
Randomized Methods in Complexity
Prof. Nitin Saxena

Department of Computer Science & Engineering
Indian Institute of Technology - Kanpur

Lecture - 05
ACC0 Lower Bounds

 (Refer Slide Time: 00:13)

Last time, we proved this theorem due to Shamir. We showed that IP = Pspace. Any problem
that can be solved by Interactive Protocol, can also be solved in Pspace and any problem in
Pspace has an Interactive Protocol. The hard part here was to actually show that quantified
Boolean formula which is a complete problem for Pspace that has an interactive protocol.
We showed that and then using that theorem we will show that if exponential time has
circuits.
(Refer Slide Time: 00:55)

62

Then exponential time solvable problems also have a one round Merlin Arthur protocol. We
do not believe any of these conditions, any of these statements but this lemma will actually
give a connection. In other words you can also say the contrapositive, which is that if
exponential time problems don’t have Merlin Arthur protocol then they also don’t have
circuits.

We assume that exponential time is in P/poly. And we will show that immediate or a easy
consequence of that would be that any exponential time solvable problem, say L with this
Turing machine N. It can be the steps of Turing machine N can be encoded using ∃, ∀
quantifiers. Let us see that encoding - the j-th bit in the i-th configuration.

Remember that Turing machine starts it steps the computation then in any moment of time,
it is in a configuration. So, configuration means where is the head? What is the state? And
what is there on the tape? The j-th bit in the i-th configuration of N started with input x is
computable in EXP. This just follows from the hypothesis that L is in EXP.

This implies that there exists a poly-size circuit C which will take x, i and j in binary that
computes this bit. This is because of the hypothesis that x in P/poly. Hence once you have
assumed that j bit can be computed in EXP then there is in fact a circuit that can also
compute it and the circuit is only poly-size in x.

(Refer Slide Time: 03:50)

Which is the same as saying that if x is a yes string, then and only then there is a circuit, says
that for all i, j, C(x,I,j) C(x, i+1, j) is a valid step. We are saying that x is a yes string, if and→
only if there is this circuit C which is small sized such that for every i and j, C(x, i, j) computes
the j-th bit in the i-th configuration.

Going from i-th configuration to i + 1 configuration, this is one step of the Turing machine.
And the j-th bit, respectively of these 2 configurations is being verified. This verification
whether the j-th bit of when you go from i-th configuration to i + 1 configuration whether
this is correct. This can be checked simply by using the control of N. N is a Turing machine
which has a finite control. So, one step is very easy to check.

63

This thing in the square bracket, can be checked easily. And there is in fact a circuit C, which
will be able to check the claim for every i and j. It can actually check the whole computation
and the computation has exponentially many steps. This is the property of the circuit C that
is how we write in quantification. This means that L is in and L was any language in∃, ∀ Σ

2
EXP.

You have actually shown that EXP is in and itself is trivially in EXP. So, this means thatΣ
2

Σ
2

EXP = . This is a very strong conclusion. It is a very strong statement that EXP is equal toΣ
2

Σ
2

. But, the hypothesis was also very strong that EXP is in P/poly, from that you are getting this.
Let us continue the connections, we also know that is in Pspace, which has been shown toΣ

2
be IP, which is trivially in EXP because interactive protocol can be checked and simulated in
EXP.

EXP we have shown to be equal to . This means that all these containments are equalities.Σ
2

This means that Pspace is equal to IP is equal to EXP, EXP was given to have P/poly circuits. In
particular, you have reduced that Pspace or more interestingly IP. What you have reduced
from here? This is that IP, it has poly size circuits. Now the way, we will use this fact or this
conclusion is that in any interactive protocol Merlin now can be eliminated and replaced by
a circuit.

Arthur can just talk to a circuit in the protocol instead of this advisor Merlin. This is what we
learn from here. Merlin can be seen as a as a Pspace machine. Hence now, it can be
simulated by a poly-size circuit family. Let us call it Cn. This Cn is basically Merlin. You replace
Merlin by this circuit Cn, where n is basically the input size x. For that particular input size,
Merlin can be replaced or simulated by the circuit.

And Arthur will now just invoke this as an oracle. This suggests a 1-round protocol to
convince Arthur that x is in L . Merlin will just send the circuit Cn to Arthur. And Arthur can
now play with the circuit. Arthur does not need Merlin. That is the 1-round as a simple trick.
(Refer Slide Time: 10:19)

64

Merlin sends circuit C claiming it to be Cn for n size of x. And Arthur can run the protocol
using C instead of challenging Merlin. What has happened here is that Merlin which in the
definition of IP or MA or AM, Merlin is all powerful. Merlin just gives answers, whenever
challenged by Arthur and then it is up to Arthur to verify. But here, because of the strong
hypotheses, we have been able to show that actually Merlin is only as good as a poly-sized
circuit.

Now in the protocol, this circuit is presented to Arthur and then Arthur can work on his own,
which means that L is in MA. This protocol implies that L is actually in MA and L was any
language in EXP, so, actually EXP is in MA. MA is obviously in EXP, so, this means that EXP =
MA. That finishes the lemma. That if you assume exponential time problems to have small
circuits, then EXP has a single round protocol.

Let us now move to the final lemma. The final lemma that we will present. We will see the
proof when we start or when we do Pseudorandom generators. The lemma was first shown
by Impasliazzo, Kabanets and Wigderson. Here the hypothesis is even stronger than before,
which is NEXP in P/poly, assume that then what can you deduce. Nobody believes that NEXP
can be solved in or using poly-sized circuits, because exponential time problems are already
hard enough.

NEXP could solve another level of exponential hardness. We do not expect these doubly
exponential time problems to have such small circuits. But if you assume this, then what you
get is NEXP equal to EXP. This non-determinism can be eliminated at the exponential level,
NEXP = EXP. That is the conclusion if you assume this absurd containment. We will prove this
towards the end of the course, for now you just remember this lemma.

And let us now finish, the proof of our PIT lower bound connection which we stated long
time back. So, we stated it here, this Kabanets Impagliazzo theorem.
(Refer Slide Time: 15:20)

65

That if BPP = P then either NEXP does not have circuits or permanent does not have circuits.
Former circuits are Boolean, later circuits are arithmetic circuits. Let us finish this theorem.
(Refer Slide Time: 15:37)

Let us finish the proof of PIT lower bound theorem, which is that if PIT, polynomial identity
testing, if it is in P or if BPP = P. Then, either NEXP is not in P/poly or permanent doesn’t have
poly-sized arithmetic circuits, this arithmetic P/poly. What is the proof? Now the things that
we have developed till now, the tools and the lemmas the complexity classes using them the
proof is actually very easy.

We will just assume, all these 3 things PIT in P, NEXP in P/poly, permanent in arithmetic
P/poly, and we will deduce a simple contradiction. Suppose PIT is in P and at the same time
NEXP is in P/poly, then you get from the previous lemma, that NEXP and EXP both are equal
to MA. This is the lemma, which we have not proved, we just stated. Remember that MA is
in the polynomial hierarchy. And then there is a theorem called Toda’s theorem, which tells
us that polynomial hierarchy is in permanent.

66

Using permanent as an oracle you can solve anything in polynomial hierarchy. This is called
Toda’s theorem. This is a class between PH and Pspace. So, this NP, NPNP, NP to the NP to the
NP to the NP all these classes, they actually can be computed by just permanent using it as
an oracle. All this implies that NEXP is in Pper. Let us remember this that NEXP is in Pper.

Now assume that permanent is in arithmetic P/poly and PIT is in P. If you assume these two
things, then there was a lemma, which we, I think we proved it first. The first lemma which
tells you that Pper has NP proofs, so permanent can be verified efficiently. The idea was just
that you will guess the small arithmetic circuit for permanent and then use PIT after
expanding permanent row by row recursively.

That told us that Pper is in NP. Which together with NEXP in Pper implies that NEXP is in NP as
well, which contradicts the non-deterministic time hierarchy. So, non-deterministic time
hierarchy theorem says that if you have a complexity class where the non-determinism is
function f. And then there is another non-deterministic time complexity class using time
with function say f2.

Then you get a strictly bigger class. So, more time means you can solve more problems. That
is contradicted by NEXP = NP. This contradiction means that one of the three assumptions is
false. Thus, PIT in P will imply either NEXP not in P/poly or permanent not in arithmetic
P/poly. This finishes our big theorem which required defining all these new complexity
classes by different means and proving connections between these impossible statements.

What we have learnt in the end is that if you can de-randomize which means that if BPP = P,
then there are lower bounds. So, either NEXP will not have circuits or permanent will not
have circuits. This is a very interesting connection and remember that we had also shown
earlier.
(Refer Slide Time: 23:04)

We had shown using a simpler proof that if you assume black-box PIT in P, then you actually
get explicit polynomials which are exponentially hard for arithmetic circuits. Both these
theorems are excellent examples of connection between existence of an algorithm versus

67

non-existence of circuits and hence non-existence of algorithms. In the rest of the course,
we will discuss both these high level concepts.

One is this de-randomization which means that you design pseudorandom generators, that
randomization can be eliminated. What are the possibilities, constructions, objects, related
to this? On the other hand, we will also see, what we can do? or how can we prove lower
bounds, circuit lower bounds and mainly Boolean circuit lower bonds.
(Refer Slide Time: 24:19)

Let us start with proving lower bounds for the circuit model which is actually far stronger
than proving it over Turing machines. Because, if there is a fast Turing machine, then there
are also small circuits. If you show that there are no small circuits, then you are also showing
that there are no fast Turing machines. Obviously, the prime motivation for this is, it is
believed that NP ≠P, which is saying that problems whose solution verification is easy They
may not be easy to solve.

Given a solution you can verify. But, that does not mean that you can actually find the
solution. Philosophically it is a self-evident fact but mathematically how do you show it? So
that is an open question. One way to show it is to show something stronger, i.e. to show a
stronger result that SAT is not in P/poly.

The first conjecture is SAT is not in P, but that is implied by SAT is not in P/poly. SAT does not
have poly-size circuits and this seems to be a better formulation because, it is some more
algebraic question, which we can study by developing or using mathematical tools. It is still a
statement about Boolean functions, but the circuit has AND or NOT gates and maybe you
can simulate or you can simulate it algebraically.

And then maybe you can use algebraic tools as well to prove this. This approach was tried in
the 70s and 80s and lower bounds for special circuit models were obtained for special
circuits. However no general circuit lower bound results is known, but for special interesting
circuit models this approach was implemented. And this is where the probabilistic method
part in the course title will enter.

68

Probabilistic methods were used to do this. We will now start working on this path and
prove some very interesting lower bound results using very interesting algebraic and
probabilistic tools.

(Refer Slide Time: 28:53)

To exhibit the implementation of these ideas, the complexity class that we will use is called
AC0. We want to look at restricted forms of Boolean circuits and the first thing we restrict is
depth. Let us restrict the depth to a constant. Say we are looking at Boolean circuits, where
the depth is 100, 200, 1 million or 1 billion, any constant. Which means that it is not allowed
to grow with the input size n.

With respect to the number of variables n, depth is constant. AC0 is the set of those Boolean
problems. It means languages L such that there exists poly(n)-size, constant depth Boolean
circuits solving L. The key thing is poly(n)-size, constant depth and Boolean circuit. Boolean
circuits have gates, AND or NOT.

Our methods actually will require one more gate called the modular gate. So, modm is a
binary function which takes m bits and gives 1 bit. It will just check whether the sum of the
m input bits is divisible by m or not. So, x1 to xm are the bits and the answer will be 1, if the
sum of xi's is not 0 mod m and 0 otherwise. That is the modular gate.

In AC0 you can also introduce these modm gates where m is a constant. So m will not depend
on the input size, as it is a constant. You can think of mod-2, mod-3, mod-5 and so on. When
you introduce these gates, then the circuit is called ACC0. That is AC0 with counters; this is
now the collection of those Boolean languages L.

Languages L such that there exist poly n-size, constant depth, Boolean circuits using mod-m
gate, solving L. So, ACC0 is AC0 with the counters, but in particular it counts the values modm,
size should be polynomial, depth should be constant and circuit is Boolean. So, everywhere
only 0, 1 is used. The question you should ask at this point is, what about AC0 and ACC0[2]?
Which is equivalent to asking, is mod2 in AC0?

69

So, in constant depth can you compute parity? Note that mod2 is parity, meaning given m
bits whether the number of 1s is odd or even. When it is odd, answer is 1, when it is even
the answer is 0. Could that value be computed? Could that parity bit be computed in
constant depth? It is not immediately clear, but if you think about it then it seems that you
have to computing the sum and also division mod2.

And you have to do it, kind of n times or you have to do it in a way which is dependent on n.
Because, the function of parity is very sensitive on each and every bit. It changes by flipping
even a single bit. So, it is sensitive to each of the n bits. We will think of inputs as x1 to xn. You
have to look at each and every bit that may be hard to do in just constant depth and poly
size.

We actually believe it to be not there and hence, we believe AC0 to be different from
ACC0[2]. This is what we will prove next. This is an amazing statement with an amazing proof
technique.

(Refer Slide Time: 36:42)

In general, we suspect that modm should not be in ACC0[m’] for co-prime m and m’. In
particular, we suspect that mod2 should not be in AC0, ACC0[1]. The question is whether
ACC0[1] and ACC0[2] are different? And we would assume, we will we would suspect it to be
different, whenever this the two mod are different and to be precise co-prime. So, that was
shown by Razborov and Smolensky. So, for primes p and q different, mod-p is not in ACC0

modq.

This is what we will prove and the proof technique will be very interesting. Let us first
mention the idea. So, “approximate” an ACC0[q] circuit by a polynomial over Fq. Following
the hunch that circuits are more algebraic, we will follow that and formalize it by replacing
this circuit ACC0[q] circuit by a multivariate polynomial modq, where q is a prime.

We are actually then working over this finite field Fq and this polynomial will be
approximating. It will not exactly compute the circuit, but it will approximate it well. You can
read it as ACC0[q] circuits are easy to approximate by a polynomial. On the other hand, we

70

will show that modp does not have that property. So, modp function cannot be approximated
easily over Fq, which will show that these two are different.

Instead of doing this in the most general form, we will exhibit the proof for p = 2 and q =3.
And I leave the general proof for the assignment. This will be a long proof. Let us break it
into lemmas. The first is the approximation part. Let C be a depth-d, ACC0[3] circuit on n
inputs and size-s. Then, there is a multivariate polynomial in F3.

So, in the polynomial ring F3[], F3 is the finite field with 3 elements. There is a polynomial𝑥
whose degree is not too high - 2ld, where l is some parameter which we will fix afterwards.

Think of this as a low degree. We are saying that there is a polynomial in F3[], which is low𝑥
degree, and agrees with the circuit. The circuit has variables, , the same𝑥 = 𝑥

1
, ..., 𝑥

𝑛
variables there are in the polynomial also.

And this polynomial has low degree and it will agree with C() with very well. It will agree on𝑥
.1 − 𝑠/2𝑙

(Refer Slide Time: 43:19)

The input space is {0,1}n and out of this a good fraction – , which we can make1 − 𝑠/2𝑙

small. This is a big fraction. For example, the polynomial may agree with C on 99% of input
space. It is not 100%, but it can be made pretty large, almost 100%. That is a surprising fact.
Why is this happening? How can you convert a circuit?

Boolean circuit into a polynomial, which approximates this well and is of low degree. So, that
is lemma 1 that we will show. The other lemma that we will show, is the opposite for mod2.
That no polynomial in the same polynomial ring of degree smaller than square root n can
agree with mod2 on 99% of the input. These two lemmas will together imply that mod2

cannot be computed by ACC0 in ACC0[3]. Why is that?

Now, if mod2 has size s ACC0[3] circuit then by lemma 1, for a certain l we will get a
polynomial and that polynomial will have low degree. Suppose mod2 has size s ACC0[3]

71

circuit then by lemma the degree is roughly ld and in lemma 2 the degree is . You basically𝑛
want to match these two. Which means l should be around .𝑛𝑙/2𝑑

By lemma 1 for . There exists a polynomial of degree less than equal to 2ld𝑙 = 1/2 · 𝑛1/2𝑑

which is at most . And whenever we use these expressions, we actually mean the closest𝑛
integer. So . And this polynomial agrees with mod2 on fraction of𝑙 = ⌊1/2 · 𝑛1/2𝑑⌋ 1 − 𝑠/2𝑙

the inputs.

Now, lemma 2 says that whenever this happens, the fraction has to be small. So,

which means that s has to be larger than this. And how big is l? l is1 − 𝑠/2𝑙 ≤ 0. 99

around . This is actually bigger than . So, you can pick n to be sufficiently large.𝑛1/2𝑑 21/3·𝑛1/2𝑑

And then the lower bound you are getting, because of lemma 1 and lemma 2 together is, s is

actually more than where is absolute constant . This is not polynomial size, it is2𝑛ϵ

ϵ 1/2𝑑
exponential size. You deduce that mod2 cannot be in ACC0[3] which also means that parity
cannot be in AC0, because AC0 is even weaker than ACC0[3]. So, mod2 or parity cannot be in
AC0. This will finish our claimed theorem by Razborov and Smolensky.

(Refer Slide Time: 50:49)

And you can see that in this proof, you can take d to be non-constant as well. So, it is slightly
more than AC0. Any depth d smaller than will work,log 𝑙𝑜𝑔 𝑛 / 2 + ϵ() log 𝑙𝑜𝑔 log 𝑙𝑜𝑔 𝑛
where epsilon is a constant close to 0. This is because this you want this to be𝑛1/𝑑

sufficiently bigger than log n. In that case, your s will become super polynomial.

So, we want to be more than as it should be asymptotically larger than𝑛1/𝑑 ω log 𝑙𝑜𝑔 𝑛 ()
log n. So, should be equal to then the d has to be1/𝑑 · log 𝑙𝑜𝑔 𝑛 ω log 𝑙𝑜𝑔 log 𝑙𝑜𝑔 𝑛 ()
smaller than . That is the correct thing to say. So, let me justlog 𝑙𝑜𝑔 𝑛 / log 𝑙𝑜𝑔 log 𝑙𝑜𝑔 𝑛
correct this, so if depth of Boolean circuit is smaller than ,log 𝑙𝑜𝑔 𝑛 / log 𝑙𝑜𝑔 log 𝑙𝑜𝑔 𝑛
then the previous lower bound that you got is super polynomial.

72

Even circuits of that depth will not be able to compute parity. Now, all that remains is to
prove lemma 1 and lemma 2. So, lemma 1 is the approximator lemma and lemma 2 is the
parity hardness or inapproximability lemma. Let us prove the approximator one first.

We construct an approximator in the polynomial ring F3[], for the circuit C inductively. The𝑥
proof will be by induction on size. Which means that we will first design approximator for
AND gate, approximator for NOT gate, approximator for OR gate and then build this one by
one, gate by gate. Let g be a gate in circuit C, at height h and let us look at an approximator
for g.

Define g of degree such that equals for most inputs. We have to design this2𝑙ℎ 𝑔
~

𝑥() 𝑔 𝑥()
approximator . Looking at the gate g at height h, we will design it. We will assume that we𝑔

~

have an approximator for the inputs of g and using that we will design .𝑔
~

73

