



And a vertex that has a very little importance; so, in this case, in the previous example, 0 

linking to 3 should have less weight than 1 linking to or 2 linking to 3, because 0 has, nobody 

is interested in 0. So, why should you count its link to 3? While people are interested in page 

2 and page 2 is linking to 3, so, that is kind of more important. And this is a small example, 

but in a big example, this can be very important, this additional feature has to be added to get 

closer to the correct ranking.  

 

So, who likes you is important, the quality of that webpage is important. Who links to you? It 

cannot be ignored. So, let us do an improvement. So, if j links to many, then give it less 

weight. If j is less important, then give it less weight. So, both the things seem reasonable. If j 

links too much, then its opinion should be discounted that much; by that much, right? And 

also if j's rank is very less, then its link should be given less weightage.  

 

So, what does this mean mathematically? Let us see that. So, define i's rank p i to be p j 

divided by m j and j such that j links to i, where; so, now it is not simply in-degree, it is not 

actually property of the graph; this is something else; this is property of importance. I mean, 

here we are trying to capture j, j is important. So, if j's rank is high, which is p j, then this 

contribution is higher, the linking to i gets more weight.  

 

And if m j is the number of links, so, m j is out-degree of j, which is number of links from j. 

So, we are defining 2 things. So, p i is sum of the links to it, but links are being weighted by 

how important j is or, I mean, what is the rank of j itself; and it will be reduced or normalised 

by the out-degree of j; whether j has a habit of linking too much; then we discount by this. 

But, now it has become cyclic; it is a cyclic definition, right? p i depends on p j.  
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So, this is a cyclic definition. So, what are p i's now? Do they even exist? Does the ranking 

even exist? That is the question. So, it is possible that, maybe these equations are not enough 

to get the ranking. So, the question that will actually solve our problem is to turn this into 

random walk. So, could we turn this into a random walk on G, and hence a Markov chain? 

So, we are actually trying to get this rehashed into a Markov chain and then solve it. 

 


