
Randomized Methods in Complexity
Prof. Nitin Saxena

Department of Computer Science and Engineering
Indian Institute of Technology – Kanpur

Lecture – 18
Hardness Vs Randomness

(Refer Slide Time: 00:15)

So, in the last class we defined prg then hardness of 2 types average case, worst case hardness of

any Boolean function. This hardness, remember we will be in terms of circuit hardness. So, that

is harder than actually the concept of hardness is harder than about algorithms, this is about

Boolean circuits. Now our goal is and it will remain this goal for the remaining course to connect

circuit hardness with prg’s and we have already shown that once you have a prg you have some

kind of de randomization.

(Refer Slide Time: 01:02)

252

So, this hardness will be for circuit hardness and moreover to get practical prg we will need

actually explicit function which is hard. So, it will be circuit and will be explicit. So, remember

these 2 terms explicit means that your function is computable in a decent amount of time on

during machines there should be an algorithm. It should not be just an arbitrary Boolean function

but it should be somehow computable usually will say that it is computable in E 2 2n time.

(Refer Slide Time: 01:48)

Then we had defined the average case, worst case hardness and currently it is an open question to

find natural or explicit Boolean functions which are super polynomial hardness worst case,

average case everything is open. Although we know that most of the Boolean functions are hard,

253

we know that if you just pick some arbitrary Boolean function then on n inputs, it will require

circuits of the size 2n/2, but then it is not explicit.

So, can you think of examples explicit functions conjecture to be hard, so the conjectured f of

cryptographic significance are so there are 2 explicit functions you can think of one is the

problem of SAT, so what will be the circuit size required for SAT and remember that SAT is

solvable in 22n time. So, it is explicit enough, but is it hard enough. So, it is conjecture that

. It is believed to be exponentially hard in the worst case may not be in the𝐻
𝑤𝑟𝑠

(3𝑆𝐴𝑇) = 2Ω(𝑛)

average case, but worst case it is believed to be very hard. And second is the problem of integer

factoring.

(Refer Slide Time: 04:00)

So although it is a functional problem, you can make it a decision problem by saying that given a

number you want a prime factor of it or the smallest prime factor of it and you want some bit of

that prime factor, see the middle bit. So that way you can make it a decision better than that what

is n? n is the input size it remember? So for an n bit number, the magnitude is to 2 n and better

than that algorithms are known actually.

So it is not believe it is not exponentially hard, but at least super poly hard we believe in average

case. So, consider decision version, so later on in the course, we will show we later proved that

worst case hardness function implies an average case hard function. So, a priori it may not seem

254

possible, you may think that worst case hardness only means that the problem cannot be solved

on all the inputs whereas average case means that on average the problem is unsolvable.

That is that seems much stronger, but we will actually come up with a very clever technique

which can distribute this worst case hardness across inputs, thus making the function average

case hard. So, that will be the new tool we will study towards the end of the course. So, the tool

to do this is called local list decoding of linear error correcting codes, so not just decoding but

list decoding and on top of that local list decoding. So, they will achieve this in many steps that

is what are will be busy towards the end of the course.

So, for now, what we will do? Assuming average case hardness we will construct prg’s, we have

already seen that prg’s give you the randomization. Now, we will go one step back and show that

actually average case hardness also gives prg’s. So, in turn and then if when you combine it with

worst case hardness with this result to be proved towards the end of the course, you will get that

worst case hardness implies complete de randomization or some de randomization. So, this topic

is called hardness versus randomness.

For now, we relate average case hardness to de randomization which is to prg and then to de

randomization. So, what this result philosophy says that both hardness and randomness cannot

coexist in nature, if hardness is there, then randomness is not really there. And we always meet in

terms of efficient algorithms any randomized efficient algorithm can be converted into

deterministic, efficient algorithm and there are also connections between the other ways. So, if

there is a prg then there is also hardness. So, in that things these 2 are opposites this is why

hardness versus randomness.

(Refer Slide Time: 10:10)

255

So what is this mathematically? So let us see the theorem,(Nisan,Wigderson,1988): If

∃ 𝑓ϵ𝐸 𝑤𝑖𝑡ℎ 𝐻
𝑎𝑣𝑔

(𝑓) ≥ 𝑆(𝑛), 𝑡ℎ𝑒𝑛 ∃ 𝑆'(𝑙) − 𝑝𝑟𝑔 𝑤ℎ𝑒𝑟𝑒 𝑆'(𝑙) = 𝑆(𝑛)0.01, 𝑓𝑜𝑟 100𝑛2

𝑙𝑜𝑔 𝑆(𝑛) < 𝑙 ≤ 100(𝑛+1)2

𝑙𝑜𝑔 𝑆(𝑛+1)

so this is the precise definition of a . So, the stretch that we are looking at basically, the idea is𝑆' 𝑙

that we will use this f whose input was n bits to stretch bits and will be around n square and𝑙 𝑙

this will be stretched to which is actually . So, this will be interesting already if𝑙 𝑆'(𝑙) 𝑆(𝑛)0.01

was sufficiently large polynomial in n. was n1000 then you can see that this will be an𝑆(𝑛) 𝑆(𝑛)

interesting stretch, so this is good for larger .𝑆(𝑛)

So how do you prove such a result? If somebody gives you a hard function, how do you stretch 𝑙

bits? So, that in the image the distribution that you are getting looks random to small circuits,

how do you do that? So, remember the definition of prg in fact, remember the definition of

pseudo random distributions. So, it should look random to small circuits. So the way you can use

f is that the image of f will look will not be computable by small circuits because of the average

case hardness.

So use that fact so that f output looks random, quote unquote random to small circuits, so use that

fact.

Proof :

256

since f is hard it is values look random to small circuits, So stretch a seed to the𝑧ϵ{0, 1}𝑙

, by choosing n sized subsets and consider{0, 1}𝑆'(𝑙) 𝐼
1
.... 𝐼

𝑚
⊆ [𝑙] 𝑓(𝑧

𝐼
1

). 𝑓(𝑧
𝐼

2

)....... 𝑓(𝑧
𝐼

𝑚

)

Now, this is how you can stretch bits to m bits by evaluating f many times on many subsets, or𝑙

many substrings of z. Note that this m bit string has a good chance of looking random to small

circuits because the bits seem hard to predict from what comes before. So hard to guess the next

bit by small circuits and because of this belief that the bits are unpredictable in this string by

looking at the prefix we could say that or we could expect the string to be a pseudo random

distribution.

And we believe that the next bit is unpredictable because, naively it would seem that to predict

the next bit, you have to f inverse and you have to work with f inverse and then you have to

apply f. So, all those things, we do not expect small circuits to be able to do that is the rough

idea. And now we will build on this mathematically. So take almost disjoint. So, if you𝐼
1
.... 𝐼

𝑚

take them disjoint there it becomes even better because to predict the next bit you actually have

to evaluate f, the prior information the prefix does not give you anything does not tell you

anything what the next bit will be.

So you actually have to evaluate f but evaluation of f is considered hard for small circuits so that

is the plan. So, let us formalize this construction in 2 steps so in the first step, what I will do is

define this ambit string.

(Refer Slide Time: 19:27)

257

Definition: let I : be a family of n -size subsets of , let be a function{𝐼
1
.... 𝐼

𝑚
} [𝑙] 𝑓: {0, 1}𝑛 → {0, 1}

Boolean function so, from set family and this function we can define that string and it is called (

I, f) Nisan Wigdersan's generator, so Nisan Wigdersan's are the authors of that theorem.The (I,F)

NW generator is the function , bits will be 𝑁𝑊
𝑖
𝑓: {0, 1}𝑙 → {0, 1}𝑚; 𝑧 → 𝑓(𝑧

𝐼
1

) ◦....... ◦ 𝑓(𝑧
𝐼

𝑚

) 𝑙

stretched to m bits think of m is much bigger than . Where is the restriction of z to the 𝑙 𝑧
𝐼

coordinates I. Previously also when I said , I meant these positions of set. So, this NW𝑧
𝐼

1

generator is formalized and we have to study and then we have to prove under what conditions is

this a pseudo random distribution.

So that so we will show that actually when f is hard and these are disjoint almost disjoint 𝐼
1
.... 𝐼

𝑚

then this is a pseudo random string, but before that let me define disjointness what do we mean

by that

Defn :

𝐿𝑒𝑡 𝑙 > 𝑛 > 𝑑. 𝐴 𝑓𝑎𝑚𝑖𝑙𝑦 𝐼 = {𝐼
1
.... 𝐼

𝑚
} 𝑜𝑓 𝑛 − 𝑠𝑖𝑧𝑒𝑑 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑜𝑓 [𝑙]𝑖𝑠 𝑎𝑛 (𝑙, 𝑛, 𝑑) − 𝑑𝑒𝑠𝑖𝑔𝑛 𝑖𝑓

So, we have defined this notion of design which is really |𝐼
𝑗

∩ 𝐼
𝑘
| ≤ 𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ≠ 𝑘ϵ[𝑚]

saying that } are mutually almost disjoint we will take d to be smaller, much smaller than{𝐼
1
.... 𝐼

𝑚

.𝑙

258

Now, this disambiguation generator the string will show that this is you do not random if f is

hard, average case hard and the family is a design. So, later we show that for hard f and I being a

design the (I , f)-Nisan Wigdersan's generator is pseudo random, so hardness and being a design

suffices that is how we characterize the randomness or pseudo randomness of this Nisan

Wigdersan's generator.

But before that we have to show some things first we have to show does the design exist, we do

not know whether average is hot functions exist, but we can at least prove that our design exists.

(Refer Slide Time: 25:31)

So let us first do that and not only does this design exist, we can actually construct it efficiently.

So,

Lemma 1:

an algorithm A that on input where outputs an design I having∃ (𝑙, 𝑛, 𝑑) 𝑙 > 10𝑛2/𝑑 , (𝑙, 𝑛, 𝑑)

𝑚 ≥ 2𝑑/10 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑖𝑛 𝑡𝑖𝑚𝑒 2𝑂(𝑙)

So, there are subsets of to l and essentially that is the time to construct this design, it is kind2𝑙 𝑙

of enumerating going over all the subsets, but it is not trivial. In fact, you do not even see why it

exists. Because you want so many subsets with mutual interest section smaller than d, so why

259

such a thing should exists and the size is also only n of every subset. So let us give this algorithm

what is the idea of this? So idea is a greedy approach.

Proof: Idea:

Find a subset I1 I mean just pick any subset I1 and then pick it I2 so that it is sufficiently disjoint

from I1 and thenI3 pick it so that it is sufficiently disjoint from the previous 2 and so on, so

greedily build, the family I .So initialize I .← ϕ

1)Say I=:{ } with m<2d/10𝐼
1
.... 𝐼

𝑚

So, suppose at some point in the algorithm you have already found m subsets, they are n size,

their mutual intersections are less than equal to d. But the subsets are not enough, they are

smaller than 2d/10 n numbers. So, you have to pick one more, so how do you pick one more? Over

all the remaining subsets. So, find ,𝐼ϵ [𝑙]
𝑛 ∀𝑗ϵ[𝑚] |𝐼 ∩ 𝐼

𝑗
| ≤ 𝑑

Now, this I may not exist, we will analyse that situation later, but suppose you find it then you

just include it in the family

2)I I⊔ & go to 1. So, simple step by step or a greedy approach the only issue is that in step 1← {𝐼}

at some point it may get stuck. So, you have to show that it actually goes all the way to 2d/10

iterations, time that it takes is just a simple computation you are going over all the subsets in 1

iteration, so that is 2 and subsets are of size n.𝑙

So, this much time in a single iteration, and the number of iterations that you are doing is 2d/10.

That is the number of iterations and this m that you have collected you will be looking at the

intersection of I with them. So, that is another 2 ways to do it in every step,

𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 : ≤ (2𝑙. 𝑛) × 2𝑑/10 × 2𝑑/10 = 2𝑂(𝑙)

so that is in all so time is within bounds as claimed, can it get stuck at m < 2d/10. So, we will2𝑂(𝑙)

show that does not happen it is a surprising fact that step 1 will always find I.

So, we have to show that in this algorithm when in step 1 we are looking for I that is almost

disjoint from each of these I j. In particular, the intersection should be less than equal to d this

always exists as long as m is small, smaller than 2d/10

(Refer Slide Time: 34:09)

260

So, we show it will not get stuck and this we show the existence of I, so in the in step 1 by the

probabilistic method. So what this means we will now show that in step 1, when you are

searching for it, if you do the searching random way that will surprise which in particular will

mean that if you do a group forces you will find an I. Because probabilistically it exists that is the

reason probabilistic analysis will be easy to do.

So, instead of showing it by some other means, we will prefer the probabilistic method, you will

see that it is very easy to show. So, build I by picking each element in with probability = ,[𝑙] 2𝑛/𝑙

there are elements if you did this uniformly, you would have given probability . But that will𝑙 1/𝑙

in the expectation it will not give you too many elements since you want many elements, you

want I you give each element more probability to probability.2𝑛/𝑙

And you pick which will ultimately mean that expectation is you will be picking many elements

that is the probabilistic process. Now, let us analyze this process, so what you can write is that

. So, in expectation, you are picking 2n elements, this𝐸[#𝐼] =
𝑥ϵ[𝑙]
∑ 1. 𝑃𝑟[𝑝𝑖𝑐𝑘 𝑥] =

𝑥
∑ 2𝑛

𝑙 = 2𝑛

is just by the definition of expectation. Moreover,

∀𝑗ϵ[𝑚], 𝐸[|𝐼 ∩ 𝐼
𝑗
|] =

𝑥ϵ𝐼
𝑗

∑ 1. 𝑃𝑟[𝑝𝑖𝑐𝑘 𝑥] = 𝑛 = 𝑛 × 2𝑛/𝑙 = (2𝑛2/𝑙) < 𝑑/5

261

So, this process is doing good that is what you will learn. So, what remains to be done is we have

to compute the probability or estimate the probability for this size of I being n it is a probabilistic

process. So, there is a chance that the size of I is smaller than n, if it is bigger than n it is because

we can just drop elements more than n but if it is smaller than n, then it is not a good, it would

not work for us because we wanted I to p n size subset.

And similarly, what if the intersection of I with I j is more than d again, this process is a

probabilistic process. So it may give you I intersection I j more than d, so we have to estimate

those probabilities and that we will do by Chernoff’s Bound.

Chernoff’s Bound : so this is the mean, so this probability you expect to be𝑃𝑟[|𝑋 − µ| ≥ 𝑐. µ]

small.

But Chernoff’s Bound will give you very specific estimate it will say that

so,don’t worry too much about this main . But𝑃𝑟[|𝑋 − µ| ≥ 𝑐. µ] ≤ 2. 𝑒
−µ 𝑚𝑖𝑛(𝑐

2 , 𝑐2

4)
(𝑐

2 , 𝑐2

4)

think of this as , so what this is saying is that the deviation away from the mean by a𝑒−µ𝑐

multiple of c is exponentially falling, it is . So, this probability is exponentially small that is𝑒−µ𝑐

what Chernoff’s Bound says and you can also prove Chernoff’s Bound maybe we will give this

as an exercise.

This is an important and very useful estimate in probability and now we will use it so, now we

will relate, so, remember mean and expectation are the same. So, we have computed the

expectation and now we will compute the deviation.

(Refer Slide Time: 42:45)

262

So now, by Chernoff’s Bound : .𝑃𝑟
𝐼
[|𝐼| < 𝑛] ≤ 𝑃𝑟[||𝐼| − 2𝑛| > 1

2 . 2𝑛]

< 2. 𝑒−2𝑛.1/16 = 2𝑒−𝑛/8

, so point being that this is exponentially small in terms of n this is a very small probability that

size of I will be smaller than n it will be n or more which is good enough for us we wanted n

subset. Similarly, ∀𝑗, 𝑃𝑟
𝐼
[|𝐼 ∩ 𝐼

𝑗
| > 𝑑] ≤

So, you get these 2 probabilities as you𝑃𝑟
𝐼
[||𝐼 ∩ 𝐼

𝑗
| − 𝑑/5| > 4. 𝑑/5] < 2. 𝑒

− 𝑑
5 . 4

2 = 2. 𝑒−2𝑑/5

can see both are exponentially small. So, now what you get is the

for large𝑃𝑟
𝐼
[|𝐼| < 𝑛 𝑂𝑅 ∃𝑗 |𝐼 ∩ 𝐼

𝑗
| > 𝑑] < 2𝑒−𝑛/8 + 𝑚 × 2𝑒−2𝑑/5 < 2𝑒−𝑛/8 + 2𝑒−𝑑/2 < 1

enough and indeed this sum is actually very small much smaller than 1.

|⇒ 𝑃𝑟
𝐼
[|𝐼| ≥ 𝑛 𝐴𝑁𝐷 ∀𝑗 |𝐼 ∩ 𝐼

𝑗
≤ 𝑑] > 0

which means that in step (1) I exists same applies that the algorithm constructs I. So, this

algorithm which is actually deterministic algorithm it will all the step 1 will keep finding I and

ultimately it will give you this family which is a design time.(𝑙, 𝑛, 𝑑) 2𝑙

So, once you know that design is not only there but also constructible this way what you can do

is use the hard function f so, we were here we had defined this Nisan Wigdersan's generator (I, f

)NW generator. So we will now use from the design and f this average case hard function𝐼
1
... 𝐼

𝑚

263

and we will study the string of m bits the stretch from to m will show that that is a pseudo𝑙

random distribution.

(Refer Slide Time: 50:05)

We use the design in(I, f)NW generator so, we will get this

Lemma 2(NW generator): If is an (l,n,d) design with with𝐼 |𝐼| = 2𝑑/10 =: 𝑚; 𝑓: {0, 1}𝑛

- pseudo random.𝐻
𝑎𝑣𝑔

(𝑓) > 2 2𝑑 𝑡ℎ𝑒𝑛 𝑁𝑊
𝐼
𝑓 (𝑈

𝑙
) 𝑖𝑠 (𝐻

𝑎𝑣𝑔
(𝑓)/10, 0. 1)

So, 2 circuits of size this parameter H the hardness of f /10 and we cube it so, the cube of this 2

circuits of that much size Boolean circuits they will not be able to distinguish this Nisan

Wigdersan's output with the uniform distribution better than the probability distribution will be

actually worse than 0.1. So, you can say in simple words that Nisan Wigdersan's output is pseudo

random or looks random to small circuits.

So, why is that? How do you show this to suppose not it is a proof by contradiction,

Proof : Idea:suppose there is a circuit of small size C that is able to distinguish from𝑁𝑊(𝑈
𝑙
)

Um.Then you will design a bit-predictor circuit will contradict𝐶' 𝑓𝑜𝑟 𝑓(𝑍
𝐼

𝑖

) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖ϵ[𝑚]. 𝐶'

the avg-case hardness of f. so, the overall sequence of arguments will be like this that if there is a

distinguisher for versus Um then that distinguisher will actually give you a bit predictor𝑁𝑊(𝑈
𝑙
)

264

and that bit predictor will have a small size and that will be in contradiction with the hardness of

f. So, let us start this we will finish it next time, but let us start some implementation of this idea.

(Refer Slide Time: 56:42)

So, let S = 𝐻
𝑎𝑣𝑔

(𝑓)

Suppose . So,∃ 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝐶 𝑜𝑓 𝑠𝑖𝑧𝑒 ≤ 𝑆/10 𝑠𝑡 𝑃𝑟[𝐶 (𝑁𝑊
𝐼
𝑓 (𝑈

𝑙
)) = 1] − 𝑃𝑟[𝐶(𝑈

𝑚
) = 1]

remember we will try to C is we are claiming that or we are assuming that c can distinguish

between these 2 distributions, stretch of and .𝑈
𝑙

𝑈
𝑚

So, suppose this probability difference is more than 0.1 at least 0.1, so this is that is) is𝑁𝑊(𝑈
𝑙

not pseudo random. Then there is a distinguisher circuit C and we can assume that the

difference is actually positive and at least 0.1 it is magnitude. So, you have to consider 2 cases it

is positive more than 0.1 or it is negative and less than -0.1. So,

let us assume this case We will now devise a𝑃𝑟 [𝐶(𝑁𝑊(𝑈
𝑙
)) = 1] − 𝑃𝑟[𝐶(𝑈

𝑚
) = 1] ≥ 0. 1

bit predictor as promised for . So, this we will finish in the next class.𝑁𝑊
𝐼
𝑓

265

