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Lecture — 14
Graph Products
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We have started this topic of explicit expander construction. So, for that we defined a rotation
map on a graph, so it is basically a map from [n]Xx [d] to itself, n is the number of vertices, d is
the degree of the graph. We will map v, i to u, j if the i-th neighbor of v is u and the j-th neighbor
ofuisv.
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So, this is a permutation on [n]X [d]. This seems to be a simple thing, but it will be very helpful

in later graph products that we will define and we call it GA It is a permutation. So, we will now
see 4 ways to multiply graphs.
1)Path product.
2)tensor product,
3)replacement product
4)zig-zag product.
So, they will have different properties.

They will either increase the graph size or they will increase the spectral gap or they will
increase the degree of the graph and a combination of these will give us the right balance which
is explicit expander high spectral gap and degree constant and an infinite family of graphs.
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So, let us start with the matrix product. This is the easiest most natural one. Its graph
interpretation will look like path product. So, what you do here is for two n-vertex graphs G, G'
with degrees d, d' the graph product is written as GG' that is the notation of the matrix product.

This is the graph with the normalized adjacency matrix AA".

So, A is symmetric, stochastic and A'is symmetric, stochastic. You just multiply them and this is
called the path product of the two graphs. So, the first property is that AA' is stochastic. Actually,
it is not really symmetric, symmetricity is missing. It is only stochastic. AA" is stochastic and the

graph GG' may have repeated edges and degree =dd' counting the edges even when they repeat.

So, repetition will be visible in A' when you see the entry. So, for e example instead of entry 1 /d
you might see 2 /d. So that means that there are two edges, so that is all what repetition means.
And in that sense if you count degree will be dd' and number of vertices is what you started

with. So, GG' is an n vertex graph, degree has increased. So proof is straightforward.

So, A' is stochastic because if you look at its action on this 1 vector right, entry is 1 / n each
entry. So, since A' was stochastic you will get 1 and then since A is stochastic you will get 1.

So,AA'.I = A1 =1> AA' row sum is 1. And similarly, by symmetry you can show that

column sum is also. So, both row sum and column sum they are 1.
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And second is for every vertex in G number of neighbors of u, so u has, maybe I should have just
combined the proof, let me do it here. Let me say that this is the all one vector, so 1=all-one, let
me work with this. So, then A'1 = d'l and then when you apply A on this all-one vector you
will get d. So, you will get dd' all one. So, this will show you, well that is not really true, no

sorry it is quite true.

So even with all-one vector, actually with all-one vector already this is 1 and then when you
want to look at the degree what you should do is yeah @ so
VueV(G), u has d neighbors. YveV(G') has d' neighbors. . So, when you look at A" what is
happening? So, from u you are going to a neighbor following edge of G and then you will follow
an edge of G' to go to a neighbor of v and G' which are d' many. So overall, the number of
neighbors of u will be dd' in GG'.Neighbors of ueV(GG') ared X d'
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So that is it, that is the proof okay. So, degree is dd' in GG' and vertices and vertices we have not
changed. So more interesting property is about the spectral gap which is that the spectral gap of
GG' decreases[A(GG") < A(G).A(G")]. So, what is the saying is that the spectral norm or the
second largest eigenvalue of G which was less than 1 before and same for G' now when you

multiply you will get something even smaller.
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So, spectral norm actually reduces, spectral gap increases. So, at the cost of degree increase you
can increase the spectral gap. So, this is a very good product and why is that happening? So
intuitively if you look at expansion since you are increasing the degree so you are able to cover
more ground in one step. So, just because of that you would expect the expansion to improve that

is what this inequality is expressing mathematically and the proof is equally simple.

So, A(GG") is by definition what? Not by definition but we had proved this property at least this

connection that it is the amount by which the matrix shrinks a vector orthogonal to 1, right. So,

A(GG") = max —lﬂﬁ“- = max%{-l- J-lﬁ“-okay and why is this product interesting?
uel

Well because A'u if u is orthogonal to 1, A'u 1is also orthogonal to 1. So,
[ < Au> = <wudAl> = <ul> =0]< AA).AA), right., so that is it.

A(A) = A(G) by definition you can talk about the graph or the matrix.

So, you get that A(GG") < A(G).A(G"). This follows simply because of the spectral norm. So,
what we have shown in terms of expanders is this beautiful theorem that if
G, G are (n,d,A),(n,d', ") — expanders = GG'is (n,dd',\\") expanders because the

degree grows and also this lambda multiplies, so it decreases, it is in the right direction.

Thus, matrix product improves the spectral gap at the cost of the degree. So, there is a trade-off.
If you start with the spectral gap very small, then you have to do this many, many times, so your
degree will keep on increasing. So, if you started with a general graph which has just no

expansion guarantee just connected graph, then you know that spectral gap is around inverse

poly.

So, to make it constant you will have to then apply this again and again and logarithmic many
times and then the degree will become non-constant. So, this is not a perfect solution, it just is
giving you a trade-off but not an optimal trade-off.
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Second product that we look at is tensor product. So, this tensor product does not play a deep
role in the construction. Its only job is to give you an infinite family. So, basically it will grow
the size of the graph without changing the expansion so that you can produce of infinite family.

So, the graph G ® G'is the one with the normalized adjacency matrix A @ A'.

So, the graph product is this notation and matrix product is this. So, if you do not know what is

tensor product for matrices here it is. Also, we are assuming here this is n-vertex like before, but

A Al A A

this we can now allow to be different n' vertex where 4 Q A'= — definition is

basically what you do is you look at the matrix A and in every entry you put this big matrix 4'.

So, here is the picture.

So, this is the block matrix representation, so you have n Xn matrix A and in every entry you
have put A' so the dimension goes to nn' both sides that is it. That is the tensor product for two
matrices and the matrices do not have to be related at all. Dimensions are different. In fact, in
general they may even be rectangular matrices but here we look at square matrix and then you

get a square matrix tensor product.

So, the properties of this is A @ A'is symmetric stochastic. This is the graph that you will get

will be undirected graph symmetric metric normalized adjacency matrix is A' which is symmetric
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and the graph has ¢ @ G' is nn'vertex and the degree is, you can see from the definition degree

is dd'. So, what is the proof of this? Symmetric you can see easily from the definition.

Stochastic you consider this where this all-one vector is of; I mean the dimension of this is nn' so

that you do the multiplication. (A @ A"). 1nn, =(A Q A"). (1n X 1n,) So, nn' once you can see

as a tensor product of as I said you can look at the definition also for rectangular matrices. So, it

is 1 ® 1 different dimensions.

And this product you can actually see from the definition in red that you will get Aln which is
AR®A)1 =(4AR4).(1 ®1,) =41 ® A1 =1 ®1,=1 . this shows that
nn n n n n n n nn

row-sum is 1 also column-sum is by symmetry 1, so this is stochastic and second property is
even is easier and then prime vertices is clear. Why is the degree dd'? So that you can again see

from the definition.

So, consider the u-th row(AulA', ........ , AunA'). So, the number of these Au1 to Aun which are

non-zero, this is d and for every matrix that is put there you can see that every row or u-th this is
kind of the block row and each row here has weight which means number of non-zero entries in
arow dd'. So, you can see that degree dd' and vertices is clearly grown by definition to nn'.
(Refer Slide Time: 25:50)
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Now let us analyze the second largest eigenvalueA(G & G') = max(A(G),A(G")) so why is
that? So, this trick that we used 1 @ 1 right, so now that is the trick you have to apply that trick
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on eigenvectors. So, eigenvector of A eigenvector of A' you take the tensor product and show

that that is an eigenvector of A QA"

Letl = ?\1 > |7\2| > = |?\n| and
1= )\1' > |7\2'| > = |?\n'| be the eigen vaues of A and A' respectively

. Now observe that [(A @ A").(v ® v') = (Av) ® (A'v")]. This you can see from the

definition of tensor product. So, this means that the eigenvalues of A ® A’

Q1 Deln] X ).

Because you take the i-th eigenvector v, and the j-th eigenvector v]_' respectively A' and then by
this green formula you can see that v ® vj' is an eigenvector of A & A' and on the RHS what
you will get is Ailj'as the eigenvalue. If you want to do this formally you have to prove that there

are no other eigenvalues, but that also you can prove as an exercise.

These are the only, I mean since it is an nn' dimensional matrix if you exhibit nn'eigenvectors
there cannot be anything else. So, these are the only eigenvalues. These are exactly all the
eigenvalues and thus the largest ones apart from 1 are, so all the lambdas here are<1, right. So,

when you look at the absolute value the maximum will come from Ai’s and A},'.

So, you can just have to consider this set {Ai|ie[2....n]} U {7\j'|je[2.... n]). So, 7\2 is the
maximum in the first set lambda, sorry ?\j'. So, AZ' in the second set that is what you get that
AMG ® G) = max(A(G), A(G")). It is max of 7\2 and }\z’absolute values, fine. So, what this

gives you is if G, G' are (n,d, A), (n', d', ") expanders respectively.

Then tensor product G & G'has vertices (nn', dd', max(A, A"))expander. So, the size grows,
expansion does not change, but the problem is degree also grows. So, in this also the degree is
growing.

(Refer Slide Time: 32:51)
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So, we learned that tensor product increases number of vertices and degree while preserving the
spectral gap. So, this is not helping an expansion but it is only helping in giving a family but still
there is a flip side which is degree is also increasing that you do not want, so that is a problem.
Both these products the degree is increasing, so we have to do something about the degree

increase.

When the degree increases, we have to apply another product or transformation so that a degree
reduces, so what will that be? So that is a more complicated product called the replacement
product. So, we want to reduce the degree that is the goal. So, what the replacement product will
do is seen better in as a walk instead of matrix product or instead of matrix analysis. So, this

product is easier seen as a walk rather than a matrix operation.

What is the idea? So, the idea is that as the term vaguely suggests when you have lots of
neighbors in a vertex that is the issue of high degree, right, that a vertex has lots of neighbors
which neighbor to go to that you decide using another expander on that many vertices. So, if you
have big D many neighbors, then you consult an expander with big D many vertices but much

smaller degree.

So, using that expander you do a walk, you move to that other expander do a walk and where

you end that will decide what neighbor to pick. So, you are replacing your neighbor choice by a
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suitable expander walk. So that is the basic idea. Use an expander G' with D-vertex and d- degree
to pick the neighbor in a D-degree graph G. So, you have a graph G whose degree is quite large
D.

So, when you want to pick a neighbor there to do a random walk in G, you transfer control to
another expander G', completely different expander G' which is on vertex D many with a much
smaller degree d. There you do a random walk and where you end that becomes the neighbor you

picked in G okay that is the plan. And we will pick d «D.

So, this we are posing as a walk in two graphs, but ultimately this will actually give you a new
graph. When we unfold this, we will get a new graph that we have to analyze, but this is the
basic idea. So, this is similar to the process or the idea to reduce random-bits. It is a similar idea.
So, this motivates the product GR)G' that is the notation.

(Refer Slide Time: 39:38)
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So, let us define it formally now. So let G, G' be graphs with vertices n, D and degreesbig D, d
and this normalized adjacency matrix A, A' everything respectively. So, for G is n vertex D
degree matrix A graph and G' is a D vertex small d degree A'matrix graph. So, the replacement
product matrix H is defined as H:= G®G' is nD-vertex graph such that for every vertex
YueV (G), something like the tensor product for every vertex in G you put this G'.
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Copy of G' say H , called a cloud. That is in formula VieV(G"), (u, i)eV(H) and is called the i-th
vertex in u-th cloud. So, in every vertex in the graph G you put G' call it the cloud, and in the
u-th cloud you have the i-th vertex. So you the vertices are now (u, i). So the vertices are like
V' x V' that is the vertex set. What is now the edge set, how do you connect? How do you draw

edges in H?

So, in the cloud the edges will follow what G' has. So for (i, j)eE( G' )so put
YueV (G), ((u, i), (v, j))eE(H) okay that is an edge in the u-th cloud. This is just following
naturally the edges of G'. And more interesting is how do you connect two clouds that will
follow the edge set of G, how do you connect? The obvious naive thing would be to connect

every vertex in a cloud to every other vertex in the second cloud according to G connection.

But that is not good for us because the degree will be too much, we also want to control the

degree. So, what we will do is we look at the rotation map here. So, ifé(u, i) = (v,j) which
means the i-th neighbor of u in G is v and the j-th neighbor of v in G is u, that is the rotation map
of G, then ((w,i), (v,j))eE(H)you connect these two vertices okay. So that describes all the

vertices and all the edges in the replacement product H.

Now the claim is that H is nD vertex () degree which is a big improvement on D. The degree has
suddenly fallen. Why did it fall? So intuitively in the definition if you look at condition 2 that is
where we added lots of edges or lots of neighbors but that was dependent on G' so it is only d.

So, we have actually reduced the degree a lot.
If I d is much smaller than D, then this is a degree reduction and vertices have obviously grown

multiplicatively. So, size of G times size of G' so that is the proof. So, V(H) = V(G) X V(G").
(Refer Slide Time: 47:22)
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And second is that neighbors of (u, i)eV(H) are d-many in the cloud H, and is there any other

neighbor in H? Yeah, there is just one more which is given by this G(u, i) So, this means that

degree (H) = d + 1.

So, this replacement product reduces degree D tod + 1 < D that is the job that is the purpose
of this product. So, the first two products they blow up the degree multiplicatively, this third
product reduces the degree. So, now we have three operations which are kind of balancing each
other out when taken in the right combination. And the right combination will be the final

product which is called zig-zag product.

So, in the zig-zag product we will now combine these three. In zig-zag product now what we will
do is we will travel once within a cloud, once outside and then another time in the cloud. This is
why it is called zig-zag, so you zig in the cloud, zag outside, zig inside again. So that is the idea.
Consider length-3 paths that zig-zag the clouds. So, (cloud — out — another cloud). So,

formally we have to describe the graph, the G zig-zag product G' graph.

What are the vertices? What are the edges? Vertices are the same as for replacement product. So,
on the vertex set V(G®G' )define the zig-zag product H :=G®G" s.t((u, i), (v, k))eE(H) now
[, k such that essentially you go from i to | inside the cloud of u, then you go from I to k outside

the cloud and then you go from k to j.
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So, I should have called this j. So i to 1 in the cloud, 1 to k outside the cloud and in the next cloud
k to j that is what I will write now. It will look complicated. So
((w, 1), (w, D), ((w, ), (v, k), (v, k), (v, )))eE(GRG') the replacement product. So, length-3

paths in the replacement product is what we are using.

It is a bit better connected than the replacement product graph because you are looking at 3
length paths there. So, notice that we did not do the 1A analysis, spectral gap analysis for the
replacement product. Now we will do it for zigzag and it will be pretty good. So, what is the
number of vertices that is the same as n times D. What is the degree? Notice that because of
these two cloud edges so this i to 1 and k to j, you will get now degree to be d times d, d* degree.
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So, basically neighbors of (u, i) in G@G'=d and for each such neighbor when you pick there is
only one out, right, so that is not an option, not multiple option. And then when you go to the
next cloud there you will have again d neighbor, so this is d>. So, we will assume d* also to be

very small compared to D.

So, for vertex growth multiplicative in D, the degree is still pretty small. It carries the properties

of replacement product, but now we have to do the lambda analysis the spectral gap analysis that
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is quite complicated here. So, let us first write this in matrix form. So, it is normalized adjacency

matrix is denoted like this A@A'. You can imagine this matrix B as the intracloud step and Aas

the intercloud across the cloud step.

So, it is A@A":= B/iB. We have to  define these matrices. So,

Al(w D), 0 )] = (L, if 6w i) = (v,))

=0,else

.&B[(w,©), v, )]:=A'[i,jllu=v
=0,ifu#v

. Proof is quite simple once I give this statement because I mean look at the just the definition of

AB and the definition of zig-zag product keeping in mind always the replacement product.

So, A@A' encodes the definition of G@G't and also note that(ADA"). 1 —BAB.1 Now what is B

times 1? From the definition of B you can see that when you look at the( u, 1)-th row number of

neighbors is exactly small d for every row, right. So, you have (A@A").1 =B/iB.1=

Other thing is that this is symmetric matrix, you can see from the definition it is symmetric. So,
this actually means that let me finish the proof here and then state this property that this is ADA'

is stochastic symmetric.
So, this is why we have already said that it is a normalized adjacency matrix so that is also true.

So, we have a nice expression for this zig-zag product matrix and what we will do next time is

we will do the spectral analysis so what is the spectral gap.
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