
Randomized Methods in Complexity
Prof. Nitin Saxena

Department of Computer Science and Engineering
Indian Institute of Technology - Kanpur

Lecture - 22
Explicit ECC

(Refer Slide Time: 00:15)

Last class we started error correction so, you saw this example about Alice trying to send a

message to Bob over a channel that corrupts up to 10% of the bits and so, Alice has 2 encode.

So, the result of the encoding is called a codeword. Codeword is sent over the channel, the

channel may corrupt some of the bits which means it may flip some of the bits 0 to 1, 1 to 0 and

then Bob gets codeword y becomes and the question Bob has to now solve is from he has𝑦' 𝑦' 𝑦'

to find y and then x that was the original message.

So, what we want from the code is that the distance should be large. So, that more errors can be

handled length of the code word should be small so, that the channel is not expensive and

obviously, you want all the algorithms to be efficient, which means randomised polynomial time.

So, first we will look at the existential state what is the best distance and the length that you can

hope for that is given by Gilbert Varshamov bound.

309

So, the theorem says that or this lemma states that there is a code which will basically give every

string in 0, 1 to the n a random m bit code word where the distance will be delta which you can

pick to be any constant between 0 and half.

(Refer Slide Time: 01:56)

So, let us show this so, we will basically just have to randomly pick the images the code words.

So, pick at random and define So,2n strings are mapped to 2n𝑦
1
,...., 𝑦

2𝑛ϵ{0, 1}𝑚 𝐸: 𝑥 | → 𝑦
𝑥

strings, but these images are longer that is n bits. Now, let us look at the distance between and𝑦
𝑥

or yi and yj for every i j pair different we are interested in this𝑦
𝑥
'

∀𝑖 ≠ 𝑗ϵ[2𝑛], 𝑃𝑟
𝐸

[∆(𝑦
𝑖
, 𝑦

𝑗
) < δ]

So, over the choices that he makes, what is the probability that fractional hamming distance

between y i, y j is less than this will be the bad event. So, this bad event what is the probability?δ

This probability is less than equal to you can think of yi is already fixed. So, I mean yi this image

these you are picking both yi and yj randomly, but you can assume yi to be fixed and then yj is

what you are picking.

So, what are the good yj’s over all possible yj’s. So, number of yj’s which are close to yi, so,

. So, if you want yj close to yi then you∀𝑖 ≠ 𝑗ϵ[2𝑛], 𝑃𝑟
𝐸

[∆(𝑦
𝑖
, 𝑦

𝑗
) < δ] ≤

#(≤δ
𝑚

)−𝑝𝑙𝑎𝑐𝑒𝑠 𝑖𝑛 𝑦
𝑖

#𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑦
𝑗

310

basically have to pick locations in yi and just flip them. So, every this subset choice will giveδ
𝑚

you a bad yj and divided by the total number of yj’s possible.

So, = . Now, basically this∀𝑖 ≠ 𝑗ϵ[2𝑛], 𝑃𝑟
𝐸

[∆(𝑦
𝑖
, 𝑦

𝑗
) < δ] ≤

#(≤δ
𝑚

)−𝑝𝑙𝑎𝑐𝑒𝑠 𝑖𝑛 𝑦
𝑖

#𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑦
𝑗 𝑖=0

δ
𝑚

∑ 𝑚
𝑖 /2𝑚

binomial sum is what you have to estimate. So, you can see that , which is the largest𝑚
δ𝑚

summoned here that will be much smaller than 2m. So, that is given by sterling's approximation,

so, you can actually write it like
𝑖=0

δ
𝑚

∑ 𝑚
𝑖 /2𝑚 ≤ 0. 01 × 2𝑚.𝐻(δ)/2𝑚

So, this is really what you get you get that the binomial sum is much smaller than 2m and this

exponent is) given by the Shannon's entropy function this is really coming from Sterling's𝐻(δ

approximation. So, you can look this proof of Sterling's approximation it basically gives you a

very good asymptotic bound for m factorial and then using that you can get bounds for binomial

numbers and then you can also get bounds on some of binomials.

So, if you sum up, up to these binomial numbers then you get a value smaller than .δ𝑚 2𝑚.𝐻(δ)

So, if you take delta to be half then this is square root of 2m /2 that is the point. So, that is the

probability that if you randomly pick yi, yj, they will be close the distance will be smaller than

delta, but we are interested in all the pairs i j what is the probability for that? So, that you can

now; reduce so, , but still if you𝑃𝑟
𝐸

[∃𝑖 ≠ 𝑗, ∆(𝑦
𝑖
, 𝑦

𝑗
) < δ] ≤ 0, 01 × 22𝑛−𝑚(1−𝐻(δ)) = 0. 01

take m to be quite large, appropriately large then this fraction is very small this probability is

very small. In fact, at this point you should see what m is we have fixed in the lemma m to be to

2n / .1 − 𝐻(δ)

So, you already get that this is 0.01 and that means that . So,𝑃𝑟
𝐸

[∃𝑖 ≠ 𝑗, ∆(𝑦
𝑖
, 𝑦

𝑗
) ≥ δ] > 0. 99

if you randomly choose your images then these strings are far away further away than fractional

311

hamming distance and what m did you require? m you required is 2n / so it is orderδ 1 − 𝐻(δ)

n so, that finishes the proof.

So, now you know where you stand this code certainly exists it exists for any smaller than half,δ

but actually here you can see what will happen if you take to be exactly half. So, in thisδ

calculation if you take to be half then you have to estimate . So, what is ? Let us alsoδ 𝑚
𝑚/2

𝑚
𝑚/2

do that.

(Refer Slide Time: 10:04)

Thus required in th proof𝐹𝑜𝑟 δ > 1/2,
𝑖≤𝑚/2

∑ 𝑚
𝑖 /2𝑚 ≈ 1

𝑚
𝑚≈24𝑛

So, if you want to reach it is possible but then you will need an exponentially large m δ = 1/2

and exponentially longer codeword. Now, what happens when then you can show that Eδ > 1/2

cannot exist this you can show simply by looking at the space{ 0,1}n or {0,1}m and they are just

by triangle inequality you will get this. So, is not possible is possible but δ > 1/2 δ = 1/2

exponentially large delta less than half by a random choice E exists.

And so, what you learn is that this code E allows unique decoding up to errors< so, δ/2≈1/4

this existential code E he tells you that all information theoretically unique decoding is possible

312

even if there is 25% error. So, Alice send this message or this code word to Bob and 25% of the

string was corrupted still Bob can recover the original message so, this is an amazing thing.

The only part missing is can this be done efficiently? Can encoding decoding be done in poly(n)

time? So, encoding can be done in this existential proof it can be done 2n time because it

basically goes through all the string{ 0,1}n. So, can you make it poly(n)- time and also

randomised is allowed. So, can you solve this problem in randomised polynomial time.

So we will study 4 explicit codes and as well happen, these will be linear codes which means that

if you take 2 messages and add them their code words will also add to give the new code words

these will be linear codes, they will be efficient and they will have good distance and many other

properties, amazing decoding properties.

(Refer Slide Time: 15:38)

So, these have let us enumerate them so, Walsh Hadamard this will have distance(δ = 1/2)

maximum which is half then Reed Solomon t. Third is Reed Mueller so,(δ < 1/2 & 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡)

this will be similar to Reed Solomon, it will be Reed Solomon (multivariate version of RS)

So, the property will be these will also be efficient Reed Solomon is not a binary code it will use

finite fields Reed Muller as well will use finite fields concatenated codes(binary & efficient).

We will strengthen the notion of decoding gradually we will first start with unique how to decode

313

uniquely which we will do in Reed Solomon efficiently and in Walsh Hadamard inefficiently

from unique.

We will move to local decoding local will be that you will need to query very few places your

corrupted codeword and finally, local list decoding which is non-unique.

So, finally, we want local list decoder so, local𝑢𝑛𝑖𝑞𝑢𝑒 → 𝑙𝑜𝑐𝑎𝑙 → 𝑙𝑖𝑠𝑡(𝑖. 𝑒 𝑛𝑜𝑛 − 𝑢𝑛𝑖𝑞𝑢𝑒!)

means that query very few places in the corrupted code word and still get a bit of the original

message and list will mean that in fact, the options of I mean you are in a regime where there

may not be a unique message x. So, then you want to output a list of messages. But obviously,

the list has to be small.

So, we will do this gradually this will take several lectures. So, let us start with Walsh Hadamard

that is the simplest although inefficient. It has to be inefficient because we are demanding delta

half. After that we will look at more and more advanced coding techniques.

(Refer Slide Time: 19:51)

Walsh Hadamard code(1940). So remember, you want delta half, so you expect the length to be

exponentially blown up. And what you can do is just take your message x and take all possible

inner product with the space. So spaces 2n strings for every string, you intake inner product with

314

x. And that is how you get 2n bits that is your code word. So, for 2 strings in the space {0,1}n,

defn: 𝐹𝑜𝑟 𝑥, 𝑦ϵ{0, 1}𝑛 𝑑𝑒𝑓𝑖𝑛𝑒 𝑥 ⊙ 𝑦 =
𝑖=1

𝑛

∑ 𝑥
𝑖
𝑦

𝑖
𝑚𝑜𝑑2

And then define the WH code (Walsh Hadamard code).

𝑊𝐻: {0, 1}𝑛 → {0, 1}2𝑛=:𝑚 ; 𝑥 → 𝑧 𝑤ℎ𝑒𝑟𝑒 𝑧
𝑦
: = 𝑥 ⊙ 𝑦 , 𝑓𝑜𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑦ϵ{0, 1}𝑛

So it is a 2n length string, you can also think of this as projections of x all possible projections

modulo 2 you project inner product is also like projections but this is mod 2 so there are 2n

projections possible and you project in every direction, that is Walsh Hadamard code, what good

is this map. So, what we will show is

Lemma 1: Walsh Hadamard is an error correcting code with distance 1/2.

So, we have to show that for different x and y the code words WH x and WH y they are very far

apart, we have to calculate the distance. In other words, the 2 strings WH (x) and WH (y) they

will be different in half of the locations or more. where ‘+’𝑊𝐻(𝑥 + 𝑦) = 𝑊𝐻(𝑥) + 𝑊𝐻(𝑦)

is coordinate wise sum mod2. Coordinate wise sum also means just the parity coordinate wise.

So, this is easy to see because x will go to z and y will go to , but when you look at a location𝑧'

in that location, you are taking only inner product so, inner product is linear.

(Refer Slide Time: 26:17)

315

Since this inner product is linear on the location string, this property holds true, which means that

if you look at the weight of this vector weight means number of non 0 entries, number of non 0

coordinates this will be wt(WH(x+y))=wt(WH(x)+WH(y)). And so, if you look at a location, it is

just sum mod 2. So, only when the 2 coordinates are different, the 2 bits are different will they

give you 1, if they are same, it will give you 0 it is just parity.

So,wt(WH(x+y))=wt(WH(x)+WH(y)) (WH(x),WH(y)).m. So, If x+y ,then(x+y) is= ∆ ≠ 0

orthogonal to exactly ½ of the vectors in {0,1}n

So, a non 0 vector is orthogonal to exactly half of the space and it is not orthogonal to half of the

space. So, using that property you know that weight of this Walsh Hadamard x + y is half the

weight of the Walsh Hadamard because Walsh Hadamard vector is nothing but collection of

these inner products, half of them is 0 half of them is non 0. So, you get wt(WH(x+y))=m/2,

(WH(x),WH(y))=½ for x∆ ≠ 𝑦

Lemma 1, you have to show that Walsh Hadamard is an error correcting code with distance half.

And we have shown that indeed, if you look at the images, the code words they are far away.

And moreover, it is a linear code word, but it is very long so, we want shorter code words. So,

WH achieves maximum distance, but this m is exponential m=2n So now, to get shorter code we

have to do something else to get a shorter code we will look at finite fields so we will use more

algebra.

So finite fields F other than F2 you can see that Walsh Hadamard work with the finite field F 2

field with 2 elements it did addition mod 2. But inspired by this, we will now move to finite

fields. And we will get the first brilliant code which is the Reed Solomon code.

(Refer Slide Time: 32:00)

316

This is from 1960s so, Reed Solomon code will move to finite fields. And the idea is to view the

input string as a polynomial as a function, view the input string as defining a function, which is

basically a polynomial and then you evaluate that polynomial and evaluations are then sent as the

code word as a polynomial and consider its evaluations in a finite field, this is the basic idea

instead of thinking of a string as a vector in hypercube,{0,1}n.

Now, you think of the string as a polynomial and this polynomial when you will evaluate, get

many evaluations that is your code word. So let us define it formally so, let F be a field

Now the RS code is the following map, it will, instead of a string it will actually𝑛 ≤ 𝑚 ≤ |𝐹|

take a point in where𝐹𝑛 → 𝐹𝑚; (𝑎
0
,...., 𝑎

𝑛−1
) → (𝑧

0
,....., 𝑧

𝑚−1
)

F so, that is the RS code.∀𝑗, 𝑧
𝑗

=
𝑖=0

𝑛−1

∑ 𝑎
𝑖
𝑓

𝑗
𝑖; 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑗 − 𝑡ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑓

𝑗
𝑖𝑛

RS code is mapping a point is a) by defining a polynomial and then evaluating it at f j(𝑎
0
,...., 𝑎

𝑛−1

so, we can write that down. So, the polynomial is this is the polynomial that the given
𝑖<𝑛
∑ (𝑎

𝑖
𝑋𝑖)

point defines and you just evaluate this polynomial at many, many field elements,(𝑎
0
,...., 𝑎

𝑛−1

exactly m field elements. Now again notice that this is a linear code, because if you take 2 points.

317

And look at the RS code words, when you sum the 2 points again coordinate wise and in the

finite field then the code words will also add up this is because the 2 polynomials you can add,

you can add the 2 polynomials and then evaluate or you can separately evaluate and add so this is

again a linear code. And the property was what is the distance of this? So RS is an error

correcting code of distance so if you take m to be more than double that of n, we are claiming

that the distance of RS is half.

Lemma 2:RS is an ecc of distance (1 − 𝑛−1
𝑚)

Actually, you should be careful here, the distance notion here is for the finite field alphabet this

is not binary anymore. So let us remember that so the alphabet is now not 0, 1 but the field

elements F. And in that alphabet, if you look at the distance, so RS x and RS y how far they are

in terms of the coordinates, compare them in the field, then a lot of them are different that is what

this lemma is saying let us prove this.

So again, like a lemma 1 we did, so RS(a-b)=RS(a) -RS(b) for coordinate wise sums let us do it

properly. So again a is a point in Fn ,b is a point in Fn, (a - b) means that you coordinate y

subtract. And when you do that, you can see that the polynomial that you are getting you can

subtract the polynomials and so, evaluation of the polynomial and then subtracting or subtracting

the polynomials.

(Refer Slide Time: 40:51)

318

And then evaluating will give you the same value which means that again weight. So, if you look

at the number of entries in LHS that are non 0, that will be given by the number of places where

RS(a) and RS(b) differ, because the places where they are equal, the difference will be 0. This is

again similar to what we did before, wt (RS(a-b))=wt (RS(a)-RS(b))= and∆(𝑅𝑆(𝑎), 𝑅𝑆(𝑏)). 𝑚

again, if a - b , a and b are different, then RS(a - b)is a set of m evaluations of the≠ 0

, the degree of this polynomial is less than n, you can assume n - 1. Now, how
𝑖<𝑛
∑ (𝑎

𝑖
− 𝑏

𝑖
)𝑋𝑖

many evaluations of this can be 0, this maximum n - 1 evaluation are 0 so, remaining evaluations

are non 0.

So, at most (n - 1) evaluations vanish which means that (RS(a),RS(b)).m m-(n-1)∆ ≥

(RS(a),RS(b)) 1-(n-1)/m∆ ≥

which is what we wanted to show however, if you look at the binary distance so, for binary

distance you have to actually look at the coordinates in binary.

Now, when you look at field alphabet 2 field elements are different, but that only means that

when you look at the binary representation 1 bit is different, it is possible that just 1 bit is

different not all the bits. So, what you will get is this m -(n - 1) these many coordinates are

319

different, but the number of coordinates is not m, it is now you have to multiply by the field

element in the binary alphabet, so, that will give you log factors.

if you look at the binary𝑏𝑖𝑛𝑎𝑟𝑦 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑎𝑟𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑟: 𝑚−(𝑛−1)
𝑚.𝑙𝑜𝑔|𝐹| = 1

𝑙𝑜𝑔|𝐹| . (1 − 𝑛−1
𝑚)

distance it is much smaller, but if you look at the non binary distance that is very close to 1 if as

the bigger you pick m the closer to 1 it is. So, this is not really contradicting Gilbert Varshamov

bound because that was for binary alphabet. Reed Solomon is for non binary alphabet that is the

notion of distance here. So, this is delta for F alphabet so, we have seen that Reed Solomon is a

linear correcting code and distances close to 1 which means it is separating the strings very far

away.

(Refer Slide Time: 46:41)

Let us move to the next code so, for now, we are only looking at the distance in encoding n

distance decoding we will see later decoding is always complicated. So, Reed Mueller code is

similar time what is the idea of this? Idea is similar to Reed Solomon code again view the string

as a polynomial and consider evaluations but multivariate polynomials and considered

evaluations.

So, this will be the multivariate generalisation but the expressions will now become more

complicated so, let us go through the definition again. Defn;So, let F be a finite field

320

Reed Muller code is RM: that maps every variate d degree𝑙, 𝑑ϵ𝑁 & 𝑑 < |𝐹| 𝐹
𝑙+𝑑

𝑑 → 𝐹|𝐹|𝑙

𝑙

polynomial P to all evaluations in the space if for every point in the space you evaluate this𝐹𝑙 𝐹𝑙

P and hence you will get many coordinates that is your code word.𝐹𝑙

So, explicitly also we can write this RM :

{𝑐
𝑖
ϵ𝐹| |𝑖| ≤ 𝑑} → {𝑝(𝑥

1
,..., 𝑥

𝑙
): =

𝑖
1
+...𝑖

𝑙
≤𝑑

∑ 𝑐
𝑖
𝑥

𝑖
 |𝑥

1
.... 𝑥

𝑙
ϵ𝐹}

So, you start with coefficients and you end up with evaluations of this polynomial P. So, I hope

this clears up what the RM map is doing so, first observation is let us compare this with the Reed

Solomon definition and Walsh Hadamard. So, both the codes that we saw before in Walsh

Hadamard you can think of d = 1. So, RM with d = 1 if you make degree to be 1, then you are

basically looking at a linear polynomial.

And if you also fix the finite field to be F 2 then what you are doing is given these bit string you𝑙

are just evaluating all these linear I mean you are evaluating this linear polynomial which bit𝑙

string defines and hence you are just computing the inner product in all possible ways, all

projections so you actually get the WH code. Now, to get Reed Solomon, you just fix = 1, that is𝑙

natural.

If you take a univariate version of RM code, then this map is just the definition of Reed

Solomon. So, this is why Reed Muller code is important it is actually a uniform generalisation of

both these important codes that you saw Walsh Hadamard with delta, which is a binary code with

distance 1/2 and Reed Solomon which is a non binary code with distance almost 1 and what is

the distance calculation for RM code?

(Refer Slide Time: 54:51)

321

So, Reed Muller is an error correcting code with distance first of all it is a linear code1 − 𝑑
|𝐹|

why is it linear? Well, for the simple reason that when you look at 2 coefficient vectors the

difference of them coordinate wise means that the polynomials also you are taking the difference

and then if you evaluate, you will get the same value as if you had first evaluated and then taking

the difference.

So, the same reason as you saw before Reed Muller is a linear code and we showed the distance

calculation now, this again is a non binary distance. So, again if you look at the weight of Reed

Muller image of difference of 2 strings

.𝑤𝑡(𝑅𝑀(𝑎 − 𝑏)) = 𝑤𝑡(𝑅𝑀(𝑎) − 𝑅𝑀(𝑏)) = ∆(𝑅𝑀(𝑎), 𝑅𝑀(𝑏)). 𝑚

what is m? So, m= . So, now, you have to compute the weight of RM(a - b) which means in|𝐹|𝑙

how many places is it non 0 like we did for Reed Solomon code. So, if a - b is non 0 different

coefficient vectors then this polynomial that you will look at then this polynomial

has only d/F fractions of zeros,by the polynomial identity lemma which means
|𝑖|≤𝑑

∑ (𝑎
𝑖

− 𝑏
𝑖
)𝑋

𝑖

that this fraction may vanish but the remaining will not and hence you get

322

So that finishes the proof of distance. Next time we will start∆(𝑅𝑀(𝑎), 𝑅𝑀(𝑏)) ≥ 1 − 𝑑
|𝐹|

concatenated code.

323

