
Randomized Methods in Complexity
Prof. Nitin Saxena

Department of Computer Science and Engineering
Indian Institute of Technology - Kanpur

Lecture - 26
Local List Decoding

(Refer Slide Time: 00:13)

In the last class we started local list decoding we have done unique decoding we have done local

decoding we also did list decoding for Reed Solomon. Now we will do local list decoding and by

this we mean the concept of finding again jth bit of x message x given a corrupted codeword y

where the errors are less than but now the thing is that can be very close to half really beρ ρ

close to half in this binary code which means that there cannot be unique decoding.

So, there may be many access and the idea is that given an advice what x through this string i 0 or

through this number i 0 given this advice that I want or the user wants i 0th x j can be found with

high probability and in very, very few queries it should be a poly time where epsilon(𝑙𝑜𝑔𝑚, 𝑛/ε)

is how close you are to half in terms of errors.

(Refer Slide Time: 01:32)

368

So, what I said was that you can also ask for the so you can think of i 0 as the location of x in the

unknown list there is a list of x’s and i 0 you can think of as the location and you can also ask for

not just x j but the whole string x assuming that it is not very long so n was the length of x. So,

when n is in terms of time which is poly log m so when n = polylog (m) so which happens for

example in the Walsh Hadamard case but it may not happen in Reed Solomon, Reed Muller case.

So, in case the blow up that the error correcting code is doing it is too much then you only ask

for a few bits of x otherwise you can ask for the whole x because it makes sense to output

everything why just jth bit. So, advice is the only new thing which has been added here. Let us

now start this for the maps that we have seen.

(Refer Slide Time: 02:59)

369

So, let us start with local list decoding Walsh Hadamard I will not go into the full analysis

because our time is up today is the last class. So, I will only give you the core ideas of local list

decoding and then in the end we will finish the proof of average case hardness from worst case

hardness. So, the first local list decoder is for WH given by Goldreich - Levin :

𝐿𝑒𝑡 𝑊𝐻: {0, 1}𝑛 → {0, 1}2𝑛

 & 𝑓: {0, 1}𝑛 → {0, 1} 𝑏𝑒 𝑡ℎ𝑒 𝑔𝑖𝑣𝑒𝑛 𝑜𝑟𝑎𝑐𝑙𝑒 𝑠𝑡 ∃ 𝑥ϵ{0, 1}𝑛

𝑃𝑟[𝑓(𝑧) = 𝑊𝐻(𝑥)
𝑧
] ≥ 1

2 + ε
2

∃ 𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑 𝑝𝑜𝑙𝑦(𝑛/ε) − 𝑡𝑖𝑚𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑡𝑜 𝑓𝑖𝑛𝑑 𝑙𝑖𝑠𝑡 𝐿
𝑓
: = {𝑥|∆(𝑓, 𝑊𝐻(𝑥)) ≤ 1

2 − ε
2 =: ρ

So, we can call this the local list decoder for Walsh Hadamard. So, the errors that it can tolerate

is just below half anything below half it can tolerate what is the idea? The idea of local decoder

was randomly choose a location and then to find the jth bit that location plus the elementary

vector e j. So, it query 2 locations and from that it constructed x j since you want all the bits

many, many locations will be queried.

And actually the most serious problem is that the corruption is almost half of the location. So,

you cannot just randomly pick a place and hope to get x j with probability more than 2/3 you

wanted probability more than 2/3. So that will not be possible now because already the error is

close to half in y or in f given by f. So, we will actually make more queries and from many, many

queries we will try to deduce x j and then repeatedly by repeating that will find x.

370

Proof: since f is corrupted close to 1/2 we need more than 2 queries and x is not unique and L f is

not a singleton L f is long. So, there are many x’s basically what we will do is we will make many

correlated queries and we will get the answers and guess some answers. So, this guess will be

basically to using the advice from advice. So, the advice let us ignore that for now in the theorem

statement there is no advice.

Because here actually we are just we want to output all the x’s but according to the particular x

you want to output it will be obtained by a guess you can think of it as the advice that is the plan

we plan so let us implement this carefully.

(Refer Slide Time: 11:30)

Let us define k = log (m + 1) where m . So, randomly pick ‘location’: = [200𝑛/ε2]

𝑠
1
.... 𝑠

𝑘
ϵ{0, 1}𝑛 𝑎𝑛𝑑 𝑔𝑢𝑒𝑠𝑠𝑒𝑠 σ

1
... σ

𝑘
ϵ{0, 1}[𝐻𝑜𝑝𝑒 : ∃! 𝑥ϵ𝐿

𝑓
, ∀𝑖ϵ[𝑘], σ

𝑖
= 𝑥 ⊙ 𝑠

𝑖
]

So, in the correct code word we are assuming that the bit is which means if you recall theσ
𝑖

definition of Walsh Hadamard that the inner product of x and s i is . So, let us make these kσ
𝑖

guesses what is it that you have in the correct code word of related to x WH x. So, make these k

guesses and then based on this you do the queries if this guess is correct then you will be able to

recover x that is the plan and 2k notice 2k is around n / so that is supposed to be the list.ε2

371

So, we are hoping that this identifies the unique x and defineσ
1
... σ

𝑘
𝑠

𝑇
: = ⊕

𝑖ϵ𝑇
𝑠

𝑖
 & σ

𝑇
: = ⊕

𝑖ϵ𝑇
σ

𝑖

(bit wise XOR) So, we have these locations now to be queried s Tth location f to be∀𝑇 ≤ [𝑘]

queried so let us query.

So,𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑥
𝑖
: = 𝑚𝑎𝑗

𝑇
{σ

𝑇
⊕ 𝑓(𝑠

𝑡
⊕ 𝑒

𝑖
)}

𝑂𝑈𝑇𝑃𝑈𝑇: 𝑥
1
... 𝑧

𝑛

So, if you repeat it enough then hopefully you will get the whole list that is the idea. So, repeat

the above algo for let us say so hopefully this gives you the full list L f so that is1000𝑛/ε4𝑡𝑖𝑚𝑒𝑠.

the local list decoder I would want to skip the analysis of this. But let me just say if you want to

see the analysis in my old lecture notes on the homepage or you can see it in the textbook.

The main idea in the analysis would be to show that with the right guess when , areσ
1
... σ

𝑘

correct when guesses are correct. Then this output is correct it is an L f with high probability that

is what you have to show but there will be a lot of probability calculation in this. Obviously if the

guess is not correct then you will get either so when the guess is incorrect then what happens

then you may get the wrong answer but when the guesses correct then you get the x you actually

identify a unique x in the list.

So, this will really depend on the guesses you can think of the guesses also as a part of the input.

Hence it is a good local list a coder given the right guess, the right advice then actually you get

an element in the list otherwise not that is what you have to show. So, now let us move to local

list decoder for Reed Muller.

(Refer Slide Time: 21:08)

372

So, here again you have to recall what you did for local decoding of Reed Muller. So, you drew

a random line passing through the point you are interested in and then use Reed Solomon

decoding so we will do a similar thing now for local list decoding as well so recall that Reed

Mueller maps evaluations of a d degree l variate polynomial to all evaluations. So,𝑙+𝑑
𝑑 𝑝(𝑥) |𝐹|𝑙

these given evaluations evaluations the message that is essentially as good as giving the𝑙+𝑑
𝑑

coefficients.

So, describing P uniquely and once p is described then the code word is all evaluations. So, there

is redundancy and now when some of the evaluations when part of the code word gets corrupted

how do you recover x or x j. So, now our goal is to output P (x) given x given a point in theϵ|𝐹|𝑙

space and oracle to a corrupted code word Reed Muller P and an advice. So, advice here will be◦

a point in the space x 0 and its value that will be the advice so you are given a(𝑥
0
, 𝑦

0
) = 𝑝(𝑥

0
)

point in space.

And you are given an oracle to RM of P and you are given an advice string which is basically

evaluation of P unknown P. Now there will be many P’s what this advice will do is it will specify

uniquely P that is why you need this advice and with all this you want to output P (x). So, given

these 3 things in the input you want to evaluate P at x how do you do this? Remember that there

are many P’s possible because RM of P is corrupted so much close to 1/2.

373

In fact close to in this case it will be close to 100% close to 1. So, there will be many P’s there is

a list but this advice will pinpoint some P in the list and for that P you want to evaluate no matter

what x is given P (x) this was done by Sudan, Trevisan, Vadhan. So, Reed Muller has a local

list decoder handling close to 100% errors in the non binary alphabet. So, it is 1 − 10 𝑑/𝑞

remember that this is the non binary version.

So, out of this evaluations almost 100% field elements are erroneous the erroneous evaluations 𝐹𝑙

and the field is large the alphabet is also large that is given by the finite field. So, you can

compare it with list decoder of Reed Solomon that handles errors. So, in that sense1 − 10 𝑑/𝑞

there is some restriction here so Reed Solomon could handle more errors. Read Muller local list

decoder is handling fewer but still it is comparable. It is in so bad it is in fact very good. So,

again let us just look at the proof idea we cannot do the whole proof.

(Refer Slide Time: 28:33)

Idea :Randomly pick a point so remember in local decoding of Reed Muller we drew a line.𝑟ϵ𝐹

So that was degree 1 object now we will draw cubic curve instead of degree 1 curve now we will

draw degree 3 curves. So, it is a cubic curve through(0,x) &(r,x0.)ϵ𝐹 × 𝐹𝑙

374

Basically it is x and x 0 is given you want to associate x 0 and x 0 with something random which is

r so random cubic curve through these 2 call it it is a cubic curve. So,𝐿
𝑥,𝑥

0

.[𝐿
𝑥,𝑥

0

 ℎ𝑎𝑠 𝑝𝑜𝑖𝑛𝑡𝑠 {𝑞(𝑡): = 𝑞
1
(𝑡),...., 𝑞

𝑙
(𝑡))|𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ϵ𝐹}; 𝑞

𝑖
'𝑠 𝑐𝑢𝑏𝑖𝑐𝑠]

So, in this space you have drawn this parameterized cubic curve it parameterize by t and t takes

all the values in the finite field and remember this which we say that the𝑞(0) = 𝑥 & 𝑞(𝑟) = 𝑥
0

cubic curve is passing through x and x 0. Now query f is the oracle given to you to the corrupted

code word it is basically you know evaluations of p but many of them are corrupted close to half

of them.

So, we will only look at those evaluations which are at the points of this curve L so query f on

run Reed Solomon list decoder to find a unique g(t). So, 𝐿
𝑥,𝑥

0

𝑔(𝑡) = 𝑝 ◦ 𝑞(𝑡) 𝑤𝑖𝑡ℎ 𝑔(𝑟) = 𝑝 ◦ 𝑞(𝑟) = 𝑝(𝑥
0
) = 𝑦

0

𝑂𝑈𝑇𝑃𝑈𝑇 𝑔(0)

. That is the answer so you can output this. So, the picture that this requires is you have drawn a

curve which has x 0 and it has x and it has this general t going over the fields field element.

And that is your L you are interested in basically it have to pass through 2 points and still have

some freedom. So, this is why we needed degree 3 and remember that this happens in a finite

space. So, this space is all this happens in the space this is a very discrete object but𝐹𝑙 𝐹𝑙

analytically you can think of this

(Refer Slide Time: 36:22)

375

Input .: 𝑂𝑟𝑎𝑐𝑙𝑒 𝑓 𝑠𝑡 𝑃𝑟
𝑥ϵ𝐹𝑙[𝑓(𝑥) = 𝑝(𝑥)] > 10 𝑑/𝑞&|𝐹| > 𝑑4

Advice: (𝑥
0
, 𝑦

0
)ϵ𝐹𝑙 × 𝐹

•𝑥ϵ𝐹𝑙

OUTPUT : 𝑦ϵ𝐹

Decoder :

1) Pick random

𝑟ϵ𝐹 & 𝑚𝑜𝑛𝑖𝑐 𝑐𝑢𝑏𝑖𝑐𝑠 𝑞
𝑖
(𝑡), 𝑖ϵ[𝑙] 𝑠. 𝑡 𝑞(𝑡) = (𝑞

1
(𝑡)....... 𝑞

𝑙
(𝑡)) 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑞(0) = 𝑥 & 𝑞(𝑟) = 𝑥

0

2) Query f on to obtain s:= 𝐿
𝑥,𝑥

0

{(𝑡, 𝑓 ◦ 𝑞(𝑡))|𝑡ϵ𝐹}

. Now many of them may be wrong given the property of f many of them may be wrong.

But then you can list decode using the Reed Solomon list decoder and with the input guarantee

you will be able to get a list of all the piece out of which 1 will be identified because of this

advice.

3) Run RS list decoder on s to find the list g1…..gk of all deg-3d polynomials that agree

≥ 8 𝑑𝑞 𝑝𝑎𝑖𝑟𝑠 𝑖𝑛 𝑠

so this is there is a good chance that this will happen given the guarantee on if there is a good

chance also because the cubic curve was picked randomly there is a good chance that this

376

distribution will be there and you will actually correctly get g1…..gk out of which one will be

right.

(Refer Slide Time: 43:23)

So, you pick that one so

4) If ∃! 𝑖: 𝑔
𝑖
(𝑟) = 𝑦

0
 𝑡ℎ𝑒𝑛 𝑂𝑈𝑇𝑃𝑈𝑇 𝑔

𝑖
(0). 𝑒𝑙𝑠𝑒 𝐹𝐴𝐼𝐿

. So, you have to repeat or just output fail and exit but the probability of that will be less will be

small.

So, the analysis I am again skipping so read the analysis as an exercise.so that is essentially the

local list decoder for Reed Muller drawing a cubic random cubic curve and then doing Reed

Solomon list decoding. Finally we combine the 2 so again it is a theorem by Sudan, Trevisan,

Vadhan: 𝐸
1
: {0, 1}𝑛 → Σ𝑚 𝑟𝑠𝑝 𝐸

2
: {0, 1}𝑘 𝑎𝑟 𝑒𝑐𝑐 𝑤𝑖𝑡ℎ 𝑙𝑙𝑑 𝑢𝑠𝑖𝑛𝑔 𝑎𝑑𝑣𝑖𝑐𝑒 𝑓𝑟𝑜𝑚 𝑖𝑛𝑑𝑒𝑥 − 𝑠𝑒𝑡𝑠

𝐼
1
𝑟𝑒𝑠𝑝 𝐼

2
 & ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔 1 − ε

1
 𝑟𝑒𝑠𝑝 1/2 − ε

2
 𝑒𝑟𝑟𝑜𝑟𝑠.

𝑇ℎ𝑒𝑛 𝐸 = 𝐸
2

◦ 𝐸
1
 ℎ𝑎𝑠 𝑙𝑙𝑑 𝑢𝑠𝑖𝑛𝑔 𝑎𝑑𝑣𝑖𝑐𝑒 𝐼

1
× 𝐼

2
 𝑎𝑛𝑑 ℎ𝑎𝑛𝑑𝑖𝑛𝑔 (1 − ε

1
|𝐼

2
|) × (1/2 − ε

2
)𝑒𝑟𝑟𝑜𝑟𝑠.

. So, when you apply the local list decoder for E 2 you have to pay more so you will pay this

factor of I 2 so it will be this so actually to get what advice to pick from I 2 you will try all the

advice actually.

377

So, as many advice strings there are in I 2 so that price you pay and for the binary it is 1/2 − ε
2

and then you take the product this proof is actually similar to the local decoder and I will

completely skip that.

(Refer Slide Time: 49:37)

Similar to local decoding so finally we are finished local list decoding for all these maps what do

we have now? So, now all that remains is to apply this to get average case hard function. So,

from this we now deduce that for a worst case hard f , 𝑊𝐻 ◦ 𝑅𝑀 ◦ 𝑡𝑡(𝑓) =: 𝑡𝑡(𝑔)

So, this is the truth table of an average case hard function g !why that intuitively because if g is

not average case hard then there is a circuit which can compute this on significantly more than

half of the input cases. So, now the truth table of that circuit you can think of as a corrupted code

word and from that corrupted code word when you apply the local list decoder that we have just

built then you will can evaluate f (x) that is the idea.

Otherwise the circuit c approximates g and think of the tt(c) of is a corruption of tt g truth table

of c you have a oracle access. So, now apply on this oracle c we get f(x)now the c is an𝑙𝑙𝑑
𝑊𝐻◦𝑅𝑀

oracle it is a circuit small circuit in fact and the local list decoder is an algorithm which is very

fast.

So that also is a can think of yourself small circuit. So, overall you get circuit for f which is a

contradiction that is the idea. So, in the proof details you have to look at the algorithm local list

378

decoder and convert it into a circuit and check the parameters that you really get a polynomial

sized circuit moreover it is the advantage over half should be significant. So, all those things you

have to are well that want showed of should not be significant in fact because you want to prove

that g is average case hard. So, those things you have to look into the details so let me just state

the theorem and then stop.

(Refer Slide Time: 56:10)

Hardness amplification so this theorem is by Impasliazzo & Wigderson they proved it first in

97 by combinatorial methods and then this error correcting code based proof was given by STV

in this paper that we have been talking about Sudan, Trevisan, Vadhan from 99 this was an

algebraic proof to amplify the hardness. So,

Impasliazzo & Wigderson: So, it is𝐿𝑒𝑡 𝑓ϵ𝐸, ∃𝑐 > 0 𝑠. 𝑡 𝐻
𝑎𝑣𝑔

(𝑔) ≥ 𝑆(𝑛/𝑐)1/𝑐 𝑓𝑜𝑟 𝑙𝑎𝑟𝑔𝑒 𝑛

much harder than f it is in the same complexity class E we will do not have time to do the proof

of this but it is based on just applying the local list decoder.

So, analyze the parameters of local list decoder of Walsh Hadamard, Reed Mullar, on corrupted

version of Walsh Hadamard Reed Muller applied on the truth table f that is the code word and

then it is corrupted and the local list decoder wants to get back to f some location in the string tt

f. So, you have to analyze the whole thing all the parameters and you will get this so, left as an

exercise so that finishes a major theorem in complexity theory. And with that the course ends I

hope you enjoyed the course. Thank you.

379

380

