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Lecture - 12
Relation between Algebraic and Combinatorial Expanders

Last time we showed the equivalence of, we showed that an algebraic expander is also an edge

expander with this rho factor in the expansion being 1 − λ/2

(Refer Slide Time: 00:31)

So now we will show an almost converse statement. So you start with a rho edge expander. Now

why is it an algebraic expander? In other words, why is the spectral gap large? So we started the

proof. Assume that G is an n, d, rho edge expander and we will again use this kind of this

Laplacian quadratic form, right? So you start with eigenvector of the second largest eigenvalue

of the matrix A lambda 2, which is this equation.

So , which is the vector having coordinates 1 /n in each place. Nonzero, since it is𝑢ϵ1⊥

orthogonal to 1 there has to be positive negative coordinates and not all can be 0. So let us collect

positives in v, negatives in w. So that both v and -w are non-negative coordinates only. And then

based on that, so what you can say is without loss of generality has n /2 nonzero entries𝑣 ≤

because, if it is more than n / 2 then you can look at –u right?
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So if v has more than n /2 nonzero entries, then w will have less than n /2. So you can use w. So

for that you can work with –u. So consider again this quadratic form Z: =
𝑖<𝑗ϵ[𝑛]

∑ 𝐴
𝑖,𝑗

(𝑣
𝑖
2 − 𝑣

𝑗
2)

So that is the definition of Z. Notice that this is slightly different from what you used in the proof

of theorem 1, right?

There we had and here we have difference of square. And using the edge expansion(𝑥
𝑖

− 𝑥
𝑗
)2

we want to get information about or estimate . So we will show that and here also assumeλ
2

λ
2

them to be ordered. So , okay. So is the largest coordinate. And then𝑣
1

≥ 𝑣
2

≥.......... ≥ 𝑣
𝑛

≥ 0 𝑣
1

you are looking at these successive differences or all possible pairs actually 𝑣
𝑖
2 − 𝑣

𝑗
2

But since we are looking at i <j, so this is each of these is non-negative, okay. So z is a

non-negative number. So we will show that Z is large, namely Z . So here we will use≥ ρ||𝑣||2

the edge expansion and we will show that Z is small . So these two𝑍 ≤ 8(1 − λ
2
). ||𝑣||2

claims together will give you the information about , okay using given .λ
2

ρ

So the first claim we will show using edge expansion because it is about , so we will use edgeρ

expansion here. And the second claim we will here we will use some matrix analysis and then

these two claims will give you the proof of theorem 2, will prove theorem 2, okay. So you will

get the best possible information about how and are related. So let us first use edgeλ
2

ρ

expansion and proof claim 1.

(Refer Slide Time: 06:31)
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So remember that we have already sorted the coordinates of v bar and we have assumed that v

bar has less than equal to n by 2 nonzero coordinates, right. So recall that in

and for all i . So only the first n /2 or less are nonzero,𝑣:𝑣
1

≥ 𝑣
2

≥.......... ≥ 𝑣
𝑛

≥ 0 𝑣
𝑖

= 0 ≥ 𝑛/2

in fact positive, positive reals in order. So you can write Z as, the nice thing: =
𝑖<𝑗
∑ 𝐴

𝑖,𝑗
(𝑣

𝑖
2 − 𝑣

𝑗
2)

about this expression is this will slowly connect to number of edges going out of the subset of

vertices 1 to k.

So we want to relate this expression to the edges that go out of vertices 1 to k, k + 1 to n. And

once you have that relationship then from there you can use the edge expansion, right? So whatρ

we will do is we will rewrite this expression by looking at consecutive differences. So let us use

telescopic sum . And now flip the sum. There are two summations, so flip
𝑖<𝑗
∑ 𝐴

𝑖,𝑗
𝑖≤𝑘<𝑗

∑ 𝑣
𝑘
2 − 𝑣

𝑘+1
2

them. So bring k on the top.

So remember that we only need to go up to k = n /2 because the remaining v’s are 0. And for

fixed K, what are the ij’s that are of interest, right? So the ij’s of interest are the crossing edges

because only then is Ai,j nonzero. So you will get number of edges that cross divided by d
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because A i,jgives you 1 / d. And difference of square remains the same, right?

That is what you get when you flip the sum.
𝑘=1

𝑛/2

∑ #𝐸([𝑘], [𝑘 + 1..... 𝑛]). 1/𝑑. (𝑣
𝑘
2 − 𝑣

𝑘+1
2 )

So the second outer sum when it goes inside it gives you this number of crossing edges. Now

you use the edge expansion. So this is . So this will be then≥ Σ
𝑘
(ρ𝑑𝑘/𝑑). (𝑣

𝑘
2 − 𝑣

𝑘+1
2 )

right?ρ
𝑘ϵ[𝑛/2]

∑ (𝑘𝑣
𝑘
2 − 𝑘𝑣

𝑘+1
2 )

That is the simple expression. So what is this sum? So this sum is equal to we again reduce this

to some telescopic sum. Let me not use this notation. So k is 1 to n/ 2, right? So you will get

. Can I do that? So you can do that because the second term, Soρ
1≤𝑘≤[𝑛/2]

∑ (𝑘𝑣
𝑘
2 − (𝑘 − 1)𝑣

𝑘
2

you are just shifting it back.

So you are replacing k by k - 1, right? So you can see that on one side k= 0, this term will be 0,

summand will be 0. And on the other side for n/2 + 1 this summand will be 0. So you can

actually shift sum back. So you get this expression and this expression is just . And what is∑ 𝑣
𝑘
2

? This is , right? So that is the proof of claim 1 that Z is large. It is larger than .∑ 𝑣
𝑘
2 ||𝑣||2 ρ||𝑣||2

(Refer Slide Time: 13:27)
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Now proof of claim 2. So claim 2 was now you have to show that Z is small in terms of , right?λ
2

As a function of it is small. So we have to now look at Z in a different way by matrix action,λ
2

do some matrix analysis. So Z and are fundamentally related, okay. And how? So the idea hereλ
2

will be use this inner product . Then look at the action of A on because that is what< 𝐴𝑢, 𝑣 > 𝑢

will give you , right?λ
2

So look at the action of A on and take the inner product with the positive part v bar. So what𝑢

does that give you? So use this and recalculate Z. So < A , > = , >, which is equal𝑢 𝑣 <  λ
2

𝑢 𝑣

to< , > right? Express u as v + w. And now notice that v and w orthogonal becauseλ
2
𝑣 + λ

2
𝑤 𝑣

they have disjoint support, right?

v is the positive places w is in negative places, so the inner product is 0. So you will get .λ
2
||𝑣||2

Also this this you can write as + .again because u is v + w. Now< 𝐴𝑢, 𝑣 > < 𝐴𝑣, 𝑣 > < 𝐴𝑤, 𝑣 >

note that A has nonnegative entries, it is a matrix. v has nonnegative entries, it is a vector. But 𝑤

has negative entries, right? So this sum will be less than equal to the first summand, right?
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So we have these two things. So which means that / , which means that 1 - λ
2

≤ < 𝐴𝑣, 𝑣 > ||𝑣||2

) . Remember that our goal is to reach Z right and Z had λ
2
≥  (||𝑣||2 −< 𝐴𝑣, 𝑣 > / ||𝑣||2

. So that is where we are trying to reach. So let us continue doing this. So we will do𝑣
𝑖
2− 𝑣

𝑗
2

these calculations as follows.

This - ) = - And let us throw in a 2 here, double that -(||𝑣||2 < 𝐴𝑣, 𝑣 > ||𝑣||2 ∑ 𝐴
𝑖,𝑗

𝑣
𝑖
𝑣

𝑗
(||𝑣||2

) = - .. So you have seen before that can also be written as< 𝐴𝑣, 𝑣 > 2||𝑣||2 2 ∑ 𝐴
𝑖,𝑗

𝑣
𝑖
𝑣

𝑗
||𝑣||2

+ - .
𝑖,𝑗
∑ 𝐴

𝑖,𝑗
𝑣

𝑖
2

𝑖,𝑗
∑ 𝐴

𝑖,𝑗
𝑣

𝑗
2

𝑖,𝑗
∑ 𝐴

𝑖,𝑗

2𝑣
𝑖
𝑣

𝑗

So now you can see what we will do. We will write this as okay. So this is equal to(𝑣
𝑖

− 𝑣
𝑗
)2

right?. So let us continue this.
𝑖,𝑗
∑ 𝐴

𝑖,𝑗
(𝑣

𝑖
− 𝑣

𝑗
)2

(Refer Slide Time: 19:38)
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So this means what we have done is we have written 1- . right? There was thisλ
2

≥ 𝑖,𝑗
∑𝐴

𝑖,𝑗
(𝑣

𝑖
−𝑣

𝑗
)2

2||𝑣||2 

in the denominator. But we are still we have still not reached , right? So this is still||𝑣||2 𝑣
𝑖
2− 𝑣

𝑗
2

the Laplacian, it is not this modified Z that we have defined. So for that we have to go to .𝑣
𝑖
2− 𝑣

𝑗
2

So for to achieve to reach there you multiply this with . You multiply with this,∑ 𝐴
𝑖,𝑗

(𝑣
𝑖

+ 𝑣
𝑗
)2

both numerator and denominator. So when you do this you will get

1- . That is the big expressionλ
2

≥ 𝑖,𝑗
∑𝐴

𝑖,𝑗
(𝑣

𝑖
−𝑣

𝑗
)2

2||𝑣||2 

∑𝐴
𝑖,𝑗

(𝑣
𝑖
+𝑣

𝑗
)2

∑𝐴
𝑖,𝑗

(𝑣
𝑖
+𝑣

𝑗
)2

∑ 𝐴
𝑖,𝑗

(𝑣
𝑖
2 − 𝑣

𝑗
2)2/2||𝑣||2 ∑ 𝐴

𝑖,𝑗
(𝑣

𝑖
+ 𝑣

𝑗
)2

you get.

So we have reached almost , but it is still not clear whether it is Z, this expression is Z. So𝑣
𝑖
2− 𝑣

𝑗
2

let us estimate the two expressions separately. So first let us look at the numerator. So the

numerator . So the numerator is the product of these two things. So we are≥
𝑖<𝑗
∑ 𝐴

𝑖,𝑗

(𝑣
𝑖
2 − 𝑣

𝑗
2)

looking at this part. That is the numerator.

So if you use Cauchy-Schwarz inequality okay then the product of these two sums is at least the

sum of individual products or I should say well I should, no not that but I should write

and I should also specify what I am multiplying with. So here I actually(
𝑖<𝑗
∑ 𝐴

𝑖,𝑗

(𝑣
𝑖
2 − 𝑣

𝑗
2))2

multiplied only those summands for which i <j, okay.

And note that in this first if i and j are equal then it does not contribute. And
𝑖,𝑗
∑ 𝐴

𝑖,𝑗
(𝑣

𝑖
− 𝑣

𝑗
)2

when you flip i and j then you get the same contribution, right? So it is being counted twice. So
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you get a factor of 2 here, okay. So the numerator estimate is giving you 2 .(
𝑖<𝑗
∑ 𝐴

𝑖,𝑗

(𝑣
𝑖
2 − 𝑣

𝑗
2))2

So this is by Cauchy-Schwarz inequality, okay.

That is the lower bound on the numerator, which is equal to , right? So we have related this2𝑧2

right hand side, at least the numerator we have related to Z nicely. Now let us look at the

denominator. So the denominator we have to upper bound, right so that for the ratio we get a

lower bound. So denominator is at most what? So I will first write This1/2∑ 𝐴
𝑖,𝑗

(𝑣
𝑖

+ 𝑣
𝑗
)2

expression is equal to .1
2 ∑ 𝐴

𝑖,𝑗
(𝑣

𝑖
2 + 𝑣

𝑗
2) + ∑ 𝐴

𝑖,𝑗
𝑣

𝑖
𝑣

𝑗

And this I want to now relate with the denominator expression that you have. So this is again a

bunch of calculation. So let us do that. So what is this first expression, ). Since1
2 ∑ 𝐴

𝑖,𝑗
(𝑣

𝑖
2 + 𝑣

𝑗
2

we are going over all i j this will be equal to as we have seen many times before. It will be||𝑣||2

half of two times .||𝑣||2

+ =2 . So we have estimated this thing, sigma||𝑣||2

𝑖,𝑗
∑ 𝐴

𝑖,𝑗
𝑣

𝑖
𝑣

𝑗
≤||𝑣||2 + 1

2 ∑ 𝐴
𝑖,𝑗

(𝑣
𝑖
2 + 𝑣

𝑗
2) ||𝑣||2

over all i j. This is what we have estimated.

(Refer Slide Time: 26:54)
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So from this you can deduce that because we have estimated half of
𝑖<𝑗
∑ 𝐴

𝑖,𝑗
(𝑣

𝑖
+ 𝑣

𝑗
)2≤ 2||𝑣||2

that expression which is which also gives you an estimate on the denominator, this term. And

now when you combine everything that we have learnt, you will get the following.

So combining all inequalities what you will get is 1 - So which implies that 1 -λ
2

≥ 2𝑧2

2||𝑣||2.2||𝑣||2

which implies that .λ
2
≥ 𝑧2

2||𝑣||2 𝑍 ≤ 2(1 − λ
2
). ||𝑣||2

So there might be, I have to recheck this calculation. If there is a mistake then I will update in the

PDF, okay. Let us move forward. So these are the basic inequalities and when you combine

everything you will get the proof of claim 2. So because in the end I am getting something better

than what claim 2 said. So this is why I have to recheck this but anyways you have seen the main

points.

So we have shown both claim 1 and claim 2 and when you combine them together you will get

the relationship between and . So this finishes the proof of theorem 2 also. So thus theorem 2ρ λ
2

is proved, okay. So the key things that we used in all these proofs to relate algebraic expansion
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with combinatorial expansion was this Laplacian quadratic form Z(G) which is: =
𝑖,𝑗
∑ 𝐴

𝑖,𝑗 
(𝑥

𝑖
.... 𝑥

𝑗
)2

okay we use this, square of this.

And that was certainly the case in theorem 1. In theorem 2 also although we started with

ultimately we did use this as well. When we did this Cauchy-Schwarz(𝑥
𝑖
2 − 𝑥

𝑗
2) (𝑥

𝑖
− 𝑥

𝑗
)2

inequality, we actually got something like that, okay. So in both the proofs, this kind of object

was critical. And the reason is, intuitive reason is that this quadratic form carries information

about expansion and sparsest cut in graph, okay.

So not only is this useful in this mathematical analysis of the graph, telling you about what is the

expansion for every subset of vertices and what is the spectral gap in the graph, but also in

algorithms it is used for finding the sparsest cut, okay. So this is a very important object. And so

you have to carefully look at these calculations again and get an idea of actually what we did.

These were pretty intense calculations.

So next we will, what we will do is one application of expanders. So first in this business, the

first thing you saw was this randomized algorithm to solve connectivity in a graph in logspace,

right? But this was randomized logspace. Still it is a very non trivial algorithm the reason why it

works. And from there we got the idea that maybe we can study graphs, which are highly

connected.

So you can reach anywhere with equal probability in just log many steps. And we defined

algebraic expansion and combinatorial expansion. Now at this point, we do not know whether

these things exist. We have defined them, we do not know whether they exist. So we will solve

that problem later. For now just take it on faith that they do exist. And so now how can you use

these objects, okay. So there is this algorithmic application that we will see.

(Refer Slide Time: 33:37)
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Which is called error reduction, using expanders. So this is something to do with randomized

algorithm. So suppose you have a randomized algorithm for a problem , makes an error𝐿ϵ𝐵𝑃𝑃

probability . So suppose you want to reduce this error further, okay exponentially below.≤ 1/3

So suppose random bits that it needs is r, can be solved with a much smaller error.

So this error probability of one third if there is an algorithm of this type, polynomial time

algorithm, then there is also another polynomial time algorithm that can solve the same problem

with error much smaller, something like , right? So how is this thing done? This is just2−𝑘

repeating the algorithm again and again with different random bits, right repeating this

experiment k times.

So the naive way is to repeat M (x) , k times using(rk) random bits. So if you repeat it k times

random bits are also much more and you will get error probability exponentially smaller, time

will be just k times. So the question we ask is can you save on these random bits? So can you do

better?

Can you manage this same error probability with much fewer random bits? So we will show that

by expanders, walking in an expander we can manage this in r + k random bits. It can reduce

random bits to r +O(k). So instead of multiplicative growth, you will only get additive growth,
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okay. So that in practice could mean a lot of savings, okay. You have to toss fewer coins and still

get a very good success rate, exponentially low error rate.

So what is the idea here? So in this idea, you will see why an expander graph can be so helpful

and specially explicit expanders. So if there are explicit expander constructions, then you can

achieve this. So the idea is as follows.

(Refer Slide Time: 39:20)

You pick a random vertex in your expander graph. So that will need let us say r bits and then you

do a random walk k steps, the vertices which you reach you use them as random bits or random

strings for your algorithm, the algorithm M(x). So start with a (2r, d , 0.1) expander,graph G

okay. We can think of d to be constant, say 3. And assume that the neighbors of any vertex.

So remember r was like the input size, right? So 2r is a very large vertex set. So you cannot, you

do not want to look at every vertex, you do not want to store this expander graph. You just want

the ability to locally look at the neighbors wherever you are in this expander graph. So you want

this a one-step connectivity information in this expander graph G. So suppose there is a fast

algorithm for that.

So assume that the neighbors of any vertex in G are listable in poly (r) time, which is very fast in

terms of the big expander graph exponentially large, it is very quickly you can find the neighbor

175



of any neighbor set of any vertex v in the graph. So suppose this is what I am calling explicit

expander. So if you have such explicit expander construction, then you can actually do a random

walk k steps, okay.

So you will get these k strings. And when corresponding to every vertex there is a string right,

there is a string of r bits. So you will get these k strings each of r bit and use these k strings in

your randomized algorithm M x as random strings. So we have to, obviously it is not clear what

will be now the error probability of M, right? That seems to be a complicated thing. So next time

we will do that analysis.

But the sketch of the algorithm is just this. So choose a vertex vo V(G) at random and do aϵ

random walk for k steps, okay going to vertices v1 to vk. So you pick a random vertex v0 in your

explicit expander G and then you do a random walk for k steps. So that is v1 to v k, okay. So now

you have v 0 to v k vertices. Remember each vertex you can think of as an r bit string. So use

strings v 0, v 1, v kϵ{0, 1}𝑟

. So binary r bit strings as random string. This is “random” because it is not that you picked v0,

you picked v 0 actually randomly but v 1 you really have not picked it randomly, right? It is just in

this fixed explicit expander graph. You have actually taken a neighbor of v 0. So it is not really a

random string.

But anyways you give this to your algorithm M( x) and v2 and v k so on as random strings to run

M on the input x, (k + 1) times, okay. That is the thing. So you are trying to fool the algorithm

M( x) by giving it a pseudorandom string. So will this work is the question? Or how well will

this work?

What will be the error probability of this algorithm M repeated k + 1 times, right? So repetition

of k + 1 times means that you run that many times and then take the majority vote of the answer.

So finally, you take the majority vote. So finally output the majority vote of these k + 1 outputs.

That is the modified algorithm M (x), okay.
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So according to where you reach in the expander, explicit expander graph, you use that as a

random string, give it to M (x). M x will do a computation and output something. So you get

(k + 1) outputs. Take the majority vote that is the final answer. So what we will show is the

following. So we will show that error probability .≤ 2−𝑘

And of course, we used only So you are getting 2 -k error for random(𝑟 + 𝑘𝑙𝑜𝑔𝑑) = 𝑟 + 𝑂(𝑘)

bits only r + k. The trivial would have given you r times k.

That is the improvement. So this is r . k), okay. So that is the big improvement, quadratic to≪ (

linear. So the question is how do you show this? You do not know anything about the algorithm

M, right? M is an arbitrary randomized polynomial time algorithm. And the explicit expander is

also does not have any extra property. So the algorithm and the expander are unrelated.

So you have to now analyze the algorithm, this unknown algorithm using this unknown

expander, right? So how will you do this? So this is a very interesting exercise. We will finish

this proof next time.

(Refer Slide Time: 49:14)

So first we bound the probability of the walk, of the random walk being confined to bad vertices.

So what are bad vertices? So when you are taking a random walk of some number of steps, we
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want to understand, in this expander graph we want to understand what is the probability of not

visiting certain vertices, okay. So these are the vertices which we are calling bad.

So in our application these will be the strings on which M fails. So example v i’s on which M (x)

fails, okay. So these vertices we do not want to touch or we do not want to reach. So what is the

chance of avoiding all these vertices, bad vertices? Let us first calculate that. So that is a famous

theorem by Ajtai, Komlos and Szemeredi. So what this theorem will say is for an expander

(n, d, expander and bad vertices B .λ) ≤ 𝑉(𝐺) |𝐵| = β𝑛

Now of course, if the bad vertices are a lot in the graph, if B is a very big set, then you then the

probability of avoiding them will be very low, right? So suppose that it is not it is just some

fraction , you can think of is 10%. So say only 10% vertices are bad. So we do not want toβ β

reach them, okay. What will be the probability of that? Then the probability

.𝑃𝑟 [∀𝑖ϵ[0... 𝑘], 𝑣
𝑖
ϵ𝐵] ≤ (β + λ)𝑘

So probability that every vertex is bad, right? So notice this for all. I did not emphasize it before,

this is important. So we are saying by this idea of confined to B we actually meant that the

random walk is this. So what is the chance of that happening. So you would expect it to be quite

small, the chance to be quite small if the as long as the bad vertices are few. And that is what this

statement is saying, okay.

So that it is exponentially small. So never able to leave this bad vertex set. That is a very small

probability. It is exponentially small in k and depends on and l. So basically this fraction of theβ

bad vertices should be small, beta should be small and the second biggest eigenvalue of the

graph lambda that also should be small. If the both are small, then you have this result.

So this is the theorem we will prove and once we have shown this then we will have to analyze

or estimate the probability of the random walk reaching more than half vertices being bad, okay.

So once we have this we will also estimate the probability of of {v0 ….vk}being in B.≥ (1/2)

And not just estimate, we will show it to be small, okay.
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So once we have this, once we show that the probability of more than half of your vertices

visited being bad is small, once we have shown that probability to be small then we are done,

right? So that will mean that no matter what algorithm M was, since or one half or you can

maybe even say one third.

So basically what it would mean is that in this random walk that we are taking, usually less than

one third of the visited vertices will be in B, will be bad okay, the two third will be good. So two

third of the answers will be right. So actually half would also do, half would also do. Yeah so

less than half will be, usually less than half will be bad. So at least half are good. So on which

M(x) will give the correct answer.

And so when you take the majority vote you will get the correct answer with high probability,

okay. This is how we will approach this. So this theorem of Ajtai and others we will do next time

by matrix analysis which will be an interesting exercise. We will build on what we have done

before.
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