
Randomized Methods in Complexity
Prof. Nitin Saxena

Department of Computer Science and Engineering
Indian Institute of Technology, Kanpur

Lecture - 20
Partial Derandomization

So, in the last class we finished the proof of this very important theorem. And in a way of

surprising theorem, it was long conjectured in cryptography and finally proved by Nisan

Wigderson in 1988.

(Refer Slide Time: 00:34)

So, the theorem showed that, if you have E explicit Boolean function that is average case hard

then, accordingly you will also have a prg, with a non trivial stretch. So, hardness would allow

you to stretch strings, so that they look random to limited resource computation.

(Refer Slide Time: 00:55)

280

And then we showed a very minor lower bound, assuming the existence of a prg.

(Refer Slide Time: 01:02)

So, prg implies lower bound, lower bound implies prg. What we will do next is, we will see more

applications of this concept of prg in complexity theory. In particular, at the end of this topic or

this section, you will see the complete proof of the first theorem that we started with in the

course which was if PIT is in P, identity testing, if it is in P then it implies either Boolean circuit

lower bounds or arithmetic circuit lower bounds.

281

So, there was a Lemma complexity theorem there which we did not complete the proof will

complete it now using prg’s. So, we will now see more impressive applications of prg in

complexity theory. So, first is using the hardness of permanent you can derandomize BPP.

(Refer Slide Time: 02:42)

So, first is partial derandomization from Hwrs (per) But theorem statement will look more

impressive than this. So, actually in the theorem what we will say is, it is a

Theorem: (Impagliazzo and Wigderson from 1998). If BPP EXP which is a very reasonable≠

hypothesis, everybody conjectures this. That using randomized polynomial time algorithms you

cannot solve all the problems that are computable in exponential time.

So, if this statement is true, notice that this statement does not have any circuits in it. So, if this

statement is true, this already will imply a partial derandomization. What will be shown is

subexp.time algorithm A solving L on “average”, will mean that on almost all the∀𝐿ϵ𝐵𝑃𝑃, ∃

inputs A can solve L and it is sub exponential time deterministic algorithm.

So, this is a partial derandomization of BPP and mathematically we will define this average as,

for infinitely many n’s . So, there are 2 things one is that, it𝑃𝑟
𝑥ϵ{0,1}𝑛[𝐴(𝑥) = 𝐿(𝑥)] ≥ 1 − 1/𝑛

may not work for all n but it will work for infinitely many n’s, second is even when it works for a

n, it works for a large majority of the inputs in , it will not work for all strings.{0, 1}𝑛 {0, 1}𝑛

282

So, let us prove this. So, here we will break into 2 cases. First is whether EXP P/poly So,⊄

when it is not in p / poly then that is kind of the easier case. Then, EXP with Hwrs(f)>nw(1)∃ 𝑓ϵ

large. So, if EXP is not in p / poly that mean that, there is a problem which is solvable in

exponential time but does not have polynomial size circuits.

, this little w(1) means function that is growing function, diverges to infinity. So, later we will see

how to amplify this to get EXP . This amplification procedure we will𝑓'ϵ 𝑤𝑖𝑡ℎ 𝐻
𝑎𝑣𝑔

(𝑓') > 𝑛𝑤(1)

see in the next chapter. We will see it in great detail; it will be using error correcting codes.

So, let us assume all that for now and finish this part of the proof. So, you have from f you have

and then from you have a prg. So, Nisan Wigderson theorem gives then BPP in super poly𝑓' 𝑓'

hardness, average case means, sub exponential time derandomization, so that is done. That was

kind of the easy case when EXP is not in p / poly itself that gives you hardness and hardness

gives you derandomization. Now, what happens when EXP is in p / poly then there is no

hardness, what do you do then?

(Refer Slide Time: 09:31)

So then, EXP = PH. So, recall that we had shown when we were doing initial lectures on identity

testing that there were these sequence of results, EXP in p / poly meant that,

283

we had the sequence. And from this sequence it means that, these 3𝐸𝑋𝑃 ⊆ 𝑀𝐴 ⊆ 𝑃𝐴 ⊆ 𝐸𝑋𝑃

classes are equal. So, you have EXP = MA = PH.

So, recall that, we immediately deduce that EXP is equals, actually polynomial hierarchy and

moreover, , this also you recall which is again in EXP. So, this means that,𝑃𝐻 ⊆ 𝑃𝑝𝑒𝑟 ⊆ 𝐸𝑋𝑃

actually all these 4 classes are equal, so EXP in particular is . So this, by the way is called𝑃𝑝𝑒𝑟

Toda’s theorem, polynomial hierarchy in and permanent, obviously is solvable in𝑃𝑝𝑒𝑟

exponential time. So, you get all these 4 classes equal, in particular focus on EXP = .𝑃𝑝𝑒𝑟

Now, you have assumed that BPP EXP in the hypothesis. So, which means that, BPP⊄ 𝑃𝑝𝑒𝑟⊄

. So, we do have some hardness, in particular if you look at permanent, this does not⊆ 𝑃/𝑝𝑜𝑙𝑦

have poly size circuits, it requires super poly circuits. So, it makes sense to use permanent in

Nisan Wigderson map and get a prg. So, permanent is hard and we will use it to define this

potential prg map, where I is your Nisan Wigderson design, permanent is the hard𝐺: = 𝑁𝑊
𝐼
𝑝𝑒𝑟

function, it should stretch {0, 1} In the previous lecture, note we used m but here we𝑙 → {0, 1}𝑛

will continue to use n, just appropriately rename the design parameters with a super poly stretch.

That is the idea. What is not clear is how to use this NW map permanent is hard but it is not

really average case hard.

So, we have to see how to go around the conditions required for this Nisan Wigdersons theorem.

That is what we will do next. Let us look at it in detail, this implementation. So, for L BPP, ifϵ

B (x, r)is the randomized algorithm, solving L then we define a kind of derandomized algorithm

using G. So then, we define derandomized A as, so that definition is simply as you can guess, as

you have seen before, P will use the output of or the image of G as a pseudo random string.

So, A (x): majority , guess this is just the majority of all these values of{𝐵(𝑥, 𝐺(𝑈
𝑙
))} 𝐵(𝑥, 𝐺)

image, over all the image elements of G. So that reduces the random string from requirement of

284

n to requirement of . And you can think of this as derandomization because now you can do this𝑙

in . So that is the new algorithm A. So, now, suppose the theorem is wrong then, for all except2𝑙

finitely many, what you will get is that .𝑃𝑟
𝑥ϵ𝑈

𝑛

[𝐴(𝑥) = 𝐿(𝑥)] < 1 − 1/𝑛

So, this algorithm A that we have defined, suppose, this does not satisfy the theorem statement,

so which means that only finitely many n’s, this inequality holds. And for the rest, infinite minus

finite, for those n’s, what is happening is that, A and L they are values on x they match with a

very low probability. This is the negation of the theorem statement. So, for all except finitely

many n’s, that is the negation. So, what will this give you?𝑃𝑟
𝑥ϵ𝑈

𝑛

[𝐴(𝑥) = 𝐿(𝑥)] < 1 − 1/𝑛

(Refer Slide Time: 17:42)

So, this implies that . So, that𝑃𝑟
𝑥ϵ𝑈

𝑛

[𝑚𝑎𝑗{𝐵, (𝑥, 𝐺(𝑈
𝑙
))} ≠ 𝑚𝑎𝑗{𝐵(𝑥, 𝑈

𝑛
)}] 𝑚𝑎𝑗{𝐵, (𝑥, 𝐺(𝑈

𝑙
))}

is, A on x and the other thing this is really L of x whether x is in L or not that is𝑚𝑎𝑗{𝐵(𝑥, 𝑈
𝑛
)}

really this majority when you look at n bit random strings being used by B then the majority

answer is of course, correct by assumption because L is in BPP.

So, So, you can see that B is kind of𝑃𝑟
𝑥ϵ𝑈

𝑛

[𝑚𝑎𝑗{𝐵, (𝑥, 𝐺(𝑈
𝑙
))} ≠ 𝑚𝑎𝑗{𝐵(𝑥, 𝑈

𝑛
)}] > 1/𝑛

discriminator, it is able to distinguish between the image of G and the uniform distribution. So,

285

you can already feel that, this should lead to some kind of a contradiction to prg definition or

NW definition. So, we can fix to be these strings, one of these strings where B is𝑥 = 𝑠
𝑛
ϵ{0, 1}𝑛

a distinguisher or discriminator, such that the circuit family n large enough}{𝐷
𝑛
: = 𝐵(𝑠

𝑛
, .)|

And the second argument we keep free, this can be G image or this can be . So, this circuit, so𝑈
𝑛

this can distinguish) from very well, are these algorithms and hence circuits, you can𝐺(𝑈
𝑙

𝑈
𝑛

𝐷
𝑛

also see them as circuits, they are able to distinguish the image of G from the uniform

distribution. In fact, is constructible by a randomized poly time algorithm that is because is𝐷
𝑛

 𝐷
𝑛

essentially B which was a given algorithm, explicit algorithm.

You only have to fix string but you can see above that, this string you can just randomly pick𝑠
𝑛

because the probability of being a distinguisher is pretty high. It is more than 1 / n. So, you can

easily pick it. So, is a easy circuit also explicitly constructible. So, next question is what can 𝐷
𝑛

you do with this distinguisher? So, for this you go back to the NW map properties we saw last

time.

So, recall the properties of So, deduce that, there exists a randomized poly time𝑁𝑊
𝐼
𝑝𝑒𝑟 = 𝐺

algorithm T that can learn permanent. So, this is essentially the idea of bit predictor that we saw,

while analyzing the NW map. Any algorithm like, in this case, any circuit family that is able 𝐷
𝑛

to distinguish NW from the uniform distribution will actually give a bit predictor and the bit

predictor in this case would mean that it will give you permanent computation.

So, this algorithm we are calling T, this you get from the bit prediction basically. So, you have

learnt permanent and which means that, given oracle access to permanent, T runs let us say

permanent on N by N matrix, N by N matrix, so, T runs in polynomial in that much time and

produces a circuit.

(Refer Slide Time: 24:55)

286

Size circuit computing permanent: So this learner for the permanent is there, but it requires

oracle access to permanent. It basically requires it to compute permanent on smaller instances.

So, how will you get the oracle or how do you eliminate the oracle? You eliminate it by using the

identity that permanent satisfies. So, Eliminate the oracle access by using the self reducibility of

:𝑝𝑒𝑟
𝑁

𝑝𝑒𝑟
𝑁

(𝑚) =
𝑖ϵ[𝑁]
∑ 𝑀

1𝑖
. 𝑝𝑒𝑟

𝑁−1
(𝑚𝑖𝑛𝑜𝑟

1𝑖
(𝑀))

So that is how it does not matter whether you have the oracle or not because once you have this

algorithm T that reduces permanent to smaller permanent, it will be enough. So, basically you

can build now, T can build using these circuits for permanent N - 1, T can build a circuit for

permanent N and the size bound will be small because T is after all a randomized polynomial

time algorithm.

So, the size bound cannot be bigger than the time complexity, so, T builds 𝑝𝑒𝑟
1
, 𝑝𝑒𝑟

2
,...., 𝑝𝑒𝑟

𝑁

recursively, giving “small” circuits because of its time complexity that we know. So, this is how

you will learn permanent, this actually goes into the depths of this NW map and the bit

prediction that we learnt in the last class. So, using this distinguisher , you get algorithm T.𝐷
𝑛

287

Using T you get circuits for permanent and circuits for permanent would give you, in fact, these

are actually algorithms to compute permanent, so, you get that has randomized polynomial𝑝𝑝𝑒𝑟

time algorithm. Any problem that you can solve using permanent, you can also solve using T in

randomized polynomial time which means that, which is a contradiction.𝑝𝑝𝑒𝑟 ⊆ 𝐵𝑃𝑃

Why is it a contradiction? Well because in the very beginning you had assumed that P raised to

permanent is not in BPP. That was the hypothesis we started with. So that contradiction happens.

So, this contradiction shows that our assumption that B can discriminate was wrong. B cannot

discriminate G from uniform distribution and which means that, A is the correct algorithm. So,

Ax is mostly correct, so, this finishes the proof.

Again, the proof may look tricky but it is really just using the NW map and the way a

distinguisher can be used to predict bits for NW map which in this case meant that, you are

solving permanents that was the contradiction. So, if BPP which we all believe then, any≠ 𝑥

randomized polynomial time algorithm can be derandomized in sub exponential time with this

infinitely often solution in the average case.

And we can also add infinitely often here, in case where it is infinitely often n, for each such n

average case, derandomization and sub exponential time. So that is one application it is very non

trivial. Second thing we will do, second application, is the theorem that we could not prove

before. Now, let us move to the earlier unproved theorem.

(Refer Slide Time: 31:57)

Theorem(Impagliazzo, Kabanets and Wigderson 2001) if .𝑁𝐸𝑋𝑃 ⊆ 𝑝/𝑝𝑜𝑙𝑦 ⇒ 𝑁𝐸𝑋𝑃 = 𝐸𝑋𝑃

So, this is a theorem statement where there is no mention of randomization or prg’s. But believe

it or not, we will prove it using prg’s all these advanced methods that we have invented, whose

statement has no prg.

288

So, the proof here is, again it will be by contradiction. So, let us assume

So, there is some opportunity here for using this Nisan Wigderson map𝐸𝑋𝑃⊊𝑁𝐸𝑋𝑃 ⊆ 𝑝/𝑝𝑜𝑙𝑦

and bit predictor and derandomization connection because, you know that there is a problem in

EXP that is not in p / poly.

So, it is worst case hard. So, the idea is, there exists a problem in NEXP which is not in EXP it

will actually be already because of NEXP different form EXP. So, since we are assuming NEXP

different from EXP there is a problem L in NEXP which is not an EXP, so, it is harder than

exponential time which can be used. Actually this NEXP, since NEXP is in p / poly, it also

means that, EXP p / poly.⊆

So, there is no circuit hardness, neither for NEXP nor for EXP, but since we are assuming NEXP

different from EXP, there is hardness of a NEXP problem L with respect to exponential time

computation and we will use that, so which can be used to get a hard function. Now, by hardness

versus prg connection, we get a poly stretch, the containment of EXP MA.⊆

Remember that EXP when you assume NEXP in p / poly, like we recalled before, you

immediately get that EXP = MA and since EXP and MA are equal, MA has some, MA obviously

is this Merlin Arthur protocol. So, Arthur has random bits, so that derandomizes Arthur in this

result, in this MA protocol for EXP. So, Arthur will be made, more or less it will be, I mean, the

random bits which Arthur was using in this protocol, MA protocol, those bits will be eliminated

that is the goal.

And then it will be like EXP is in NP that kind of a result we want to reach and then ultimately,

finally contradict the time hierarchy. You finally will contradict the, let me not say which

hierarchy will contradict some hierarchy that is a very rough goal. So, use L which is not an EXP

to derandomize the Merlin Arthur protocols for EXP. So, let us see this in action now.

.𝑃𝑖𝑐𝑘 𝐿ϵ𝑁𝐸𝑋𝑃\𝐸𝑋𝑃. ∃𝑐 > 0 & 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑅(𝑥, 𝑦) 𝑡𝑒𝑠𝑡𝑎𝑏𝑙𝑒 𝑖𝑛 𝑒𝑥𝑝(|𝑥|10𝑐) − 𝑡𝑖𝑚𝑒 𝑠. 𝑡 𝑥ϵ𝐿 𝑖𝑓𝑓

So, we are assuming it to be and the verifier R will also be∃𝑦ϵ{0, 1}𝑒𝑥𝑝(|𝑥|𝑐), [𝑅(𝑥, 𝑦) = 1] 2𝑥𝑐

exponential time which we are assuming to be c time.2𝑥10𝑐

289

This is just the setting or the notation. Now, the question is, this very long string y, what can you

say about its circuit complexity? Is this a hard string? Is there a compact representation for y?

(Refer Slide Time: 40:07)

So, what is the complexity of the certificate y? Now, this circuit complexity cannot be very small

because if it was small then we could actually guess it faster and then that would put L in EXP

that cannot happen. So, this suggests strongly that y has a large circuit complexity it is actually

encoding a hard function. So, view y as a truth table. So, think of y this exponentially long string

as a truth table of some function and look at the circuit complexity of that Boolean function.

So, for parameter D>0, let us define MD be the following TM: on input . So, essentially𝑥ϵ{0, 1}𝑛

we are asking the question, whether this MD will be solving the question, whether there is a small

circuit whose truth table is y. So that is what this MD will be checking. So, 1)enumerate circuits

of size n100D with nc bit input, why nc ? Because length of y is , so, we want to look at y as a2𝑛𝑐

true table of nc bit input function and it is a Boolean circuited output, so, it is only 1 bit.

So, 2)for each such circuits c, let tt(c) be the true table, be the bit. What is a truth table? So,2𝑛𝑐

truth table is just evaluation of c on every possible input. There are 2 possible inputs. So, look2𝑛𝑐

290

at this, these evaluations as a single string that is your tt(c). So,3) i a c with R (x, tt(c)) = 1𝑓 ∃

then OUTPUT YES. So, if there is essentially what this Turing machine M D is doing there?

It is just looking at all circuits of some size n100D , poly size circuits and trying to see whether the

truth table of such a circuit could certify x. If it does it will say yes, otherwise it will say no.4 So,

this is the Turing machine to test, to see basically it is searching y. But it is searching not all

these y’s, y is a very long string, so that space will be doubly exponential instead of searching for

all y’s, it is searching y which are truth tables, special y’s as truth tables.

If it finds it says yes otherwise no. What is the time complexity of this algorithm or this Turing

machine? So, M D runs in time exp(n101D +n10C)This is the time complexity of the algorithm M D

(Refer Slide Time: 46:46)

So, since L EXP, M D cannot solve L, for any constant D, M D will not be able to solve L which∉

means that, M D will not be able to find y that is unable to find y. So,

which means that,∀D an infinite sequence of inputs, let me call it, 𝒳D :={Si|i} on which∃

M D (Si)= 0. But, input was x and what it was searching is actually a certificate. So, this is

actually Si L Basically a certificate y exists for this Si but it is not of this small circuit, truthϵ

table type is of a different type.

291

Its circuit complexity as a truth table is, the function is actually very complicated. It cannot be

written as a circuit of size n100D. So, remember this, there is an infinite sequence of inputs that are

fooling M D. So, certificate y for which R (x,y)= 1 is a truth table of a hard function. That∀𝑥ϵ𝒳
𝐷

cannot be computed that is not in size ,n100D.

So, it is a function certificate for these x’s, is a true table of a function that requires circuit size

more than n100D this is clear. So, by this worst case hardness based prg, remember that worst case

implies average case, this we will prove in the next chapter and from that already we can invoke

that theorem and from that what you will get is, these hard functions which y encode, these hard

functions can give you a super poly stretch prg, we use y to get an prg which we call G D. 𝑙𝐷

So, this hardness actually is given us G D and how did this hardness come about? Because we

assumed NEXP different from EXP and then we pick the problem, L in NEXP and based on that

we have a super poly stretch, so, remember this. This much we have from the hardness to prg

connection, what next? How do we get a contradiction?

(Refer Slide Time: 52:07)

So, recall that EXP p / poly implies that EXP has MA protocol, so, thus EXP, Merlin⊆ ∀ 𝐿'ϵ

proves that a string by sending a proof and this short proof is verified by Arthur. Arthur𝑥'ϵ𝐿'

292

verifies it by a randomized algorithm in n D steps. So, . So, every problem in x,(𝑛: = |𝑥'|) 𝐿'

Merlin will send a proof basically to show, to actually prove that is in , is a s string.𝑥' 𝐿' 𝑥'

Merlin will send a proof to Arthur and then Arthur is a randomized verifier, so, it will run an

algorithm, let us say, time complexity is nD, n is the length of the input, supposedly, s string .𝑥'

So, idea here is Arthur could use this prg G D, so, Arthur can use G D to remove the random bits

that he needs. So, let , so, Arthur guesses y , use y𝑥''ϵ𝒳
𝐷

, |𝑥''| = 𝑛 ϵ{0, 1}𝑒𝑥𝑝(𝑛𝑐): 𝑅(𝑥'', 𝑦) = 1

to get GD So, basically what is happening is, Arthur can use a hard input and then it is known𝒳
𝐷

that the certificate will be truth table of a hard function, so that y Arthur can guess and once

guessed it is a truth table, so, it is a function and using NW map construction G D is the prg. So

now, for Arthur G D reduces the random bits from nD to n. So, now fewer random bits are needed

because thanks to this prg. So, what can you say about Arthur, as a verifier, what are the

parameters? What is the time complexity random bit? We have also introduced non deterministic

bits in Arthur. So, let us now collect all that information.

(Refer Slide Time: 57:26)

So, Arthur needs poly (nD)- time.Why exponential in n10c time? well that is again to2𝑛10𝑐

compute R. And Arthur was already his complexity was into the D times, so, we keep that. So,

Arthur is this much time algorithm but it needs random and nondeterministic bits. So, random

293

bits T needs n many and has to be guessed that is another n bits. That is the advice needed, n𝑥''

advice bits that is .𝑥''

And there is a guess to be made which is y, bit guess which is for y. So, these are the2𝑛𝑐

parameters. Advice means that, somehow this will be needed. That is n bits, random bits are n𝑥''

which then can be stretched by G D, time is and the nondeterministic bits are , this is the2𝑛10𝑐

2𝑛𝑐

parameter and we will finish the proof next time.

294

