
Randomized Methods in Complexity
Prof. Nitin Saxena

Department of Computer Science and Engineering
Indian Institute of Technology – Kanpur

Lecture – 25
List Decoding

Local decoding and we did it for Walsh Hadamard by just doing 2 queries we can recover a

bit of x.

(Refer Slide Time: 00:29)

Then we did local decoding for Reed Muller, which will also imply local decoding for Reed

Solomon. So, here this was more complicated because it is a multivariate polynomial over

finite fields. To compute its value at a given point, we actually draw a random line through

this point x and then on the line we do Reed Solomon decoding number of queries needed

was the size of the field.

(Refer Slide Time: 00:58)

353

Now, once we have local decoding for Walsh Hadamard, Read Muller we can also do it for

concatenation by an idea that you have seen before. We just wanted to analyse this carefully,

so is the local decoding parameter for E1 and for E2. And what the code is doing is itρ
1

ρ
2

first applies E1 to get sigma alphabet and then every letter in the alphabet it will convert using

E2 to binary, so there are x into m alphabets. You can think of the long string y which is

accessible through an apple you can think of it as E1 x jth element.

(Refer Slide Time: 01:42)

jth co-coordinator of E1(x) on which E2 was applied. Based on the j’s that E1 local decoder will

require, you go to those blocks E1(xj) with E2 applied you go to those jth blocks and first you

learn E1 (xj)/ E2 local decoders. That is what we did last time. Step 2 is E2 local decoder with

parameter this was applied on the jth block and this was applied again and again.ρ
2

354

It was applied actually log sigma many times to recover E1(xj) the whole symbol. So, this will

work if in this block the error is less than fraction and since E1 will require q1 many j’s.ρ
1

You have to access those many blocks, so the error probability also should be made very

small. We actually repeat this process around log q1 many times and that will give us E1(xj)

with a very good probability. Let us do that part, so step 4 will be about E1 local decoder now.

(Refer Slide Time: 03:02)

Use E1’s local decoder to query q1 blocks that is q1 many j's and in every j we have used E2’s

Ld as before in step 2 and step 3. After applying E2’s local decoder on those blocks, we areρ
2

now moving to E1. The answers are consistent with that of a string that is close to E of xρ
1

which is remember E2 E1 x. This is with probability greater than .1 − (1/10𝑞
1
) × 𝑞

1

For a single block the error is 1 over 10q1; for q1 blocks it can be at most 1 / 10, so the

probability is 90% or more. With this much probability E1 will be able to I mean the answers

will then be correct for how many of these blocks? So, that we can write here since, less than

of the blocks in y can be a distance greater than from the respective true blockρ
1

ρ
2

remember that the overall cumulative error is , or less.ρ
1

ρ
2

So, which means that it is few blocks only which will be badly corrupted. By bad I mean

more than corrupted so, only less than of the blocks are corrupted to an extent moreρ
2

ρ
1

than in each such block. In other words if you look at the level of blocks, the error is onlyρ
2

355

or less. Whatever he has given in these q1 block out of them the error is only or less. So,ρ
1

ρ
1

hence when you will apply E1’s local decoder Ld it will work fine and give you a bit of x.ρ
1

This means that E1’s local decoder outputs xj with probability already it was 0.9 came from

what E2 local decoder did and after that E1’s local decoder is doing there may be error of 1 / 3

that is by Ld property local decoders property which is more than half. With probabilityρ
1

more than half you will get xj and number of queries so, we in the initial steps it required log

q1 times q1 times log sigma and there is also q2.

It is required q2 log sigma and this was repeated log q1 time just for probability boosting and

for E1 sake number of blocks will be q1, so that is another q1. This is the number of queries

and the success probability for xj good. This finishes the local decoder for concatenated

codes. Once you have local decoding for the individual components E1, E2 and this was

actually quite straightforward but when you look at the parameters they look complicated.

(Refer Slide Time: 09:46)

And what this means for us, for Walsh Hadamard, Reed Muller local decoder, so the number

of queries will be sigma is the size of the field and which is also equal to the queries you

make for Reed Muller, so which is q1, so you get q1 times log q1 whole square, q2 is for Walsh

Hadamard which was only 2 so, that is just constant. You get q log2 q which is basically

linear in q just slightly more than linear in q that many queries handling up to how many

errors what is the parameter, so that is .ρ ρ
1

× ρ
2

356

Fr Reed Muller, you will get which is around 4%1/6(1 − (𝑑 + 5)/(𝑞 − 1)) × 1/4

errors where q is the size of the field and also note that the message length it is around what is

the stretch of Reed Muller. So, that is d degree l variate polynomials, so you get and𝑑+1
𝑙

code length is regular see x as a polynomial l variate d degree.

So, that many coefficients or many values that defines a polynomial multivariate𝑑+1
𝑙

polynomial and then Reed Muller will evaluate it on every point in the field. So, that is ql that

is the code length. Now observe in terms of the code length in terms of code length ql, that is

the length of wide it is very long and this algorithm local decoder is making only q queries

which is much less than ql.

And it will give your favourite value amongst these values with good probability and𝑑+1
𝑙

even errors can be quite a lot it is 4% of why we corrupted and errors around 5%. This is a

very important interesting algorithm. But this would not be enough remember our final goal

is hardness amplification from worst case to average case. For that 5% error is not enough,

we actually should be able to handle much more, closer to 50% actually something like 49%

errors we should be able to handle.

So that is what we have to do now, our final goal is to show if f is a worst case hard function

and E is a locally decodable code. Then, on the truth table of f I can look at that long string

2n, n bit input the values that f takes on all possible and bit inputs is 2n value. So that is called

the truth table of f on the truth table you apply the locally decodable code E and you will get

a slightly bigger string and that defines a function f’ truth table of g is should gives a average

case hard function that is what we want to show.

Average case hard means that it should be half minus smaller than half many inputs. So, hard

on close to inputs. This actually if you think about this carefully this will require(1/2 − ∆)

a local decoder for E which can handle errors close to 50% which is asking for too much.

(Refer Slide Time: 16:46)

357

Implies that we need and E that is locally decodable up to errors, so this type of(1/2 − ∆)

decode ability cannot be unique meaning that there will be many x’s for a y so corrupted the

x’s options for messages will be many it will not just be one but they will be super constant

many x’s. Now, the question is how many and the next question is whether you can

computationally list them. We relax unique decodability to data finding a list, so this is called

local list decoding.

But whether it is possible or not that will depend on how long the list is, so let us first show

that and that is called Johnson's bound. If you have a map that is an error correcting code with

distance at least then for x’s and . There exists at most many code(1/2 − ε) δ ≥ ε 1/2δ2

words y1,...,yl such that they are close to x. The numbers of y's that are close to x that is what

we are interested in, how many y's are close to x?

So, think of x as a corrupted code word and the question is how many code words are close to

x that number is in terms of it is inverse for polynomial. So, it is in terms of youδ 1/2δ2 ε

can think of this as . For distance the list is and that is a very good bound,1/ε (1/2 − ε) 1/ε

so for all i 1 to l. So, you can think of this as the following picture.

(Refer Slide Time: 21:45)

358

You look at the ball around x look at this radius ball around x which means(1/2 − δ)

collect all the strings which are fractional hamming distance less than half exactly

or less. And in this world how many code words can you trap. So, say y1 is a(1/2 − δ)

codeword here, y2 is a codeword here. Now, remember that code words themselves are far

apart in the space because of the distance of E, so, the distance between them is already

.(1/2 − ε)

So, since y1 and y2 are far apart, the intuition says that you cannot pack many yi’s inside this

ball because this is more than , it is more than the radius. So, you(1/2 − ε) (1/2 − δ)

cannot have too many of them, but how many what is the bound? How do we upper bound is

that is the thing, so let us look at the proof. So, intuitively we cannot pack many yi’s inside

the ball and we will analyze this in terms of distances and inner products. We analyze using

inner product.

Let us define inner product so, that it captures this hamming distance well, so define these

strings z1 to zl in {-1,1}m. Let us define these strings zi’s such that what is the kth location of

the zi this is 1 if will associating the zi with yi. So, 1 if yi, k = xk, so, if the kth bit of yi and x is

the same that is indicated by zi k otherwise negative and now since distance of x and yi is

smaller than . So, what you get is over all the case all the locations of x and yi.(1/2 − δ)

That we see distance being small means that x and yi, overlap in many locations they are

similar, so which means that zi k will be a lot more positive than negative. How many times

positive times positive otherwise negative which is . That is(1/2 + δ)𝑚 (1/2 − δ)𝑚 2δ𝑚

359

that is 1 equation on the other hand, the opposite picture is that yi and yj have to be far apart

by the notion of distance of E, so that gives you something else. So, since yi yj are away what

you will get is the inner product of zi, zj.

Now, since yi yj or differ a lot so, this overlap in fewer places so, which means the inner

product is expected to be small, how small? Let us go over the coordinates and zi k zj k they are

of the same sign if the match xk is their opposite. So, in how many places will the match xk

well that will be fewer than by the above inequality and the negatives will be(1/2 + ε)

more than t which is .(1/2 − ε) 2ε 𝑚

Let us number these 2 conditions that we have as 1 and 2. The first condition is kind of

saying that zi is a long vector, second condition is saying that zi zj are the inner product is

small which means they are almost orthogonal. So, these are long vectors and they are almost

orthogonal these are the 2 conditions geometrically that we have written. And how do we

combine them to get something useful.

(Refer Slide Time: 29:20)

Let us define w sum of all the zi, and how long is w, length of the w, it will involve both zi

inner product with itself and zi inner product with others zj’s. Now zi with itself fill coordinate

by coordinate if you see that will be all plus 1 values, so that is m and zi zj inner product for

different i j that will come out to be , which is less than equal to, you get is2ε 𝑚 𝑙𝑚 + ε

smaller than .δ2

360

You get and number of i j appears is definitely less than this l2, so you get this that is your2δ2

equation 3. Also by equation 1, you can get more information about w inner product with

itself because equation 1 is saying that this zi k they are kind of large, so that should mean that

inner product of w with itself should also be large. Let us think of it that way. So, you will get

which is all k and all l i’s, so zi k sum over all the zi k’s that will be by equation 1 at leastΣ𝑤
𝑘

.2δ𝑚 · 𝑙

Think of it as equation 4 and now equation 3 and 4 are somehow opposites, so we will

combine them and get the answer. By Cauchy Schwarz you can see that essentially average of

squares is at least squares of the average that inequality, so which means that inner product of

w with itself is at least which is by equation 4 . So, inner productΣ𝑤
𝑘

(2δ𝑚𝑙)2/𝑚 = 4δ2𝑙2𝑚

of w itself is large this is what you have deduced and previously deduced that is small, so that

will give you the result.

Combining with equation 3 gives you that is less than inner product w itself which is4δ2𝑙2𝑚

less than equal to which implies after some simplification you will get𝑙𝑚 + 2δ2𝑙2 · 𝑚

. is taken to be positive as well. So, because of the nonzero you can divide. And2δ2𝑙 ≤ 1 δ δ

since was more than you will get also.δ εδ 1/2ε

So, basically for error correcting codes of distance the list is no longer than .1/2 − ε 1/2ε

That is a beautiful result, list is small basically. Next question would be whether even we can

find small list and the error is very close to half.

(Refer Slide Time: 37:14)

361

Can we compute the list efficiently and locally? Locally means that by minimizing the

queries to the corrupted code word, so we will actually do both. Let us first decode Reed

Solomon that is a fundamental decoder, this is a famous theorem by Madhu Sudan. He

showed that there exists a randomized poly time algorithm that given a corrupted Reed

Solomon code word, which means that you are given evaluations some of them are wrong

evaluations of a polynomial.

That given {ai , bi} pairs where a finite field let us say m many pairs returns the list of all

degree d. Suppose the polynomial whose corruputed evaluations you are given is of degree d

or less and bi’s let us say close to half of them are corrupt. There will be many polynomials

actually which are consistent with this data. The algorithm will output all of them returns the

list of all degree d polynomials G such that the number of i’s on which G matches this is at

least .2𝑑𝑚

This can be significantly smaller than m so, that is for distance greater than 1 - d - 1 / m this

is the distance of Reed Solomon code the list decoder handles 1 – 2d / m, for length m over

the field alphabet for length m the correct values are and the rest is all erroneous so,2𝑑/𝑚

these many errors are being handled. So, this is also what you saw in Johnson's bound that is

the theory you had a half here, it is 1 but this d/m versus .𝑑/𝑚

This seems similar to Johnson bond but remember that this is not a binary code, it is non

binary alphabet. Since in Johnson bound you are talking about and . This1/2 − δ 1/2 − ε

362

is the non-binary version of that you can say, but it is very good. This is able to handle a lot

of errors, it seems that the errors can be close to100% still it is able to give you the list it is so

good.

(Refer Slide Time: 43:14)

How do you do this, what is the idea? The idea just like Reed Solomon decoder is to

introduce an auxiliary polynomial. Use a bivariate auxiliary polynomial Q(x,y) to fit the data.

And then once you have this Q the auxiliary polynomial, you factorize it and the factors will

magically give you the list. Compute a nonzero Q bivariate over the finite field F such that

Q(ai, bi) is 0 for all the input data points where the weighted degree of Q is this bound

. What is weighted degree?2𝑑𝑚 =: 𝑡

This is the max of i + dj for all monomials XiYj in the support of Q. Weighted degrees just

like degree, but now X and Y have been given different weights X has been given weight 1,

Y has been given weight d because you should think of Y has being this unknown message

polynomial which had degree d. So, Y is given degree d and then any monomial Xi Yj has

degree i + d j and you maximize over that.

So, number of monomials that Q can have this is how much, so you want i + d j maximum to

be t which means that j can be at most t / d. So, j goes up to t / d and starts from 0 and for j

how many i’s, so the i’s will be t - d j - t. This is the number is at most t - d j, so you get 1

plus that or you can also be 0. Over all these j's that is the number of monomials that Q can

have for this weighted degree t which is what which is simple calculation.

363

So, it is for the 1 + t contribution and for dj contribution you will get(1 + 𝑡)(1 + 𝑡/𝑑)

. So, we can take out 1 + t / d and what remains is 1 + t - d / 2 around− 𝑑/2(𝑡/𝑑)(𝑡/𝑑 + 1)

d / 2. In fact this is exactly equal . Now you can approximate(1 + 𝑡/𝑑)(1 + 𝑡 − 𝑑/2(𝑡/𝑑))

this, so this is at least , so that is and you can see that this is m𝑡/𝑑(1 + 𝑡/2) 𝑡/𝑑 + 𝑡2/2𝑑

straight from here.

So, you get more than m, number of monomials in Q, this unknown Q. Our coefficients are

the unknowns and the number of unknown coefficients comes out to be more than m and

from the data, which was m pairs, you will get m constraints, so, the constraints are fewer

than the unknowns. Number of unknowns is greater than number of equations in this

homogeneous linear system, that means step 1 will find the Q.

(Refer Slide Time: 51:25)

This is the step and also the analysis. It can actually be computed and since, it is as simple as

solving a linear system, you can do this in polynomial time. It will always exist, atleast 1

option will exist. So, you have a Q that is fitting the data and it is 1, d weighted degrees at

most t. Once you have this Q what you do is factorize factor Q. That is step 2. Factor Q using

an efficient bivariate factoring algo over finite field F. These exist such algorithms, you can

look them up in the literature.

Uou will get irreducible factors of Q and the final step is for factors of the form Y - P(X)

where degree of P is less than or equal to d and number of i’s on which it fits ai, bi greater

than t output P(X). This is the full algorithm fit the data with degree bounded Q, factorize Q

and output the factors that are linear in Y and which satisfy this degree condition of the

364

message polynomial that you were looking. The degree should be less than or equal to d and

it should fit the points on more than t locations.

So, why will it work? The reason is any G(X) that fits greater than t points, it will satisfy the

following property: it will actually be when you substitute in Q(X, G(X)) that will be 0 on

greater than t distinct ai’s that is one thing Q will vanish at G(X) because simply because

when you look at ai, Gi, Gi = bi on more than t many ai’s, and Q fits that. So, Q is not

completely vanishing, but you have more than t many values of ai’s.

And second thing is that if you look at the degree of Q(X, G(X)) this is less than or equal to t

like this follows from the weighted degree of Q which we have set to be less than equal to t.

So, Q(X, G(X)) is a degree t polynomial which is vanishing on more than t values, which

could only mean that it is 0 which means that Y - G(X) divides Q(X,Y). So, any degree d,

G(X) that fits a lot of points actually appears as a fact making hence factorizing Q made

sense in step 2 and our output is correct.

This algorithm with the ideas and the descriptions given analysis given finishes, Sudan's

theorem, so, for t more than these many matches, f(G) matches more than these many2𝑑𝑚

places the data then you will find G and the list will be small. List will be small because this

whole this algorithm is a polynomial time algorithm, so automatically the list is small. That

finishes the proof.

(Refer Slide Time: 58:21)

365

And we actually also get this corollary for the length of the list, so Reed Solomon of distance

1 - (d - 1) / m for d degree polynomials has a list decoder handling errors and1 − 2𝑑/𝑚

the list sizes that you can deduce by looking at the degree of Q with respect to Y and it comes

out to be handling these many errors and outputs list size at most . This will follow2𝑚/𝑑

from degree of Q is t, degree of Q is weighted degrees at most t and you divided by d.

That gives you the degree in Y that is the simple proof. The proof is that degree of Q with

respect to Y is at most t / d which comes out to be . And since you output the factors2𝑚/𝑑

Y – P(X), P(X) cannot exceed more than . That is the complete description of Reed𝑘/𝑑

Solomon list decoding. Now, we move to the final concept which is local list decoding and

the goal here will be to find the list by making as few queries as possible to a long corrupted

code word the focus will also be on the queries made.

Remember that this Reed Solomon that we did was not local because we actually fitted the

whole data to find Q. We were actually querying everything this is what we want to improve

upon. So, let E be a binary code and let be for . will be again thisε 1/2 − ρ ρ ∈ (0, 1/2) ρ

local list decoding parameter - those many errors. There is no meaning to except how closeε

is root to half, at half for binary code you will not be able to do anything but just below half

what can you achieve?

An algorithms D is a local list decoder for E handling errors. If for every message x, forρ

every corrupted string y that is close to x there will exist, let us say an index for x. This kind

of error is very high that is is close to half, there will be many x’s, so once you are given theρ

index of x that you want so that we will call i0 there exists an advice i0 which is a number

between 1 and polynomial in n / .ε

(Refer Slide Time 01:05:34)

366

Such that for all locations when you are given input this index or advice that is which x you

want implicitly, this is what we are capturing int the jth bit of x that location and then oracle

for y. D will run in time polynomial, again very few queries, so log m for m length corrupted

code word log m time and also depends on n / if you are very close to half, is 0 then this isε ε

not possible, but just below half it is possible this much time.

So, D runs in this much time and outputs xj with probability two-thirds, so that is the

definition of a local list decoder handling errors for any message x and corrupted code wordρ

y given as an oracle once somebody gives you an advice then any jth location of x can be

found with high probability and very efficiently. You could think of i0 as the location of x in

the list which is of course unknown and you can ask for the whole x in place of xj.

Because if you cannot put xj with high probability then by repetition you can also put all

because the same i0 will work for all the j's. So, it is as good as you can also output the full

string x. That is the concept and will now do the final steps in this course. We will do local

list decoding for Walsh Hadamard and Reed Muller and that will finish the course.

367

