
Randomized Methods in Complexity
Prof. Nitin Saxena

Department of Computer Science and Engineering
Indian Institute of Technology - Kanpur

Lecture – 17
Pseudorandom Generators

(Refer Slide Time: 00:22)

Last time we finished the construction of explicit expanders and we started this new topic

called Pseudorandom Generators. We will shorten it to prg and this will be the most

important object in this course on randomized methods because this you can think of as the

way to generate random numbers efficiently. So, in practice, if you want to generate if you

want to simulate a coin toss you want it to be efficient, so you can think of prg’s in that

context.

So, the first thing is how do we mathematically, how do we formally define this object? What

do we want from it? So, what we want is that this s, epsilon, there will be 2 parameters, s will

be the resource which your prg can fool. So, in this case, it will be small-sized circuits of size

s. Epsilon will be an error, how much is it able to fool, ideally, you would want epsilon to be

0 because no circuit of small size s should be able to distinguish between this distribution R

and the uniform distribution Um.

So, ideally, epsilon should be 0, but then we have to tolerate some error because of practical

considerations because of efficiency. We will allow epsilon to be something smaller than half

239

a constant. You can think of epsilon as 0.1. First, we define the distribution. A distribution R

is called s, epsilon pseudorandom if any circuit of size s is unable to distinguish R from Um.

The probability of C being 1 on either of these distributions is very close, it is close by

epsilon it is epsilon close, so we can also write that. You can think of this notion of closeness,

but remember that it is with respect to a limited resource and that is the size s circuits. And so

what is a prg now? Once you have defined pseudorandom distribution, a prg is efficient you

can think of it as a circuit or an algorithm, it is an algorithm that can produce this distribution

R.

(Refer Slide Time: 03:12)

Let S be a function at 2n time computable function, G it is multivalued. It is not a Boolean

function, it is actually a function is an S-prg. If for all l, G stretches so G stretches l bits to

S(l). So think of S as the stretch function for this prg G. It will stretch l bits to S(l) bits and if

you look at , this is pseudorandom. A prg is basically some function that is easy to𝐺 𝑈
𝑙()

compute, very easy, it is very relaxed, it is 2n.

This is actually smaller than exponential, the class E and not the class EXP. But with that you

have enough time to compute this. So, G is easy to compute and it will stretch a seed. So, l

seed will stretch to S(l) and then the output of G if you look at the whole space it will look

more or less random two circuits of size s3. Remember that the output you are getting is S(l)

bits and essentially in that match of size circuits will be fooled.

240

So, circuits of size S(l) cube will be fooled and then the error we are allowing is 0.1. It is not

0 exactly, but it is 0.1. These constants 3 and 0.1 are kind of arbitrary. We have picked them

so that all the subsequent theorems work, but you can actually change them also, it is not

something very specific. What is the consequence of this definition and then this object? First

question you should ask is whether this object actually exists? That is an open question

currently.

We do not know whether these things exist. And the problem is this time, 2n time

computability, this kind of makes it explicit. Explicitness is the issue. If this condition of 2n

time computability was not there, then we could show that actually random functions G will

work, they will be able to fool, stretch and fool circuits but then they will most likely be

uncomputable. I mean at least uncomputable in 2n time.

This 2n time is the important condition. And that is why we do not know whether they

actually exist. If they exist, then we can actually derandomize complexity classes. What can

you derandomize? Remember that stretch is l to S(l). Basically, any algorithm that requires

that many bits you can provide that randomized algorithm with this S-prg. So, that will

reduce the random bits from S(l) demand S(l) to seed l.

If l is very small then your algorithm will save the random bits. So, S-prg saves random bits

from S(l) to l that is the idea and let us now show this as a theorem. How much is the saving

or which complexity classes are being derandomized?

(Refer Slide Time: 08:57)

241

We will show so an S-prg exists. This implies that for every function l, BP-time S(l) n can be

derandomized and so brute force would have been because you have to essentially go2𝑆◦𝑙(𝑛)

over the whole space of random strings but this prg will make it much smaller. It will make it

. So, basically focus on this . What you are getting from S-prg is is being2𝑙(𝑛) 2𝑙(𝑛) 2𝑆◦𝑙(𝑛)

reduced to .2𝑙(𝑛)

And this is happening because the random bits S(l) is being reduced to random bits l by the

stretch that the prg gives. But of course, we have to see why exactly, what is this

deterministic algorithm first of all and why will it work? That we will do essentially by taking

a majority vote. A trick that you have seen before also many times in fact. The idea is to use

S-prg G as the source of pseudorandom bits in the randomized algorithm and take a majority

vote.

The idea is that your randomized algorithm will be fooled, gets fooled by G that is how you

can put it. The randomized algorithm would not know whether it is getting random bits or

pseudorandom bits, but of course this we have to now formulize how exactly is this fooling

happening. Language L is in BP time if there exists an algorithm M, so Turing machine that

on input x n bit input uses like these many random bits r and runs for that𝑚: = 𝑂(𝑆 ◦ 𝑙(𝑛))

much time.

This algorithm M requires m random bits and also it runs for a similar amount of time and

then it outputs an answer which will be correct with probability three-fourth. So, the output of

M on x on the random bits r will match whether x is in l or not, so that I am rooting by l of x

with probability at least three-fourth. That is the meaning of L being in BP time. We will now

change this algorithm M by using G.

(Refer Slide Time: 14:57)

242

So, the derandomization idea is to use the S-prg the one that exists from the hypothesis of the

theorem to produce r’s. So, basically the algorithm is just this on input x our deterministic

algorithm B goes over all z {0,1}l computes M(x, G(z)). Remember G(z) will be stretching l

bits to M bits, M we have defined as S(l) and let me make it precise, let me just make it M is

just this.

So, it will stretch G will stretch l bits to M bits which is S(l) n and then this randomized

algorithm M will use this output of G and then it outputs the majority vote. This overall z

takes the majority vote. If 0 appeared more output is 0, if 1 appeared more output is 1. So, the

claim is that this deterministic algorithm B correctly solves l, let us see that. So, we claim that

the probability over z that M(x, G(z)) matches L(x).

This is at least 3/4 - 0.1, which is more than half. We want to show that over the z the

probability is more than half which means that the majority vote is correct. So, the answer of

B is correct implying that B works. So, suppose this probability estimate is wrong. Suppose

not, then the probability is less than 3/4 - 0.1 which means that the probability over z of M(x,

G(z)) being equal to L(x) minus the probability over r of M(x, r) = L(x).

This probability difference that M runs using G and M runs without using G. This difference

is large because you are saying on one hand that probability over z is less than 3/4– 0.1. On

the other hand you are saying probability overall is more than 3/4. So, this is larger than 3/4 –

0.1 – 3/4 which is equal to 0.1. So, this means that M is able to distinguish between z and r

which should be a warning sign.

243

The way we define G nothing should be able to distinguish its output from random, but here

it seems that there is a distinguisher. So, to make this formal you have to talk about a circuit

because S-prg was defined by a circuit, M is not a circuit it is an algorithm. So, let us make it

into a circuit.

(Refer Slide Time: 20:21)

So, consider the circuit Cx, x is something fixed, in this argument we are looking at x as fixed

that on input y, outputs 1 if and only if M(x, y) = L(x), so y are kind of the good random

strings. This is what Cx is identifying and as an exercise show that since M is time𝑆 ◦ 𝑙(𝑛)

Turing machine, we can simulate it by a circuit Cx of size .𝑂(𝑆 ◦ 𝑙(𝑛))2

So, whatever is the time complexity of the Turing machine basically every transition step of

the Turing machine you can simulate by these and or not gates and the overall size you can

easily show is at most quadratic, in fact you can show something better also, but for us

quadratic is fine. Basically there is a circuit Cx which on y is correct, its value is L(x) for all

these y's in the domain.

So, what this means is that Cx can distinguish from the uniform distributions.𝐺(𝑈
𝑙(𝑛)

) 𝑈
𝑆◦𝑙(𝑛)

So, U denotes the uniform distribution of appropriate size and you can distinguish it𝐺(𝑈
𝑙(𝑛)

)

from using Cx because we have assumed that the probability difference is larger than𝑈
𝑆◦𝑙(𝑛)

0.1. So, this is what we are using and that is contradicting the definition of S-prg G.

244

So, this contradiction to the definition of S-prg G which means that actually the probability

difference is small, so it is as shown before more than half as claimed before. This implies

that the probability over z of M(x, G(z)) set being L(x) is greater than half which means that

majority vote works which means that B is correct. B solves L correctly, in how much time?

So, in the definition of B remember in this green definition it is going over all the z side.

So that is 2l(n) and time complexity is that of M, so that . So, this is how you use an𝑆 ◦ 𝑙(𝑛)

S-prg. You can derandomize and equivalently you can reduce the number of random bits. So,

now to see the impact of this observation let us look at various parameters or parameter

settings for the stretches.

(Refer Slide Time: 26:28)

So, by picking various stretch functions S, we get the following conditional

derandomizations, conditional because I mean you have to assume that an S-prg exists. Those

questions we do not have an answer for currently, but nevertheless this even conditionally

randomizations are quite instructive in the sense they will tell you what S-prg do you need.

So to get BPP = P, so if there is an exponential stretch prg, then BPP = P.

So that is an exponential stretch which means that l you are stretching 2l. This is the

maximum you can hope, you cannot do more than this. So, if you can really construct optimal

stretch prg, then you can solve any randomized algorithm you can make a deterministic

polynomial time. If there exists prg then BPP you will put in QuasiP.2𝑙ε

245

So, this is slightly more than polynomial time, this is and the stretch that this is2𝑝𝑜𝑙𝑦(𝑙𝑜𝑔 𝑛)

demanding is not exponential, it is we call this here now you can use for example or2ε𝑙 2 𝑙

stretch. So, you can call it sub exponential and the weakest stretch you can hope for is like2
3 𝑙

quadratic stretch, cubic stretch, polynomial stretch.

So, if there exist lc for c greater than 1, then what happens? Even then something happens. So

BPP then would be in Subexp like we defined before. So, you go to P or you go to Quasi P or

you go to Subexp. This is polynomial stretch. One important thing I forgot is I have to add

here for every c, for every c if you have an lc prg only then. So we will prove this quite

simply using invoking the previous theorem.

It will also imply that for every c there is an lc prg and in that case you can put BPP in

Subexp. So, what is the proof of all this? The proofs will be similar. You just have to save

what basically in this Lemma that we had what is S, what is l and then look at the RHS, what

is 2l that is all, that is all you have to check. So, we will say apply the Lemma on S and l. So,

first you apply it S is in this case the function that sends n to that is exponential and l is2ε𝑛

the function that sends n to c log n.

Since you have in condition in this item one you are assuming that there is an exponential

stretch prg so that is why the stretch n to is possible. And then when you apply this S2ε𝑙 2ε

on l you will see that you will get the following. So, is equal to nc and is equal2𝑙(𝑛) 𝑆 ◦ 𝑙(𝑛)

to which is equal to which is .𝑆(𝑐 𝑙𝑜𝑔 𝑛) 2ε(𝑐 𝑙𝑜𝑔 𝑛) 𝑛ε𝑐

So, both and they are both polynomial in n. So, in the Lemma statement LHS S2𝑙(𝑛) 𝑆 ◦ 𝑙(𝑛)

of BP time, BP time this is being put in Dtime nc times the same thing . And the𝑛ε𝑐 𝑛ε𝑐

assumption was that there is an S-prg. So that stretch function immediately gives you the BP

time Dtime connection and the same thing you do for other items 2 and 3.

(Refer Slide Time: 34:35)

246

So, here you will pick S to be because that is what prg you are promised and l will be; so l2𝑛ε

here, remember that in this proof l is always kind of the inverse of S. So, here you can pick l

to be . So, when you compose S with l, you will see that you will get polynomial𝑐(log 𝑛)1/ε

in n that is the idea and in the third case S will be polynomial stretch stretching n to nc and l

will be kind of the inverse.

So, this will be . So, l is always kind of the inverse of S, l is inverse of S. Based on that𝑛ε

principle, we can show the collapse of BPP. BPP is BP time poly n and depending on what

kind of a stretch you have you can put it either in P or Quasi P or Subexp, even Subexp is

very nontrivial. All these are open questions on their own. So, as you know BPP in Subexp is

an open question we do not know the proof of this and in fact we believe that BPP is in P.

What this previous connection is showing this color in blue is showing is all these stretch

prg’s these are also open questions, we do not know whether they exist. So, how do we

construct these prg’s? So, the only known way, we obviously will not be able to construct

them in this course, unconditionally we will not be able to do that, but we will relate this

problem to the problem of hardness.

So, that in itself will be an amazing connection, we will show that if there are hard problems,

then these prg’s will exist and then all these derandomizations would happen. So, the only

known way is to exploit the hardness of problems. So, what kind of hardness will suffice and

247

then what is the proof of this connection? So, let us move to that. So hardness, prg’s, and

derandomizations are all open and highly related.

This is what we will now see and we will spend the remaining course on these connections.

You have already seen this easy connection from prg to derandomization. Now, we will move

on to the harder connection which is between hardness and prg’s and this hardness also to be

useful it has to be for explicit functions. So, it should be explicit hardness that is why it is

challenging.

So, actually we know that there are hard problems like halting problem is hard, SAT is I mean

we do not know that SAT is hard, but at least you know that halting problem is hard and

problems which are in EXP you know there is a problem which cannot be solved in

polynomial time. So that kind of hardness you already have, but the thing is we want more

explicit hardness. So, let us now get deeper into this.

(Refer Slide Time: 40:34)

So, hardness and prg’s: We define two types of hardness of Boolean functions. I should say

here actually the focus will be not so much on explicit but circuit hardness, I should say that.

So, you have to show hardness in terms of Boolean circuits. It is not this P versus EXP or P

versus E. This is in a way stronger. So, the first definition is average-case hardness and the

second will be worst-case hardness.

So, for a Boolean function the average-case hardness will denoted by Havg(f), this is the

largest S, now I am using the same symbol S like stretch and later on we will see they are

248

actually this is for a reason, but again a function S will be called the average-case hardness of

Boolean function f such that for every circuit Cn of size S(n), Cn will not be able to solve f

very well.

So; in other words the probability of Cn(x) being equal to f(x) on x in Un so {0,1}n, uniform

distribution. If you just did a random choice or give a big zero or one; yes or no in a random

way, then the probability would have been around half or at least half and this circuit Cn is not

able to do much better that is what we want to say. We will say 1/2+ 1/S(n). So, this you can

see as the advantage.

So, we say that f is average-case hard or f has average-case hardness S if circuits of size S

cannot give you an advantage more than 1/S or they have an advantage less than 1/S. So half

is for free just by tossing a coin and giving the answer but nothing better these circuits are

able to do or not much better. So, that largest S is what you will pick. Notice that S will

increase the size S, S will increase the size of the circuit Cn.

The Cn will start approximating f better and better on more and more inputs, so the advantage

will actually increase. So, which is why saying largest is fine because this largest will exist, it

is not unbounded. And the second notion will be worst-case hardness. We will denote it by

Hwrs(f). This is again the largest S such that for every circuit of size S(n), now you want in

worst cases actually want to be correct on every x.

So, we will say that this circuit Cn are not able to or they make some mistake, at least one

mistake, so probability less than 1 that is all. So, here even a single mistake is considered a

failure. So, what is the largest S circuits that will be a failure for computing f, so that will of

course be is expected to be bigger than the average case hardness?

(Refer Slide Time: 47:44)

249

You can write the relationship quite easily amongst these two notions. So, the average case

hardness is at most worst-case hardness which is at most, so average case hardness note that

this random choice thing already gives you half rate. So, if you take the size to be more than

2n, then you can just use the truth table of the function and you can exactly compute f. So,

this is less than 2n, and cannot exceed 2n by truth table of f.

And the size when you convert truth table to circuit that will be slightly more than 2n, so

maybe we make it a bit more. Let us make it 2n in that much. So, worst-case hardness

obviously it cannot exceed much more than exponential in and average-case hardness will be

smaller. So, I mean obviously, the open questions here will be then can you bring the

worst-case hardness close to this upper bound?

Can you bring it close to 22n? So, the number of functions on {0,1}n this will be how much?

, while number of circuits of size n is around nn. So, you have n gates and each has a fan in22𝑛

n and fan out also at most n, so you can see that the way you can arrange the gates is

something like n to the let us say 2n which is much smaller than 22n.

So, this means that usually for random f the worst-case hardness is, let me actually I have to

replace this by some size let me replace it by size s, so this is something like s2s which you

can make much smaller than 22n if you take s to be sufficiently smaller than 2n. Let us say I

take 2n/2. If I take s to be less than 2n/2, then you can see that this inequality holds, is less.𝑠2𝑠

250

So, the number of circuits is actually much smaller than the number of functions of this much

size. From that you can see that for random functions worst-case hardness will be this s

which is 2n/2. So, generally, functions are supposed to be pretty hard in terms of Boolean

circuits, but we do not know of natural functions or explicit f with super-polynomial

hardness.

Actually we will be interested in these explicit functions with super-polynomial hardness. In

the ideal case exponential hardness and then will relate it to the construction of prg’s and then

from prg’s you will get the derandomizations.

251

