
Randomized Methods in Complexity
Prof. Nitin Saxena

Department of Computer Science and Engineering
Indian Institute of Technology - Kanpur

Lecture - 19
Hardness to NW- Generator to PRG

(Refer Slide Time: 00:15)

So, in the previous class we started this theorem. It is a very famous theorem in computer

science due to Nisan and Wigderson. It shows that if there is an explicit function f which is

average-case hard then you can use that to stretch a seed and get a pseudorandom string. So,

basically, you can use average-case hardness to get a prg. So, S(n) hardness will give you

S’(l) prg. So, this will prove in many steps it will be a long proof first.

So, the idea of this is that use the average-case have function f on our design. Design means

that you take a seed, seed string is z and on substrings of z you evaluate f and these bits

become your output this is the stretched seed. So, first we have to show that this design exists

that was lemma 1 which we have shown by a greedy analysis. Second thing we have to show

is that if this string based on design I and f if this string is not pseudorandom then f will be

average-case easy.

Basically the idea there is that we will construct a bit predictor so that is lemma 2. Here we

want to show that using the design I and f this Nisan Wigderson (I, f) image on Ul. This is

pseudorandom and the idea here is that if it is not then there will be a distinguisher circuit C

which we can use to predict bits.

266

(Refer Slide Time: 02:20)

And hence f will become easy which is a contradiction. So that is the idea we want to

construct a bit predictor circuit C’ and that will contradict the average case hardness of f.

(Refer Slide Time: 02:32)

So, how do you construct C’ from C is the next question. So, let S be the average-case

hardness of f. And suppose this circuit see is the distinguisher it is small size S/10. And it is

able to distinguish between this Nisan Wigderson (I, f) on Ul distribution from the C of Um

distribution from NW distribution on Ul to Um that is what; remember stretch is from l to m

that is the stretch following the design.

So, this difference in the probability is more than 0.1 let us assume that without loss of

generality, we can assume that it is the difference is positive. So, the probability difference is

at least 0.1 and let us now devise a bit predictor. So, the way we will create the bit predictor is

267

we will try to first locate the place where the bit prediction can happen. So, NW Ul has m bits

it is an m bit string we first have to identify the location where the prediction can happen.

Identify the bit which can be predicted so, let us first do that so define distributions D0 to Dm

such that for all i this distribution Di will basically use only the prefix of NW distribution.

Instead of using the whole output of NW you just use the first i bits and the remaining part

you choose randomly that is the idea. So, Di is first choose x from the distribution Ul so {0,1}l

and zi + 1 to zm R bits compute y that is the NW (I,f) string.

So, this we use the design I and the average case have function f it will give you m bits only

look at the first i bits that is the new stretched string instead of y1 to yn you just output y1 to yi

and the suffixes randomly chosen m - i bits zi - 1 to zm. So, this distribution will call Di and

now you can look at the whole spread. So, D0 to Dm these distributions D0 is all the bits will

be random D1 is first is y1 the remaining bits are purely random and Dm will be all the bits are

y1 to ym. That is the whole spread of these distributions Di that we have defined this is called

hybrid distribution.

(Refer Slide Time: 07:34)

So, you can observe that D0 is the uniform distribution. And as I said Dm will be your Nisan

Wigderson NW. So, let us look at the way C behaves on these distributions so the probability

of C on Di being 1 remember C is this distinguisher circuit that we have assumed. So,

probability of it on Di is pi and what do you know is that pm - p0 is greater than equal to 0.1

Because pm is a Nisan Wigderson corresponds to NW distribution p0 corresponds to the Um

distribution.

268

So, the difference of C on these 2 probability differences is large; it is 0.1. So, from that you

can deduce that there is an i0 such that is 0.1 by m this you get by averaging𝑝
𝑖

𝑜

− 𝑝
𝑖

0
−1

because for all i0 these differences are small then the difference between pm and p0 will also

be smaller than 0.1 that cannot happen. So, somewhere it has to be larger than this average

0.1 by m. So that now kind of gives me the location i0.

This is the bit where there seems to be some probability difference which is large. So, I think

that this is the location this is the bit that is predictable. So, how do you predict it? So, you

predicted by basically evaluating C if you get 1 then maybe you put some value for the bit

otherwise you put the opposite. So, we will now work this out so we intend to use this

advantage to predict the i0-th bit of NW (I, f) and Ul given the preceding ones.

So, if you are given everything till i0 - 1 then the i0
th 1 we will try to predict using this

probability difference and obviously using the circuit C that is given to us. So, let us define

that predictor so on input y1 to pick to random bits. Now you have m bits prefixes𝑦
𝑖

0
−1

𝑧
𝑖

0

𝑧
𝑖

𝑚

y suffixes z and just see whether what C evaluates to on this. If it evaluates to 1 then you will

output . If it does not output 1 then you will negate that is the idea of prediction.𝑧
𝑖

0

𝑧
𝑖

0

Essentially C’ is just guessing the i0
th bit by randomly picking it and evaluating C. So, if C𝑧

𝑖
0

on these y is and z suffix evaluates to 1. Why are we outputting when C evaluates to 1?𝑧
𝑖

0

Well because you know that C evaluating to 1 is higher than there is this difference in the

probability is sufficiently bigger than . And was the probability of distribution𝑝
𝑖

0

𝑝
𝑖

0
−1

𝑝
𝑖

0

𝐷
𝑖

0

D i 0.

Remember in you are using the first i0 bits from the NW generator. If you use NW𝐷
𝑖

0

generator based prefix then there is a higher chance of C output 1. So, hence I mean

intuitively it makes sense to whenever C evaluates to 1 in this situation whenever you see

with this prefix C is evaluating to 1 then there is a better chance of being the correct𝑧
𝑖

0

answer.

269

So, we have to actually compute this probability but this is the insight behind the definition of

C’ otherwise you just negate . So, obviously the question is how well does C’ predict?𝑧
𝑖

0

𝑦
𝑖

0

what is the success probability? So, this will be kind of Biezen probability analysis so, let us

do that.

(Refer Slide Time: 14:53)

The probability of C’ given y1 to predicting where y refers to the NW output and z𝑦
𝑖

0
−1

𝑦
𝑖

0

refers to Um. This probability y’s are picked from the prefix of NW and z’s are picked from

the suffix of Um. That is what we mean by this notation so this is equal to let us write down 2

cases. First is being equal to which means that was the correct value. So, what is the𝑧
𝑖

0

𝑦
𝑖

0

𝑧
𝑖

0

probability of C’ being in that case.𝑦
𝑖

0

In that case basically C has to evaluate to 1 plus probability that is not . In this case C’𝑧
𝑖

0

𝑦
𝑖

0

will output only when C evaluates to 0 so, let us write that. This is equal to so is𝑦
𝑖

0

𝑧
𝑖

0

randomly chosen so this probability is half times the second probability is that is just the

probability of . Probability of C on being 1 that is what, it is plus another half𝐷
𝑖

0
−1

𝐷
𝑖

0
−1

times. Now this is probability of C not being 1.

270

Which will be 1 minus probability of C being 1 on complement and remaining is so𝑦
𝑖

0

𝑧
𝑖

0
+1

on till = 1. Let us further simplify this so first is so I will get half + . So, I will rewrite it𝑧
𝑖

𝑚

𝑝
𝑖

0

like this and I have to subtract this was not this is . This is how we define the𝑝
𝑖

0

𝑝
𝑖

0
−1

𝐷
𝑖

0

distribution so in Di we take this should be minus 1. And this is plus I will put the𝑧
𝑖+1

𝑝
𝑖

0
−1

half then I subtract half.

And what else do I have? I have minus half times this probability expression. What is this

probability expression? Let me in fact club these two together so I will get plus the

probability of being equal to 1. So, now what is this thing𝐶(𝑦
1
, ···, 𝑦

𝑖
0
−1

, 𝑦
𝑖

0

, 𝑧
𝑖

0
+1

, ···, 𝑧
𝑖

𝑚

)

inside the bracket? plus this probability of C with negated this is because is𝑝
𝑖

0

− 1 𝑦
𝑖

0

𝐷
𝑖

0

𝑧
𝑖

0

actually . We are using up to y0 prefix so that is by definition .𝑦
𝑖

0

𝐷
𝑖

0

If you look at this so this is the probability of C with y1 to and then z. What you see𝑦
𝑖

0
−1

, 𝑦
𝑖

0

is probability of C being 1 plus a similar expression the only difference is first has y0 the

second has complement. This probability sum will correspond to the distribution .𝑦
𝑖

0

𝑖
0

− 1

So, up to you are actually using the prefix and the remaining things you are taking𝑖
0

− 1

random.

In other words what you can write is this is equal to + half - half and here you will have𝑝
𝑖

0

times 2 because is essentially prefix up to and the i0
th is 1 with probability𝑝

𝑖
0
−1

𝑝
𝑖

0
−1

𝑖
0

− 1

half you choose 0 or 1. So that is what the some of the probability is the average of that so

which is why these 2. So, this gives you half + . And that is a big advantage𝑝
𝑖

0

− 𝑝
𝑖

0
−1

because you know that is a probability this probability difference is at least 0.1 by𝑝
𝑖

0

− 𝑝
𝑖

0
−1

m.

You get this much of advantage so C’ is actually better than just a random output it is actually

making a significant improvement over half. That is why we can say that C’ is a bit predictor.

271

This implies that C’ is a decent bit predictor. The only issue is C’ is using these random bits

to so we have to make it somehow go away we have to make it deterministic.𝑧
𝑖

0

𝑧
𝑖

𝑚

What you can do is? You can actually just fix these bits to suitably so that the𝑧
𝑖

0

𝑧
𝑖

𝑚

advantage is not lost. To make C’ deterministic fix to suitably and get circuit C’’.𝑧
𝑖

0

𝑧
𝑖

𝑚

(Refer Slide Time: 25:03)

So, C’’ will continue to have the advantage in prediction where y is coming from the Nisan

Wigderson stretch. Now there are no random bits be used because the remaining z is fixed to

a good choice and so there will always be some good choice of fixing z again by the

averaging argument. So, based on the averaging argument we have fixed z suitably so now

they are gone and we have that C’’just takes i0 - 1 prefix of NW image bit with a good

advantage the advantage is 0.1 by m.

Now what is the size of C’’? Size if C’’ is the same as the size of C why is that? Because it is

basically just using C it evaluates C and then either it will output or the complement. It is𝑧
𝑖

0

just an R so the size is at most twice that of size of C kind of if then else which is then less

than equal to S over 5 because C was size S by 10. Plugging the definition of NWI
f we get the

following that the probability of C’’.

What are these y’s? y’s are just evaluations of f on the substring of Z using the design and

using i0 - 1 evaluations you are or C’’ is predicting f on I0
th substring within advantage of 0.1

272

by m that is what C’’ is doing. Now the question is how do you deduce that f is easy from

this? This seems to be taking values of f and giving another value of f. Somehow we have to

remove f from the argument of C’’.

And the way we will do it is by fixing many of these Z. Let us fix Z other than i0 on the RHS.

Other than i0 that part of Z you should fix and then in the left hand side hopefully you will

remove the extra Z and you can then maybe say that f at is being evaluated on the left𝑍
𝑖

0

hand side that is the idea. Let us fix sub string such that the above probability is𝑍
[𝑙]/𝐼

0

retained.

This means that for , 1 to i0 - 1, has all places fixed except Ij intersection everything𝑗
𝑖

0
−1

𝑍
𝐼

𝑗

other than I0 is fixed. So, Ij intersection I0 is what remains and what can you say about Ij

intersection I0. So, Ij intersection I0 we have to go back to the design we had a design that we

were using in NW definition. In the design we said that intersections are smaller than D or at

most D.

So that is what happens here so by the way this I have to correct this is not 0 this is at I0 so Ij

intersection I0 is small that is less than equal to d. This means that how many𝑓(𝑍
𝐼

𝑗

)

arguments are actually free at most d so, this is d variate. By just fixing in the left hand side

these all these to they will all become just d variate d is considered small. So, now𝑍
𝐼

1

𝑍
𝐼

0
−1

we will do a trick of also eliminating them so this f is a hard function, remember that we

started with an average case hard function.

In the left hand side our goal is to actually make this extra easy to evaluate. So that we𝑓(𝑍
𝐼

1

)

can claim that left hand side is easy right hand side is hard but still we are able to get an

equality now that will happen because f on this after the fixing has become only d variate.𝑍
𝐼

𝑗

Since it is only on d arguments you can evaluate it in circuit size 2d.

(Refer Slide Time: 33:30)

273

So, this means that to these functions since they are on few variables after the𝑓(𝑍
𝐼

1

) 𝑓(𝑍
𝐼

𝑖
0
−1

)

fixing they can be computed trivially by circuits of size 2d. 2d is the number of inputs that you

are giving to this f and the size of the circuit will be d times 2d basically there are these d

variables and then they take 22d to many values. You get this much sized Boolean circuit

which means that there exists circuit B of size.

Now let us look at the whole thing on which was on the left hand side C’’ prime-prime on the

arguments f on I1 and so on till f on this whole thing what is the circuit size of this. So,𝐼
𝑖

0
−1

this we will see as a circuit B and you can estimate the size as C’’ has size S by 5 then each

evaluation of f we have written trivially as d times 2d and i0 is at most m. So that is the size

estimate which is equal to S/5 plus what is m? m comes from the design.

If you go back to the design you will see that m is around 2d/10 that is the estimate and you can

see that this is all less than S this again will come from the value that S in lemma 2 we

assume that the average case hardness of f is more than 22d that is what figure we are

assumed. Because of that so clearly 2d is much more than this overhead that you are getting

of 2d times 2d/10.

And even if you add S/5 to that you will remain under S. Point being that B is a circuit of size

quite small. In that sense now you are getting that f is not hard at all and what is the how

good is B computing f so the probability of B on being equal to f at on the inputs .𝑍
𝐼

𝑖
0

𝑍
𝐼

𝑖
0

𝑍
𝐼

𝑖
0

274

How big this is set I? This is an n sized subset. So, on this domain of Un B evaluate safe with

advantage 0.1 by m which is more than half + 1 by S.

Because S is greater than m, m is around 2d/10. S is more than 2d. The advantage is more than

1/S. It seems that f is being evaluated by B pretty well and that is a contradiction because we

had assumed that f is average case hard. So, B contradicts the assumption that average case

hardness of f is S because B is the circuit of size smaller than S and it is able to compute f on

more than half sufficiently away from half many inputs.

So, what does this give you in the end? Tis contradiction ultimately implies that what we had

assumed about NW’s output being not pseudorandom it actually S. So, we deduce that NWI
f

on Ul is (S/10, 0.1) pseudorandom. This finishes the proof of lemma 2. Lemma 1 showed that

there is a design easy to compute lemma 2 showed that using the design.

And the average case hard function you have a pseudorandom distribution given by NW map.

Now using these 2 lemmas it is actually quite easy to prove the main theorem of Nisan

Wigderson you just have to do some parameter chasing.

(Refer Slide Time: 40:46)

Let us do that so let f be in E which we call is to 2n time and average case hard let us see the

hardness at least a S(n) function. Define a stretch function S’(l) prg which it will stretch l bits

to m bits using the design basically this NW map so on input z {0, 1}l what you do is pick n

such that basically want n I would say something like square root l to have a design you need

l and d of certain type.

275

So, you want l to b slightly quadratic around quadratic of n so pick an n like that. Do not

worry about these parameters so take it to be this so l you can think of it as n2 it is

quadratically related. Now there is a design (l, n, d)-designed use that. So, compute and (l, n,

d)-design, you can take to be 2d/10. This (l, n, d)- design is just a set of or family of sets these

are 2d/10.

Their mutual intersections are smaller than at most d each of them is an n subset of 1 to l.

Remember that is the design you can compute it in time 2d. It is very explicit and using this

you can stretch Z so output this NW stretch this will stretch l to m and in how much time this

takes time 2l plus basically just we have already seen the design. That is it just that you have

to also look at what NW does NW is it is just evaluating f on n bits.

That you can do in 2n time and this you have to do m times so, overall this is still 2l. Let me

just mention that this is for computing f by the truth table you can comput in 2n time so you

are using that and 2l is for the design. So, n is obviously smaller than l and m is just

something like 2d so you still get 2l it is fast.

It is we can see it is explicit now since the average case hardness of f is at least S(n). And

S(n) by choice it is 210d. Then we can use lemma 2, lemma 2 said that average case hard

function and design you can use also you can note that the parameters I have chosen (l, n,

d)-design exists by lemma 1. So, you just wanted l to be more than 10 n2/d and that is

happening here l is more than 10 n2/d.

This is by lemma 2 the design is by lemma 1. Design exists and then NW is computed in this

much time and using average case hardness this assumption you get that NWI
f (Ul) is

(S(n)/10, 0.1)-pseudorandom. We have a pseudorandom distribution and we have a prg which

is this NW map it is stretching l to m. How much is the stretch? The stretch is 2d/10 which is

againa is S(n)1/100.

For average case hardness S(n) the stretch that your prg is giving is S(n)0.01. So, stretch is not

S(n) but it is slightly smaller and this function we can call S’. Remember l is like quadratic in

n. So, l is being stretched to S’(l) which is actually S(n)0.01. S(n) has to be sufficiently large

for this to give something interesting.

276

(Refer Slide Time: 50:00)

So, this implies that G is an S’ l prg note that in the definition of prg we had this S’(l)3 circuit.

You should observe that S’(l)3is smaller than S(n)/10 and since we have shown that NW

images S(n)/10 you do get that it is an S’(l) prg. That finishes the proof this stretch is

interesting only when S’(l) is S(n)0.01 and l is around n2 so you want this to be larger than n

square.

You want S(n) to be sufficiently bigger than n200. So, basically the point is that average case

hardness should be something like n200 or more for this theorem to be interesting because in

that case only the stretch is actually bigger than l that it will make sense only in that case and

surely thus super poly hardness of f gives a good stretch. We have proved this very important

theorem that average case hardness sufficiently high gives you a prg.

And it will be a good stretch if you are working with a super poly hard Boolean function. We

can say that hardness implies prg. Now is there a converse to this hardness in fact this

average case hardness implies explicit prg existence thus the explicit prg imply or this prg

implies hardness for an explicit function that also is true not a very stunning connection but

just to understand the definitions you can do as an exercise.

You can show that if you have an S(l) prg then there is a Boolean function in E such that the

wrose case hardness is cubic. You will not get a very stunning connection but it is kind of this

super cubic hardness of an explicit function is what you get this really follows from the

277

definition. Let G be an S(l) prg so n is S(l) and that is bigger than l. Now what do you think is

this function f(n) that is a candidate for hardness it has to be related to G to the prg.

Why not just look at the image of G and those strings you call the S strings in the space and

the remaining strings you call now that defines a Boolean function f(n). Define f(n) on {0,1}n,

f(n) is 1 if and only if x is in the image of G. Now since G is a prg it is computable in E so

f(n) is also computable in E.

(Refer Slide Time: 56:53)

Boolean function computable in E let me call this f so let Cn be the smallest circuit computing

f(n) so what is the circuit size? What is the size of Cn? That is the question. So, the thing is

that what you can show is that immediately you get that Cn on the image of G it has to be 1

all the time and on the other hand what is Cn on Un? How frequently is it 1? Now recall that

the image of G has only 2l strings.

You can estimate this as 2l by 2n which is definitely smaller than half. So, Cn and Un is less

than half times many times 1 while Cn on the image of G is always 1. So, Cn is able to

distinguish the two distributions Cn distinguishes G(Ul) well from the uniform distribution Un

very well. So, which means that by the definition of prg that size of Cn has to be more than

the stretch cube and what is the stretch S(l) is m.

278

What we have shown is that the complexity of this Boolean function f is at least cubic that is

the lower bound. So, this is not highly interesting just follows from the definition that prg

implies some hardness but hardness connection to prg is much more impressive.

279

