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One thing you have to remember here is that, this alpha by n is probability, only when n is 

large. If suppose you take n to be alpha or even less than alpha, then this expression is more 

than 1. So, you cannot call it probability. So, here we are already assuming that this n is large. 

And then it makes sense that alpha by n is probability, when n is very large; ultimately, we 

make n to be infinity.  

 

So, probability that X is some number, this actually comes out to be 1, which makes sense. 

So, this is a good consistency check. And just out of curiosity, what is the expectation of this 

random variable X? So, this is probability X equal to k times k, which is e raised to minus 

alpha times alpha to the k - 1 over k - 1 factorial. So, e raised to minus alpha times alpha, you 

can take out, and the rest is again of the form Sigma alpha to the k by k factorial.  

 

So, it is again e raised to alpha. So, you get e raised to minus alpha; alpha out; and then, e 

raised to alpha, which is alpha. So, both the expressions are intuitively correct. Expectation 



remains alpha and the sum over all possibilities remains 1. So, this is the perfect time to make 

this a random variable. This gives you the definition. So, let me write that down.  
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So, random variable X over probability space Omega, P; Omega, sample space; P is the 

probability distribution function. This will be called Poisson random variable with parameter 

alpha, if the following happens. So, first is that, takes values 0, 1, 2. So, basically whole 

numbers or non-negative integers. And second is that probability that it is k is e raised to 

minus alpha times alpha to the k by k factorial.  

 

And you have already seen that this expectation of this is alpha. So, if you sum up over all the 

possibilities, it is expected to take value alpha; but a particular value k, it will take with this 

much probability. So, this is for k greater than equal to 0, in this domain. So, let me call this 

domain W, and that is where k is; whole numbers. So, that is your mass function; probability 

mass function is this.  

 

I will leave it as an exercise, which you already saw actually; you saw the calculation that, 

this mass function is very much like the binomial mass function. In fact, you can show 

formally that Poisson random variable approximates the binomial one. Why is that intuitive? 

Because you saw the expression; so, you had this binomial random variable expression n 

choose k p raised to k 1 minus p raised to n - k.  

 

And then you wrote p as alpha by n and you got this, for a large n. So, the similar thing; so, if 

p is very small, if p is significantly small compared to n, then you can do this calculation for 



an appropriate alpha, and you will get; that Poisson is actually binomial in the limit. So, let us 

now shift gears; let us now do something else which is going beyond expectation. Now, let us 

go beyond expectation. So, that will be concentration inequalities.  
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So, what are they? The question we want to answer in this topic is, is there a way to measure 

how close the expectation E X is to the actual values of X? So, what does it even mean? It 

means, questions of the type that, what is the probability that X is large, let us say, twice the 

expectation? So, what is the probability that X will overperform? Or, what is the probability 

that X will underperform? So, those tail probabilities, we want to calculate.  

 

So, is this possible? Is expectation a good judge of that, or a good indicator towards that? So, 

in fact, it turns out there it is; and we will prove a series of increasingly stronger 

interpretation of expectation. The first thing we will show is called Markov inequality. So, 

the theorem is by Markov from 1890s. So, it says that, for a positive random variable X and a 

positive a, the probability that X is at least a.  

 

So, think of a as being large. So, what is the chance that X is large? So, that surprisingly is 

related in a simple way with expectation. So, this probability is smaller than expectation by a. 

So, this is of interest only when; so, it is of interest if a is greater than the expectation; 

otherwise not. So, only when a is larger than expectation, this will give you a useful 

information; otherwise, this will itself be more; it will be saying that probability is less than 

equal to something that is bigger than 1, which is useless information.  

 



But, if you take a to be, let us say, bigger than expectation, then this is saying that the 

probability of that happening is low. And it is lower as you increase a. So, that is a very 

interesting property. And how do you prove it? Actually, the proof is quite simple.  
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So, proof idea is just that; so, larger the a is or larger the value is, smaller its probability will 

be. How do you implement this idea? How do you see this in formulas? So, you write 

expectation by definition as big X taking value small x for all, in the non-negative real 

numbers. So, you break this up into below a and above a; a is positive, right. So, below a, this 

summoned; and then, the same summoned above a; small x at least a.  

 

And look at the lower bound; so, when small x is less than a, in that case, you use 0; 

obviously, it is at least 0. And when small x is at least a, then you use a as the lower bound; 

so, that will give you probability of X small x times a, small x at least a. Which is what? 

Which is probability that big X is at least a. So, by definition of expectation, you already get 

this lower bound, which means that the probability that X is large is smaller than the 

expectation divided by a.  

 

So, all these, the large part, the summons where small x is large, they, since a is large, the 

probability part has to be smaller. So, this exactly is the interpretation in the definition of 

expectation; but for this, you need a large a; small a, this calculation is useless. And now, 

going beyond expectation, that function is called variance. So, let us now make the 

discrepancy.  

 



Discrepancy of X, we want to understand it from expectation more carefully, more precisely. 

This previous inequality was of limited use. For example, it does not tell you the probability 

that big X is half of expectation. So, we want to ultimately reach that stage. And you want to 

be more precise. So, what is the difference between X and expectation? So, let us make that 

discrepancy, which is X minus E X, this discrepancy measurement or estimate more formal.  

 

So, the way to do it is, just look at the expectation of this discrepancy. What happens? So, if 

you look at the discrepancy expectation, you get into a trivial information by linearity of 

expectation; because, this is nothing but expectation of X minus expectation of X. But the 

latter thing is a constant; so, it is just expectation minus expectation; so, it is 0. The reason 

why we got nothing is because the positives and negatives cancel each other out.  

 

That is what happened. Sine was the problem. So, you could not learn anything about the 

magnitude of the discrepancy. So, one solution that people found long back is to square it and 

then calculate the expectation.  
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So, we suppress the sign by using this definition. So, variance of X is expectation of X 

minus; so, discrepancy squared. Let us work with this. It is not directly 0; it is not clear what 

this value is. It will depend on the random variable. And since you are actually interested in 

the discrepancy and not its square, we can take the square root of this; and that is called 

standard deviation.  

 



So, we will call it sigma X. Compute the variance; take the square root, positive square root. 

So, that is the positive square root. Notice that variance will not be negative, it is non-

negative. So, square root will also be non-negative; it is a real number. So, this seems to be 

the first right notion to understand or to measure or to estimate the discrepancy; how far is the 

random variable from its expected value. Let us do some calculation.  

 

So, variance using linearity of expectation, what you can do is, you can expand out. So, it is 

expectation of X square minus 2 E X X plus E X square, which is; so, by linearity, you will 

get expectation of X square minus twice expectation of X times expectation of X. So, that is 

expectation of X whole square. So, it is a kind of the average of square minus square of the 

average. That is variance.  

 

And one more thing you can prove quite easily; for a constant; then you look at the random 

variable multiplied by a, that constant. That, you can see from this expression or even the 

definition that an a square will come out; that is again by linearity, by scaling of expectation. 

So, you will get a square times variance of X. So, those are the properties that you 

immediately learn from the definition of variance. Let us see an example.  

 

So, standard deviation of Bernoulli random variable; what is a Bernoulli random variable? 

So, recall that it is a, just a coin toss, single toss, with probability of heads being p, parameter 

p. That is quite simple. So, variance of X is expectation of X square minus expectation of X 

whole square. Now, this Bernoulli variable X, that takes 0 or 1 with probability p and the 0 

with 1 - p; so, expectation is p. So, you get p minus p square.  

 

And the standard deviation you get square root of p 1 - p; which you can also show is at most 

half. That is, you cannot increase this standard deviation beyond half. So, what you can prove 

now, in the case of an unbiased coin, that is p equal to half, you can show that standard 

deviation expectation of X and expectation of X square, all these values are half. For p equal 

to half, you get this.  

 

And so, for an unbiased coin, the standard deviation of Bernoulli is maximised, which makes 

sense because the coin is unbiased. So, that is where there should be no bias either side of the 

expectation which is half. So, it wildly oscillates from 0 to 1, discrete; either X is 0 or X is 1 

with equal chance.  
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So, unbiased coin maximises the deviation. So, that is good. We have some understanding of 

discrepancy and deviation. But, could we go back to the discrepancy X - E X magnitude? 

What can we say about that? Not square of this; square of this, we understand better, that is 

variance. What about this, just the magnitude? So, that is covered under now Chebyshev 

inequality. This is by Chebyshev; was the advisor of Markov actually, from 1867.  

 

So, for a random variable X and positive a, he showed that the probability of this discrepancy 

being large is small. How small? Depends on the variance; variance by a square. Variance is 

a standard deviation square; so, you can write it as sigma X by a whole square. And again, 

this will make sense when a is bigger than the standard deviation. Otherwise, it is a trivial 

claim; it is simply saying that the probability is less than equal to 1 or more, which everybody 

knows, which is clear from the definition.  

 

But if a is, let us say, double the standard deviation, then this is saying that the probability is 

less than equal to one-fourth, which is very surprising, because you actually are getting a 

quantitative value. It is a quantitative fact about this intuitive thing that X cannot be very far 

away from the average. So, this is very precisely telling you that X cannot be, the discrepancy 

cannot be more than double that of standard deviation. The probability is low.  

 

So, this proof is also now very easy, given your background. So, the idea is, use Markov's 

inequality on variance or on this square of this discrepancy. So, how will it go? So, the left-

hand side which is the probability is equal to the same, to the probability of X minus 



expectation square being at least a square. Why is that? Because a is positive; and left-hand, 

this discrepancy is also positive. So, you can as well square it; it works.  

 

So, probability of this event is equal to the probability of original event, which by Markov is 

now expectation of; square of this divided by a square, which is nothing but variance by a 

square, which is also standard deviation by a whole square. So, that is what we wanted to 

show.  
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So, what this tells you is, this sigma, it tightly controls the deviation from the mean. So, the 

random variable, when you do an experiment, it cannot be very far away from the mean. That 

is what deviation is controlling. So, for example, it is saying that, probability that X is away 

from the mean by 2 sigma or probability that X is smaller from the expectation by 2 sigma, 

either of these events combined, their probability is smaller than one-fourth.  

 

So, the probability is less than 25%. That, you do an experiment and you get 2 sigma over the 

mean or double the standard deviation below the mean, that is a very small probability. These 

are low probability events. 


