
Randomized Methods in Complexity
Prof. Nitin Sexena

Department of Computer and Engineering
Indian Institute of Science – Kanpur

Lecture 04
IP = PSPACE

(Refer Slide Time: 00:15)

So in the last class we defined numerous classes new complexity classes based on quantifiers.

So, they exist and for all quantifiers. So just to quickly recall we defined as there exist over PΣ
1

which is deterministic polynomial time and is the class there exists for all over P and isΣ
2

Σ
3

there exists for all there exists so alternating quantifiers. So this is a generalization of the NP

class and all these classes are in P space it is an open question whether they are different.

(Refer Slide Time: 01:02)

46



Now we will introduce the third quantifier which is for most strings the m quantifier. So we say

thatMy over N(y)is a true statement if N(y)= 1 for most of the strings y where most would

mean 3/ 4 th. But you can also pick a constant above half this 3/ 4th is not very important. So

now based on this we can define new complexity classes by using k alternations. So k

alternations of M and there exist quantifier gives us the class AM.

So you will use they exist then most then there exist then most k of these k times and you will

get the class AM[k ].what is AM[k]? So this is a short form for Arthur Merlin. Arthur is the

verifier and Merlin is the prover. So it is basically a game. So this is a game between Arthur and

Merlin where there will be an interaction. So this is why I call this interaction based complexity

classes. So the interaction will be that Merlin will send some string then Arthur will try to verify

it and challenge Merlin then Merlin will another give another response and so on.

So it is a game between Merlin Arthur challenges Merlin, Merlin sends a response. After k

rounds the goal of Merlin is to convince Arthur. So formally we say that a problem L or language

L AM[k] if for every input x, x L iff x is a string if and only if this game succeeds. So theϵ ϵ

game is; think of it in terms of quantifiers and these are key quantifiers. So think of k= 1 in that

case what you are talking about is just there exist y1 such that = 1.𝑁(𝑥, 𝑦
1
)

47



So you can think of it as a game between Arthur and Merlin where Merlin sends this response

stringy1 and Arthur will use the input x and this response to verify. So this gives the complexity

class NP. So k =1 is NP it is the same class as so AM[1]= NP just 1 round. Now think of k =2. In

k =2 there is now most quantifier. So, most y1 there exist y2. So now actually Arthur will

randomly pick a string y1 and then challenge Merlin after which Merlin will respond with y2.

And then Arthur will run this algorithm if the answer is 1 then Arthur will be𝑁(𝑥, 𝑦
1
, 𝑦

2
)

satisfied otherwise Arthur will be dissatisfied and will actually not believe that x is in L. So you

can think of this alternating quantifier business as a game between prover and verifier. So this is

a useful intuitive way to understand these classes. So back to this definition starting the

alteration with there exists gives the class MA.

So MA is slightly different from AM here we have started with M quantifier we started with m

quantifier. So with that you get the AM class if you start with there exist quantifier then you will

get the MA class. Intuition being that first Merlin is responding with a string and then the 𝑦
1

computation proceeds with Arthur. So we call it MA. If was a string randomly chosen by𝑦
1

Arthur then we get the class AM.

So let us spend some time on the interpretation of these classes. So we can interpret these classes

as k rounds of interaction. So how do you see that?

(Refer Slide Time: 08:09)

48



So let us start with again with AM[1]. So Arthur is just randomly picking and then running a𝑦
1

deterministic polynomial time algorithm. And if you started with there exist that will be MA[1]

which will give you NP. So you can see the big difference AM[1] is randomized polymer time

algorithms while MA[1] is supposedly much harder it is actually NP. So the way you see this as a

game or as interaction between Arthur and Merlin is as follows.

So in AM[ 1] Arthur has x and Arthur will randomly pick on one side you have Arthur. On𝑦
1

the other side you have Merlin but Merlin is not used. Because in AM[1] there is only most

quantifier there is no there exists quantifier. So Arthur just himself computes n (x, hence this𝑦
1
)

is the same as BPP. Next example is MA[1] so what is the game? What is the protocol or

interaction here? So here Arthur just has x and Merlin is challenged by Arthur.

So Merlin because MA[1] will start with there exist . So there exist quantifier associates with𝑦
1

Merlin. So Merlin will send the response or the certificate and then Arthur will do the𝑦
1

computation. And this game characterizes MA[1] is a NP, NP gets characterized by this game.

What is MA[2]? What happens in 2 rounds? That would be more interesting. So, in here again

Arthur Merlin, so Arthur starts with the string x remember MA will start with the quantifier there

exist.

49



So Merlin will first send the response in MA[2] the second quantifier will be m . So this𝑦
1

𝑦
2

string has to be randomly picked by Arthur. So Arthur now has x string x input x then strings 𝑦
1

and where you should think over the certificate is a random string. And then Arthur will𝑦
2

𝑦
1

𝑦
2

run the algorithm n on x and . So the difference between this picture and the picture above𝑦
1

𝑦
2

MA[1] picture that is only in which is a random string.𝑦
2

So you can think of this as a randomized version of NP. So this is just like NP where the

verification you are allowed to use are randomized polynomial time algorithm. And finally what

is AM[2]? So again Arthur starts with the input x in A you have to start with most quantifier. So

Arthur will pick this random string and then Merlin will send the response to Arthur's𝑦
1

challenge which is and finally Arthur will do the computation on x and .𝑦
2

𝑦
1

𝑦
2

So it is very similar to the above picture except that the order has been swapped. So in the above

picture Arthur first got Merlin's response and then used the random choice in the second𝑦
2

picture the order is swapped. So Arthur first guesses a first randomly chooses the string and𝑦
1

then gets the response . So this is another randomized version of NP another randomized NP𝑦
2

and it is called AM.

This is called AM and the class above MA[2] is called MA. So you already knew BPP, NP that is

just AM[1], MA[1] when you do this interaction in 2 rounds then you get completely new

complexity classes which are called MA and AM. Both are randomized versions of NP and we

will now be working with them. So this is an important slide I will define this interaction based

class which will be much bigger.

(Refer Slide Time: 15:42)

50



So if we make k then the interaction rounds. So if we make a variable so which means it depends

on the size of the input till now it was constant 1, 2, 3 so on. But suppose we make it dependent

on the size of the input. So if the input is longer then you have more interactions arbitrary many

interactions. Then what do you get? Then you get the class IP :=
𝑐>0
⋃ 𝐴𝑀[𝑛𝑐]

So AM when key is large growing with input size n this gives us a really big complexity class

called IP. So we have defined MA, AM and IP these three classes AM, MA seem to be much

smaller than IP. As an exercise you can show that all these classes are in P space the reason is

you can think in terms of quantifiers. So you just have normally many quantifiers alternating and

there exist for all most.

The choices that the quantifiers are making I mean the in that space you can go over all possible

choices in polynomial space. So you can simulate there exist for all most in poly(n) space. Just

go over all the strings of certain size and so you can get the value of there exist for almost

quantifier and up to poly many quantifiers all this can be simulated. So I leave this as an

exercise. Now what is more interesting is the question how far are these classes from P spaces?

Remember P space is a difficult class it has many hard problems. So you can ask the question

how small is IP compared to P space and Shamir proved that IP = P space. So IP is actually not

51



smaller than P space it is exactly P space which is a very interesting fact and it has a non trivial

proof as well. So we have already shown that IP is in P space what remains to be seen is why is P

space in IP?

So let us pick a problem in P space which is the hardest and show that in IP. How do you show it

in IP? By giving an interactive protocol for Arthur Merlin in and which uses poly many rounds

poly and many rounds. So pick a hard problem in P space and show it in and give an interactive

protocol that is the idea. So if you have taken a complexity course before basic complexity you

would remember that there is a problem which is complete for P space which means that if you

solves that problem. Then you solve every problem in P space. So that problem is quantified

boolean formula.

(Refer Slide Time: 21:04)

So let us define that. So as the name suggests in this problem you are given an instance you are

given a boolean formula. And on the boolean formula there are quantifiers there exist for all and

as many as you like. There is no bound on the number of quantifiers alternating quantifiers or the

question that you have to answer by doing computations is whether the given input QBF is true.

So given a formula psi where you have variables quantified Soψ: = 𝑄
1
𝑥

1
𝑄

2
𝑥

2
...... 𝑄

𝑛
𝑥

𝑛
 ϕ(𝑥) 𝑄

𝑖

are quantifiers for all there exist and is a boolean formula and quantifications. So you have toϕ

test whether true the quantification is over{ 0, 1}. So when we say or when you are givenψ =

52



there exist the question is whether you can set =0 or = 1 and when you are given for all𝑥
1

𝑥
1

𝑥
1

𝑥
1

then you have to set =0 and =1 and check both the cases.𝑥
1

𝑥
1

So the universe here is obviously false true or {0, 1} and with this understanding or this

semantics is true . So what is known is QBF is P space complete. This is a very nice exerciseψ =

if you have not seen this before basically you can write down a recursive algorithm for QBF

which will require only polynomial space. So QBF is in P space but more importantly any P

space problem can be converted to QBF. So these for this you have to use turing machine

encoding.

Any turing machine that solves a problem in polynomial in n space that you can rewrite as a

formula instance of QBF, so this I would not go into those details because that is really basicψ

complexity. If you are interested you can look at the proof in the book but those proof details are

not needed here. So we know that QBF is P space complete. Let us use that fact so it suffices to

show that QBF IP that there is an interactive protocol this Arthur Merlin based protocol thatϵ

solves QBF.

So basically Arthur is the king, Merlin is the advisor. Arthur wants to check whether is true? Soψ

Arthur will keep asking Merlin questions Merlin will Merlin is a smart guy marlin will keep

advising the king Arthur. But Merlin may be making mistakes the king has to check whether

Merlin is making mistakes or is Merlin is telling the truth. So there will be a protocol interactive

protocol multiple rounds at the end of which Arthur the king will have certain amount of

confidence that = true.ψ

If was false then Arthur will ultimately find the fallacy in Merlin's arguments with highψ

probability. So the protocol will be algebraic surprisingly and it is based on PIT. So this protocol

will actually use polynomial identity testing kind of a algorithm. In fact in particular it will use

the polynomial identity lemma. So for that let us first arithmetize the QBF problem. So QBF

problem as it is given seems very combinatorial or set theoretic.

53



So let us make it more algebraic. So define an arithmetized version for the boolean formula .𝑃
ϕ

ϕ

How do you arithmetize a boolean formula? Let us see an example instead of giving the full

definition. So suppose you have this formula ϕ = (𝑥
1

∨ 𝑥
2
) ∧ (𝑥

1
∨ 𝑥

3
∨ 𝑥

4
)

So define as; so basically this boolean formula you want to make it up into a polynomial with𝑃
ϕ

variables . So we will do this clause by clause so the first clause you write as I am𝑥
1,

𝑥
2
, 𝑥

3
, 𝑥

4

basically first clause is true only when one of of is true. So true think of true as the value 1𝑥
2

and false as the value 0 and with that understanding you could write (1-(1-𝑥
1
)(1 − 𝑥

2
))

That is the first that is the arithmetized version of the first clause note that if both are 0 then𝑥
1

𝑥
2

this polynomial evaluates to 0. 1 -1 times 1 which is 0 in all other cases it is 1. So it this is a

genuine or faithful interpretation reinterpretation or rephrasal of the clause and then similar trick

for the second clause. So second clause again this will be 0 this(1 − 𝑥
1
(1 − 𝑥

3
)(1 − 𝑥

4
)

polynomial will be 0 only when =1, =0, =0 in which case you can check that the second𝑥
1

𝑥
3

𝑥
4

clause is false.

So second clause second clause is false if and only if this second polynomial is 0 and is just𝑃
ϕ

the product of these 2 polynomials and you can check that true iffϕ(𝑎
1
,...., 𝑎

4
) =

that is the specific property we want in arithmetization. Advantage is that𝑃
ϕ

(𝑎
1
,...., 𝑎

4
) = 1

instead of boolean formula we will work with a polynomial P 5 it is a simple polynomial it hasϕ

a simple representation and you can see that every coefficient is an integer in P 5.

And this I mean I gave an example but from this example you can see the general definition of p

5 general arithmetization you can easily extend from this basic idea.

(Refer Slide Time: 32:01)

54



So arithmetization of is easy to do and then we can extend this to QBF . So what you do isϕ ψ

for all for all is both the valuesl =0 and = 1 should be satisfied. So we can look at the𝑥
𝑖

𝑥
𝑖

𝑥
𝑖

product & converts to . So for all in the boolean word when you go to algebra
𝑥

𝑖
ϵ{0,1}
∏ ∀𝑥

𝑖
𝑥

𝑖
ϵ{0,1}
∑

you have to do multiplication and there exist in the boolean word when you go to algebra you

have to add in on the space which is 0, 1.

So what you have after all these steps of arithmetization is this thisψ: = 𝑄
1
𝑥

1
..... 𝑄

𝑛
𝑥

𝑛
ϕ(𝑥)

converts to which will be sum product so and the arithmetized version of So𝑃
ψ

𝑄
1
 𝑄

2
...... 𝑄

𝑛
ϕ

where so you can think of and you can think of as so on.𝑄
𝑖
ϵ{

𝑥
𝑖

∑  ,
𝑥

𝑖

∏} 𝑄
1

𝑥
1
ϵ{0,1}
∑ 𝑄

2
𝑥

2
ϵ{0,1}
∏

So that ultimately is not even a polynomial it is a constant actually is a constant because𝑃
ϕ

every variable you are putting both the values 0, 1. And also what is true is true. So isϕ = ϕ

either true or false because all the variables are quantified. So is true if and only if is not 0,ϕ 𝑃
ϕ

is a constant in fact it is an integer and when this integer is non-0 you can deduce that is𝑃
ϕ

ϕ

true if this integer is 0 you can reduce that is false.ϕ

55



So remember this definition. So where are we in the proof. So QBF instance is it is a𝑃
ϕ

ϕ

quantified boolean formula we have converted into a polynomial in fact this integer . Now𝑃
ϕ

Arthur actually wants to check whether is a non-zero integer and Arthur will take help from𝑃
ϕ

Merlin. So what is this interactive protocol that is the main part of the proof giving this

interactive protocol or designing this protocol for Arthur.

(Refer Slide Time: 37:13)

So how could Merlin convince Arthur that this is non-zero. So the idea is that Merlin tries to𝑃
ϕ

prove to Arthur that = k in n rounds of interaction n is the number of variables where k is a𝑃
ϕ

non zero integer n- bits. This is the plan so Merlin will basically answer or respond to Arthur's

challenges and ultimately will be successful in showing to Arthur that the value of is exactly k𝑃
ϕ

which is a non-zero integer.

So in the i-th round Merlin fixes the variables and sends some partial polynomial to Arthur and

Arthur does PIT. So these are the three key ideas in the protocol. Let us go into a bit more detail.

So Merlin sends a k claiming that value of is k that is the first round of interaction or you can𝑃
ϕ

think of it as the 0th round of interaction the first round will be either the number of variables is

1. n was 1.

56



Then Arthur accepts so what will Arthur do? So Arthur will accept if and only if this quantifier

on if this is for all then what should be checked that =k . On the other hand if𝑥
1

𝑃
ϕ

(0) . 𝑃
ϕ

(1)

the quantifier was there exist then take the sum that should be k. So this is the you can think of

this as the base case if n = 1 then it will be easy for Arthur to verify once marlin sends the

certificate k because all Arthur has to do is either compute the product or compute the sum of 𝑃
ϕ

.

P 5 also is easy to compute for Arthur. So Arthur can do these computations and be happy that is

kind of trivial base case. What happens if there are more variables that is the interesting part.

(Refer Slide Time: 42:15)

So if n. 1 then Merlin will send not; Merlin has already sent the value k but now Merlin will send

a polynomial in claiming it to be equal to be= , So, all that is𝑥
1

𝑄
2
 𝑄

3
........ 𝑄

𝑛
 𝑃

ϕ 
(𝑥

1
𝑥

2
,..... 𝑥

𝑛
 )

free here in this list is this is free is free so this is actually a polynomial in and Merlin𝑥
𝑛

𝑥
1

𝑥
1

sends this polynomial as a response to Arthur.

And this is something that Arthur has to now check. So Arthur tests whether what Merlin has just

said is true or not. So let me correct the proof idea in ith round Merlin unfixes variables not fixes

this is actually unfixing will be made free then and so on. And this partial polynomial which𝑥
1

𝑥
2

57



has been sent that Arthur will now verify so Merlin sent the response as a univariate polynomial

in which we are calling sx1 and Arthur has to test it.𝑥
1

So how does Arthur test? So Arthur in case was for all then Arthur has to check whether𝑄
1

= k if is there exist then the sum should be indeed k that is the test which is the𝑠(0). 𝑠(1) 𝑄
1

same as you did in base case. But this is not enough to check whether the whether s is the

univariate polynomial. To check that what Arthur will do is? Tests for a random value whetherα

,𝑠(α) =𝑄
2
 𝑄

3
........ 𝑄

𝑛
 𝑃

ϕ 
(𝑥

1
𝑥

2
,..... 𝑥

𝑛
 )

So this is like identity testing where left hand side is a polynomial s x hand side is a polynomial

in . So these 2 polynomials in you want to check whether they are equal. So you pick a𝑥
1

𝑥
1

random and check the values. So if these 2 values are equal then with high probability Arthurα

will be convinced that s ( was the correct polynomial sent by Merlin and Merlin was not𝑥
1
)

trying to fool Arthur.

So do these tests but how will this test be done? This is actually the hand polynomial or the hand

expression is actually again arithmetized QBF with 1 less variable this is arithmetized for to𝑥
2

variables but this is sigma product sigma product it is a big expression. So Arthur cannot𝑥
𝑛

really compute this what Arthur will do is Arthur will actually test this recursively by asking

Merlin.

So this test is done recursively by interacting with Merlin. So suppose n was 2 then this test

requires this computing the expression in . So basically Arthur can again challenge Merlin to𝑥
2

𝑥
2

send some other polynomial in which is supposed to be this and then this will𝑥
2

𝑄
2

𝑃
ϕ

(α ,  𝑥
2

)

be the response of Merlin and Arthur has to test it but that will be the base case because both the

variables will be covered.𝑥
1

𝑥
2

58



So this is a recursive protocol definition. So I have given you the interactive protocol recursive

definition. So this proof sketch I hope is clear it is a beautiful protocol. It shows how something

as hard as QBF can be solved by interaction. So it was a very brief and very quick proof or proof

sketch. The details you can fill or you can read in the textbook. So show that if Merlin makes an

error or is trying to fool Arthur by sending wrong polynomial then Arthur will detect it with high

probability.

And a hint is use the polynomial identity lemma for this. So you will have to use the polynomial

identity lemma for every variable , …. n times which corresponds to the number of𝑥
1

𝑥
2

𝑥
𝑛

rounds roughly. So we have shown this theorem of Shamir that IP is equal to P space P exactly

equals P space and using this we can now prove more interesting lemmas.

(Refer Slide Time: 50:44)

So the next lemma is due to Babai, Fortnow, Nisan and Wigderson and this will be of the type

you saw before that assumes something which you do not believe like the class exponential time

having polynomial size circuits. We do not believe this because exponential time has very

difficult problems. Problems that are even harder than SAT and we certainly do not believe that

they can have polynomial size circuits.

If they cannot have polynomial time turing machines then we there is no reason why natural

problems should have polynomial size circuits. You assume this and this will give you something

59



equally hard to believe equality or containment which is x = MA. So we do not believe any of

these containments but the point of the lemma is that there is a connection. So if you assume

EXP P /poly that is expressed small circuits.⊆

Then in fact x has a protocol it has a 2 round Merlin Arthur protocol contra positive of this is that

if you can show that EXP is not in MA that x does not have a protocol then you would have

shown thatxp is not in P / poly it is a circuit lower bound boolean circuit lower bound that you

will get. So we will prove this it will not be a difficult proof we just have to go through some of

the basic theorems using the complexity classes that we have defined till now.

So supposeEXP P /poly which basically gives you small circuits for problems in x. So once⊆

you have a small circuit once you know that small circuits exist you can actually try to design an

interactive protocol where you challenge Merlin to give that circuit. Since it exists and since it is

small Merlin can actually as a response send that tip certificate. Now Arthur has to verify it in

the protocol that is the only thing.

So we will we will show that this puts EXP= . So let us pick a problem in x let L and NΣ
2

ϵ𝐸𝑋𝑃

be its exponential time turing machine. So n is the exponential time turing machine solving this

problem L. We want to show that L is in which means that we have to write L as they exist forΣ
2

all P we have to express L in this 2 quantifiers there exists for all basically Merlin giving there

exists .ϕ
1

So Merlin gives and then L we cannot see it that way but yeah so 2 quantifiers there exists forϕ
1

all you want to express L s. So how will you do it? So in the next class what we will do is we

will go through the steps of turing machine n they are exponentially many steps and we will try

to simulate every step in this quantified boolean formula with their exist for all. So we will try to

encode the steps of n or using there exist for all encode the steps of n using there exist for all that

is the plan.

60



61


