
Randomized Methods in Complexity
Prof. Nitin Saxena

Department of Computer Science and Engineering
Indian Institute of Technology, Kanpur

Lecture-24
Local Decoding

(Refer Slide Time: 00:20)

In the last class we did the decoding, unique decoding of Reed-Solomon and then based on that

Walsh-Hadamard Reed-Solomon concatenated code. So, for Reed-Solomon we showed that the

errors that it will be able to handle is 22% in practice it is a 22% of errors can be uniquely

decoded in deterministic polynomial time and Walsh-Hadamard Reed-Solomon is that will be

1/4th of 45% which is more than 11%.

So, Walsh-Hadamard Reed-Solomon is a practical binary code and there is a deterministic

polynomial time algorithm to correct up to 11% of errors, which is pretty good but for hardness

amplification of worst case hard for functions to average case hardness we need stronger form of

decoding basically we will want to limit the number of queries we make to the corrupted string

the number of places we are querying and that is called local decoding. So, let us define it.

(Refer Slide Time: 01:34)

339

Local decoding :

Defn:let . So, this will be the parameter associated with𝐸: {0, 1}𝑛 → {0, 1}𝑚𝑏𝑒 𝑎𝑛 𝑒𝑐𝑐 & ρϵ(0, 1)

local decoding basically, how many errors can it tolerate? So, a local decoder for E handling ρ

errors is an algorithm 𝐺𝑖𝑣𝑒𝑛 𝑗ϵ[𝑛] & 𝑜𝑟𝑎𝑐𝑙𝑒 𝑡𝑜 𝑦ϵ{0, 1}𝑚 𝑠. 𝑡 ∆(𝑦, 𝐸(𝑥)) < ρ

So, why is rho close to the code word E (x) that is what is given and of course, you have to find

this xj bit of x of this code word E(x) you do not have to find the whole string x not n bits but

only 1 bit. Output x j with probability in poly logm-time so, the j should be output and the≥ 2/3

time taken should only be polynomial log m. So, remember this is exponentially smaller than the

length of phi which means your algorithm can query at most poly log.

Many locations it cannot look at the whole string l case you could compare this with the log

space computation. Except we are allowing you polynomial in log m. So, for example, (log m)2

,(log m)3 is fine. So, in other words when m is large, very few bits of y are used to guess xj So,

this is consistent with the term local, basically just by using very, very local information about y

you are deducing x j with high probability, remember that x j has only 2 choices 0 or 1. So, your

answer back should be correct with 2 thirds probability at least and now, surprisingly, will show

that all these codes that we defined they have local decoders.

(Refer Slide Time: 06:08)

340

So, let us start with Walsh-Hadamard; So, Walsh-Hadamard code has a local decoder for any

. So, if the number of errors is less than 25%, say 24%. Then any ρ < 1/4, 𝑊𝐻 𝑐𝑜𝑑𝑒 ℎ𝑎𝑠 𝐿𝑑
 ρ

bit can we locally decoded let me define short term for this . This is especially helpful in 𝐿𝑑
 ρ

Walsh-Hadamard code because that is a very long code n bits stretching 2n and now here local

decoder will only need polynomial in n many queries only those many bits it will not require the

whole 2m.

When many bits, so this is especially good to know what is the idea. So, the idea is quite simple.

If you want to know x j bit, jth bit of x out of the n bits, then basically you look at the string via

this corrupted code word, randomly pick a location and pick a location that is correlated with j.

It is basically just shifted by a vector which is the elementary vector jth elementary vector.

So, you look at you pick a position z and pick up pick another position z + e j and take the sum of

those 2 take the parity that is the idea. So, query 2 positions z & z +ej , where e j is jth elementary

vector which is simply flipping the jth bit in z, so it is z and z with the jth bit flipped these 2

locations in y and then you take the parity of those 2 locations. So, output y(z)+y(z + ej)

location that is the idea. So let us see the algorithm. Input:So 𝑗ϵ[𝑛],

Oracle f . So, f is just an Oracle, given an n bit string, it will output a bit in that: {0, 1}𝑛 → {0, 1}

341

location of y. So, 𝑃𝑟
𝑧
[𝑓(𝑧) ≠ 𝑥 ⊙ 𝑧]

This probability is given to be smaller than and in the output what you wantρ 𝑤ℎ𝑒𝑟𝑒 ρ < 1/4

is, so, this x is unknown first of all and f is corrupted E (x), so, f is given to you as an Oracle that

is a corrupted version of E (x) the code word x is the unknown for which you want the jth bit.

That is your input and output will be just a bit : . That bit has to be with high probability𝑏ϵ{0, 1}

exceeds.

Decoder : 1)𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑝𝑖𝑐𝑘 𝑧ϵ{0, 1}𝑛

2)𝐿𝑒𝑡 𝑒
𝑗
 ϵ{0, 1}𝑛 𝑏𝑒 𝑡ℎ𝑒 𝑠𝑡𝑟𝑖𝑛𝑔 𝑤𝑖𝑡ℎ 1 𝑎𝑡 𝑡ℎ𝑒 𝑗 − 𝑡ℎ 𝑝𝑙𝑎𝑐𝑒 & 0 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑒𝑠𝑡

3)𝑂𝑢𝑡𝑝𝑢𝑡 𝑓(𝑧) + 𝑓 (𝑧 + 𝑒
𝑗
) 𝑚𝑜𝑑2

The algorithm is exactly what the idea was and now we have to analyze why it works, why

would it give x j.. So Time is poly (n)=poly (logm) [m = 2n]

(Refer Slide Time: 13:46)

Now, let us do the analysis.

𝑃𝑟
𝑧
[𝑓(𝑧) = 𝑥 ⊙ 𝑧 ∧ 𝑓(𝑧+ 𝑒

𝑗
) = 𝑥 ⊙ (𝑧 + 𝑒

𝑗
) ≥ 1 − 2ρ > 1/2

⇒𝑃𝑟
𝑧
[𝑓(𝑧) + 𝑓(𝑧+ 𝑒

𝑗
) ≡ 𝑥 ⊙ 𝑒

𝑗
𝑚𝑜𝑑2] > 1/2

⇒ 𝑃𝑟
𝑧
[𝑏 = 𝑥

𝑗
] > 1/2

342

but you wanted 2 thirds, so you have to repeat this experiment repeated, let us say 3 times and

then take the majority vote.

So, repeating the experiment boosts the probability , so then the repeat the experiment,≥ 2/3

take the majority vote and then output the majority as b that with very good probability is xj. So,

that finishes this theorem, which is the local decoder for Walsh-Hadamard for errors up to 25%

less than just less than 25%. Now, we have to do a similar thing for Reed-Solomon, instead we

will do it for Reed-Mueller, it will imply for Reed-Solomon. So next do that.

(Refer Slide Time: 17:16)

Loca decoder for RM :

Recall RM : 𝐹
𝑙+𝑑

𝑑 → 𝐹|𝐹|𝑙

 𝑖𝑠 𝑜𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 1 − 𝑑
|𝐹| 𝑤ℎ𝑒𝑟𝑒 𝑑 < |𝐹| < ∞

So, that the distance is at least half if you take it bigger than the distance will be close to 1 but

remember this is non-binary distance. It is not unlike Walsh-Hadamard, this is non-binary. So, to

make it binary, remember, later we will apply Walsh-Hadamard that we have to give a different

local decoder let us first do Reed-Mueller. So, let us take this view that instead of l variate d

degree polynomial coefficients being the domain of RM we will take that many evaluations.

So, view RM as mapping evaluations of a polynomial f to its evaluations and note that𝑙+𝑑
𝑑 |𝐹|𝑙

343

evaluations uniquely specifies f because it is degree d and variate. So, evaluations will𝑙+𝑑
𝑑 𝑙 𝑙+𝑑

𝑑

uniquely give you all the coefficients hence uniquely specifying f. So, we could have used𝑙+𝑑
𝑑

either of the representations, coefficients or evaluations, let us look at the evaluations for local

decoding is equivalent and with that understanding the theorem

Thm2: ∀ρ ≤ 1/6. (1 − 𝑑+5
|𝐹|−1 , 𝑅𝑀 𝑐𝑜𝑑𝑒 ℎ𝑎𝑠 𝐿𝑑

ρ

. What is the idea, the idea will be actually a generalization of what we did for

Walsh-Hadamard. So, there we picked a random location and a correlated location in the

Reed-Mueller case, what we will do is we will again pick a random point in space.

Because this polynomial F is given to you by evaluations. So, we will pick a random location,

which is actually a random point in the space and we will just pick a random line through that𝐹𝑙

point. So, on the line, we will query f that is the idea. So that all these points on which we are

querying, they are somehow correlated. So, the point that will take in space will be this point,

which is given to you in the input, you wanted to evaluate f at point x.

Take that point x, that is a fixed-point x in the space and then pick a random line. So, in a way,

opposite to what you did for Walsh-Hadamard. But in the end, all these points on which you are

querying there, they are all heavily correlated by x. So let us first give the setting so Degree -d

polynomial, f is unknown and a point x in the space, is given in the input and what you want𝑥ϵ𝐹𝑙

is we want and then you want to evaluate f at x. It is this question, so we will draw a𝑓(𝑥)ϵ𝐹

random line through x in the space, that is the idea.

(Refer Slide Time: 24:11)

344

Idea pick a random line L x through x ,evaluate or query f on all these points. So, what we are

doing is, this is your space . This is the point x in the space given to you and what you have𝐹𝑙

done is drawn a line. That is a random line and this is where you will query f this is what you

query f value is what are the f values at these points and how many points there are on this line,

well in the real space, there would have been infinitely many points.

But fortunately, we are in this finite field based space. So, the number of points will only be size

of the field which is finite. So, you query small f on all these points and from that try to learn f x

that is the goal. So, pick a random line L x through x evaluate f on each point in L x. Now,

remember line is like evaluate or querying f on L x like reducing f to univariate case. So, f now

becomes a univariate polynomial and that means you can invoke Reed-Solomon decoder.

So, use Reed-Solomon decoder to learn if that is the idea and once you have learned f correctly

on L x you can evaluate f (x). So, f | L x,= f (x). So that is what the output the idea is simple. Let

us now do the actual calculations and see what is the success probability and why does it work?

So let us go through it formally. So, the input is you are given an 𝑥ϵ𝐹𝑙 ; 𝑜𝑟𝑎𝑐𝑙𝑒 𝑓: 𝐹𝑙 → 𝐹

Basically, you are given these this Oracle that will allow you to evaluate f at any point you like in

this space. So, Oracle f tilde that agrees with an unknown variate d-degree f on𝑙

a lot of points good fraction, so on greater than and what do you want≥ 1 − ρ 𝑝𝑜𝑖𝑛𝑡𝑠 1 − ρ

in the output you want f (x), so you want to output of field element, which would be with high

345

probability f (x) . So let us achieve that.

, you can think of this as direction is𝑃𝑖𝑐𝑘 𝑟𝑎𝑛𝑑𝑜𝑚 𝑧ϵ𝐹𝑙 𝑎𝑛𝑑 𝑑𝑒𝑓𝑖𝑛𝑒 𝑙𝑖𝑛𝑒 𝐿
𝑥
: = {𝑥 + 𝑡

𝑧
|𝑡ϵ𝐹}

direction being z. Second step is query which is a corrupted version of f query this on each of𝑓

these points on L x that is collect the pairs.

(Refer Slide Time: 30:30)

. So, on the random line, but passing through x, you have{(𝑡, 𝑓(𝑥 + 𝑡
𝑧
))|𝑡ϵ𝐹} =: 𝑓(𝐿

𝑥
)

computed . Now, how many of these pairs are correct? That is the match with f we later analyze𝑓

that actually, it is a good fraction and so, it makes sense to do Reed-Solomon decoding. So, via

Reed-Solomon decoder, this is the actual unique decoder, it is not we are not doing local

decoding.

So, use the Reed-Solomon unique decoder on) and it will give you find a degree d𝑓(𝐿
𝑥

≤

polynomial . So, it will give you a univariate Q tilde. So, basically, this has reduced the𝑄: 𝐹 → 𝐹

L variate question to 1 variate that was the whole idea and what is the property of Q tilde such

that for the largest number of t's. That is the property satisfied by and finally,𝑄(𝑡) = 𝑓(𝑥 + 𝑡
𝑧

𝑄

output so, if is the correct f on the line.𝑄

346

Then as you saw before t = 0 is what we are interested in you just output (0) good that𝑄

hopefully will be the answer. So, let us just quickly observe that all this can be done in

polynomial time. So, time is poly(because the Reed-Solomon decoder will work and𝑙, 𝑑, |𝐹|)

also the line computation will already take if and everything else it is polynomial time. So, next

we will do the analysis. So, it is clearly an efficient algorithm. But why would work?

And we have to more importantly see that f(x)value is outputted with a probability of at least

2/3 rd. So, let us do that analysis. RS decoder is trying to reconstruct the polynomial univariate

polynomial . So, basically, the is supposed to be Q (t) and we have to now 𝑄(𝑡): = 𝑓(𝑥 + 𝑡
𝑧
) 𝑄

check what is the chance that this actually happens that is equal to q? Because remember there𝑄

is also corruption in , it is not really if and if you pick an unfortunate line L x then you may get 𝑓

completely wrong answers may not be Q.𝑄

So, it is clearly an efficient algorithm. But, why would work and we have to more importantly

see that f of x value is outputted with a probability of at least 2 thirds. So, let us do that analysis.

So, RS decoder is trying to reconstruct but, so, basically the is supposed to 𝑄(𝑡): = 𝑓(𝑥 + 𝑡
𝑧
) 𝑄

be Q (t) and we have to now check what is the chance that this actually happens that is equal𝑄

to Q, because remember, there is also corruption in f tilde.

It is not really f and if you pick an unfortunate line L x then you may get completely wrong

answers may not be Q. So, we have to analyze that. So, let us consider𝑄

once you have picked a direction z you want Q (t) to be correct𝑃𝑟
𝑧
[#𝑡, 𝑤𝑖𝑡ℎ 𝑄(𝑡) ≠ 𝑓(𝑥 + 𝑡

𝑧
)

on many many t's.

So, in particular the places where Q (t) the t's where Q(t) is incorrect, you want that to be

smaller than what Reed-Solomon RS decoder can sustain. So,

is this will number of t should be smaller than𝑃𝑟
𝑧
[#𝑡, 𝑤𝑖𝑡ℎ 𝑄(𝑡) ≠ 𝑓(𝑥 + 𝑡

𝑧
) < |𝐹|−𝑑

2

RS distance. That is what this is.So, once this happens once you have that this number of1/2 ×

t's is smaller than half of Reed-Solomon distance.

347

Then Reed-Solomon decoder automatically as you saw before, when we analyze RS decoder, it

will give you the correct Q. So, all you want to ensure is that this probability is high. It is at least

2 /3rd. That is the question is this probability 2 thirds and we will show yes.

(Refer Slide Time: 38:56)

To show that we consider expectation:

. f is a𝐸𝑋𝑃
𝑧
[#{𝑡ϵ𝐹|𝑓(𝑥 + 𝑡

𝑧
) ≠ 𝑓(𝑥 + 𝑡

𝑧
)}] ≤ 1 +

𝑡ϵ𝐹\{0}
∑ [𝑃𝑟

𝑧
𝑓(𝑥 + 𝑡

𝑧
) ≠ 𝑓(𝑥 + 𝑡

𝑧
)]

polynomial; I mean x and z are both fixed. So both of them are univariate polynomials in fact.

So, one variate they are both one variate. So they being different means that t is not 0. But how

do I get this information. So here, actually, what you have to see is that is a random𝑥 + 𝑡
𝑧

point in the space.

Because z, you picked a random direction. Secondly, the third. So that is what is important. This

is a random point, random point in and once you realize that f and are being different on a𝐹𝑙 𝑓

random point in space, that is given to you by rho. That is the probability upper bound. So,

. We remove t = 0 because that1 +
𝑡ϵ𝐹\{0}

∑ [𝑃𝑟
𝑧
𝑓(𝑥 + 𝑡

𝑧
) ≠ 𝑓(𝑥 + 𝑡

𝑧
)] ≤ 1 + ρ(|𝐹| − 1)

would have killed z.

348

But for all other t's, z is there in x + t z and so this is really a random point. So, you have (

times F as the expectation. Let us take that. So now by Markov’s inequality, basically, it1 + ρ)

is just something simple. So, it is the following that is the expectation is m, then what is the

chance that in the random experiment, the random variable takes value more than 2m or less than

m / 2, these are both these the probabilities you can suspect already will be smaller than half.

Because once you do expectation, you also have a good understanding of the probabilities that

the random variable is too large or too small, away from the expectation. So, in particular, what

you get here is , this will depend on how big is𝑃𝑟
𝑧
[#{𝑡ϵ𝐹|𝑄(𝑡) ≠ 𝑄(𝑡)} ≥ |𝐹|−𝑑

2
|𝐹|−𝑑

2

compared to the expectation.

So that is .. That is the idea and let us now just do the simple calculation or≤ 1+ρ(|𝐹|−1)
(|𝐹|−𝑑)/2

simplification. So, rho is given to you by an upper bound, that 1/6 of that distance.ρ <

So, that is it. That is what we wanted. So probability over the1+ρ(|𝐹|−1)
(|𝐹|−𝑑)/2 ≤

1+ 1
6 (|𝐹|−𝑑−6)

(|𝐹|−𝑑)/2 = 1/3

random direction, when you take a random direction, then the number of t's being bad t’s being

too many. More than 1/2 of the Reed-Solomon distance, that probability is at most 1 /3rd. So, for

2 /3rd of the choices, the Reed-Solomon decoder will work fine.

So 3 step-3 gets which further means which obviously 𝑤𝑖𝑡ℎ 𝑃𝑟
𝑧

≥ 2/ 𝑄 = 𝑄 = 𝑓(𝑥 + 𝑡
𝑧
)

means that with probability 2 /3rd so, that is the local decoder handles errors up𝑄(0) = 𝑓(𝑥)

to 1 sixth of the reed-muller distance and what you should note here is that the number of queries

is log of the length. So, this is really or I should say .𝑙𝑜𝑔 𝑙+𝑑
𝑑 𝑙𝑜𝑓(|𝐹|𝑙)

So, it is poly log in the length of the codeword. So, hence it is fair to say that this is a local

decoder it makes very few queries and gives you one evaluation of F with 2 thirds probability at

least. So, once you know local decoder Walsh-Hadamard and Reed-Mueller.

(Refer Slide Time: 48:15)

349

The last thing is local decoder for the combination the concatenation for concatenated codes.

So, let me sort of talking about Walsh-Hadamard and Reed-Mueller we will just abstract it out

and talk about combination of E 1 and E2. Where we know local decoders for E 1 and E2 So

be ecc with local decoders of q1 resp q2 queries in the𝐸
1
: {0, 1}𝑛 → Σ𝑚 𝑟𝑒𝑠𝑝 𝐸

2
: Σ → {0, 1}𝑘

local decoder algorithm and they handle say errors. So, we have abstracted it out ofρ
1
𝑟𝑒𝑠𝑝 ρ

2

course, when you apply to Reed-Mueller than will be your finite field. E 1 will be Reed-MuellerΣ

E 2 will be Walsh-Hadamard and these queries will be very few. But this is the setting. So now

you want to show that the concatenation also has a local decoder.

Moreover, we will assume here that . Now, that is state the theorem statement. 𝑞
1

≥ |Σ|

Theorem3: 𝐸𝑐𝑐 𝐸: = 𝐸
2

◦ 𝐸
1
: {0, 1}𝑛 → {0, 1}𝑚𝑘 ℎ𝑎𝑠 𝐿𝑑ρ

1
ρ

2

This is similar to what we did when we did unique decoding for the concatenated code, so, you

get the product but more importantly the number of queries is small remains small. So, has local

decoder this much with queries . So, if was small then this overall𝑂(𝑞
1
𝑙𝑜𝑔 𝑞

1
. 𝑞

2
. 𝑙𝑜𝑔|Σ|) 𝑞

1
, 𝑞

2

is quite small this is just like product queries. So, what is the idea given this corrupted y.

Given break it into blocks of size k and then think of these m blocks each of size k as𝑦ϵ{0, 1}𝑚𝑘

350

these respective applications of E 2 and use E 2 decoder. So, on a block called E 2 -

\ So, basically you will get these symbols if you think of as a field𝐿𝑑ρ
2
(𝑙𝑜𝑔|Σ|) − 𝑡𝑖𝑚𝑒𝑠 Σ

element then you will get the full field element and from that you can now move to E 1 decoder

to get the bit out of the local decoder.

Finally, call on several decoded blocks this will first apply E 2’s local decoder in a𝐸
1

− 𝐿𝑑ρ
1

single block many times to get the full symbol and then on these interesting blocks some of the

interesting blocks you apply E 1’s local decoder and that will give you the information you

wanted the bit you wanted of x.

(Refer Slide Time: 55:29)

So, let us give the full algorithm and proof. So,

. So,𝐼𝑛𝑑𝑒𝑥 𝑖ϵ[𝑛]; 𝑜𝑟𝑎𝑐𝑙𝑒 𝑎𝑐𝑐𝑒𝑠𝑠 𝑡𝑜 𝑦ϵ{0, 1}𝑚𝑘 𝑠. 𝑡 ∃ 𝑥ϵ{0, 1}𝑛, ∆(𝑦, 𝐸
2

◦ 𝐸
1
(𝑥)) < ρ

1
ρ

2

Decoder : 1) View y as m blocks ech of k -bits..

Note that y is very long we are not actually working with the full y we are just doing this kind of

implicitly or abstractly and accordingly we will make the queries but the queries will in the end

will be very few actual queries to why locations will be few, so that you can check in the end. So,

it is basically [It is a corrupted version of < 𝐸
2
(𝐸

1
(𝑥)

𝑗
)|𝑗ϵ[𝑚] >]

351

So, this is the let us say the jth symbol. So, think of this, the jth block is basically a corrupted

version of this E 2 have E 1 (x)'s jth symbol, think of it as a field element and when you apply it to

then it will produce a k bitstream. So . So, remember,𝐶𝑎𝑙𝑙 𝐸
2

− 𝐿𝑑ρ
2
 𝑜𝑛 𝑡ℎ𝑒 𝑗 − 𝑡ℎ 𝑏𝑙𝑜𝑐𝑘 𝑜𝑓 𝑦

is an element in . So, you need to which is then log many bits.𝐸
1
(𝑥)

𝑗
 Σ |Σ|

So do this log - times to recover , that is the idea. But anyways, you will get some|Σ| 𝐸
1
(𝑥)

𝑗

element and by this. It may be correct. It may be incorrect, that we will see later. So do this onΣ

the jth block. But you cannot do this for all j. Otherwise, we will be getting you will be making a

lot of queries that that you do not want to do. So, which j we will you use. So, repeat this 50 log

q1 times.

So that the probability of not decoding . So, the thing is that this may be incorrect.𝐸
1
(𝑥)

𝑗
 𝐸

1
(𝑥)

𝑗

Because the local decoder has its own error involved. It is already this 1/3rd error is possible. So,

you want to boost it down we want to make the earth smaller. So, let us repeat this experiment

.𝐸
1
(𝑥)

𝑗
 𝑖𝑠 < 1/10𝑞

1

So, log q 1 repetitions would be enough because this will already give you a small enough

probability which you multiply with log and still you get 1 /q 1 and now, what you do is so,|Σ|

even x j's are hopefully recovered for the j’s we want and now from E 1 (x) , we want to go to x.

So, E 1 is they were m symbols in the output of E 1. So out of those m we have to query q 1 many,

those are the j's that you are interested in. So, we need this, because E 1 will need q1 many𝐿𝑑ρ
1

j’s.

So, the above experiment will run for a lot j’s which is q 1 many j’s. So, we wanted the

probability to be quite small compared to that. Now let us move to E 1’s local decoder. So, what

will that do? Before that we have to give a guarantee of how many of this j’s E 2 work correctly.

So, we will do this next time. We will finish local decoder next time.

352

