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So, PCP stands for probabilistically checkable proofs. So, before I go head, let me just give a 

brief history. So, what happened in this early 90s, I mean after the proof of Shamir showing that 

IP is equal to PSPACE. So, people started looking that other any other such interactive model 

where you have a all powerful prover and a verifier which will characterize lower classes. So, IP 

characterized PSPACE but what about NP? 

 

Because NP is sort of more of more interest to complexity theories. So, they were trying to see 

that how can we characterize NP. So, one strategy which was thought of this what if we bound 

the space that the verifier can use. So, earlier the bound on the verifier was that it is a 

probabilistic polynomial time machine but in addition to that what if you also bound the space. 

So, that had a line of work I mean, although it did not turn out to be very fruitful. 

 

But was an important line of work nonetheless. Alternatively, there is other group of researchers 



who are trying to see that, so the prover produces a proof or a certificate. Now, what if the 

verifier only has restricted access to that certificate? In the sense that verifier is not able to read 

the entire certificate may be let say just a few bits of that certificate. Suppose, if we consider a 

model where the given an input, so let us say we are looking at the SAT problem.  

 

So, given a Boolean formula phi prover will come up with an assignment but now the verifier 

does not look at the entire assignment. Of course if the verify looks at the entire assignment, he 

can plug it into the formula and check if it is satisfiable but suppose if he has access to only a 

few bits of that certificate what can be done. But, we allow the verifier to be not only polynomial 

but also probabilistic.  

 

So, this was the sort of the starting point and after a few couple of papers by several people, in 

fact, I think there are some eight or nine people who are credited for this proof they were able to 

show that a certain model does actually characterize NP, exactly and again, this is another Godel 

Prize winning work all these eight or nine guys, they got the Godel Prize in 2001 for this one. So, 

this is a very important.  

 

So, we will not look at the proof because the proof is quite complicated it needs a lot of time but 

at least the goal today is to look at the definitions, what is this system, what are we trying to 

prove here and maybe try to motivate why it is important? So, that is what will try to see and 

there is also another way of looking at this PCP theorem that is in terms of the hardness of 

approximation.  

 

So, a very important way of looking at NP hard problems is to ask the question that can we 

approximate. I mean, if I mean if not get an actual answer, can we get an approximate answer. 

Again with respect to the SAT problem, suppose if I ask the question that given Boolean formula 

phi can you at least give me a assignment which satisfies at least half the number of clauses or 

maybe five sixth of the number of clauses or some constant.  

 

That is not getting an exact answer but at least some approximate answer. So, this is the problem 

of approximating NP hard problem and so again say approximation became an interest of study 



soon after NP completeness was studied that is in the mid 70’s and people were trying to see that 

can we get an approximate solution to an NP problem NP complete problem, which is as close as 

possible to 1.  

 

Suppose, for any epsilon greater than 0 if we can get an approximate solution, that is 1 minus 

epsilon good. So, we will see what that means then for most practical purposes NP complete 

problems are not much of a hurdle because we are able to achieve quite a good amount of 

approximation but that also phase tape, road block and research as soon realize that probably 

even approximating an NP hard problem is a difficult job.  

 

But they are not able to formalize this, how do you formalize, what does it mean say that 

approximating is also hard. So, another way of looking at PCP is via this approximation method 

and what they achieved or was to show that even approximating NP hard problem up to some 

constants is a hard thing in the sense that if that is achieved it will show that is equal to NP. So, 

that is basically what our agenda is going to be today.  

 

So, look at these two different notions and see at least at least get the idea why they are 

equivalent. As I said that, we have these two models. So, one is a locally checkable proof notion 

and the second notion is that of hardness of approximation. So, let us just keep this at this point 

for the time being let us look at what it means to say that we can approximate a problem. So, let 

us diverge a little bit. So, firstly let me define an optimization version of the three SAT problem. 

 

So, given a Boolean formula will actually always deal with three SAT Boolean formulas but let 

me just still write it for the sake of completeness, given a three SAT Boolean formula phi the 

problem MAX 3 SAT outputs an assignment. So, let us call it u. So, basically u is an assignment 

to the variables of phi that maximizes the number of satisfied clauses I am sorry 3 CNF that is all 

these clauses contain three literals. 

 

And, we say that the value of phi value of phi basically will be that what fractions of the clauses 

get satisfied? So, the value of phi is the maximum over all assignments u that will maximize the 

following quantity number of satisfied clauses divided by the total number of clauses. So, given 



any Boolean formula phi you always have a value Phi attached to it. So, this is define this way. 

So, if phi is satisfiable what is value of phi? It is 1. 

 

So, that is a simple observation that phi belongs to SAT then value of phi because there is some 

assignment which will satisfy all the clauses. So, the next is an approximation algorithm.  
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For all rho less than 1 a rho approximation algorithm A for MAX 3 SAT, outputs an assignment 

U so what do you expect it to be? Of course given a formula 5, so given a formula of phi it will 

output an assignment U such that the number of satisfied clauses in phi of u is at least rho times 

value of phi times m, where m is the number of clauses. So, basically this quantity is the total 

number of possible clauses that can be satisfied by any assignment. 

 

So, we say that this algorithm will approximate it up to a factor of rho, if it outputs an 

assignment u bar that will satisfy at least rho times that many clauses. So, let us look at an 

example a half approximation algorithm for MAX 3-SAT and not only is it a half approximation 

it say half approximation polynomial time, polynomial time algorithm for MAX 3-SAT. So, this 

is quite simple.  

 

So, given let us say a Boolean formula phi what the algorithm will do is, it will do the following 

for let us say some i going from 1 to n, so it will pick the variable V i, so initial to pick variable 



V 1 or in this case so let us pick some variable V 1 in the formula and it will try to assign a value 

to that variable that would satisfy at least half the number of clauses in which that variable is 

present. So, the variable can be present as in the positive form or in it is negative form. 

 

So, I can always assign a value 0 or 1 to it. So, that at least half the number of clauses in which it 

is present gets satisfied. So, assign value to V i such that greater than or equal to half the number 

of clauses in which V i is present is satisfied. This can easily be done in polynomial time I will 

just run through the entire formula and then what we do is that after we do this assignment, we 

remove all those clauses, remove the satisfied clauses. 

 

So, those clauses that got satisfied as a result of an assignment of value to V i, just remove them 

remove the satisfied clauses and you do this for every variable in an iterative fashion. So, the 

claim is that at the end the values that get assigned to all the variables will satisfy at least half the 

number of clauses that can very easily be seen from this I mean, basically the way this algorithm 

is designed. 
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I am just leave this as a small exercise; if it as m clauses at least m by 2 clauses are satisfied. So, 

the idea way to argue this is basically you each time you look at the number of clauses that are 

not satisfied and finally you show that that can be at most m by 2. So, I just prove this; so this is 

a very easy half approximation algorithm for MAX 3 SAT and in fact what can quite easily not 



very easily but what can be achieved is. 

 

You can get something like a 7 by 8 minus epsilon approximation algorithm for this problem. 

For any epsilon greater than 0, there was a proof and this was not very, I mean, this was quite 

recently actually using semi definite programming some people showed that you can come up 

with a 7 by 8 minus epsilon approximation algorithm for this problem and suppose I mean, 

suppose if you look at the special case where each clause has distinct literals that is literals, do 

not reappear.  

 

In that case, suppose, if I look at a random assignment of values to all my variables and let us 

look at one clause what is the probability that that clause will get satisfied so suppose you have 

just one problem think of a Boolean formula which has just one clause it has 3. It will be 7 by 8 

because only one assignment will make it unsatisfiable and all the other seven assignments to 

those three literals will make it satisfiable. 

 

So, suppose if you have a Boolean formula where all the literals are distinct and if you pick a 

random assignment that will get you a approximation not quite I mean because it still not 

deterministic polynomial always, any random assignment will always satisfy, actually, so the 

expected number of thing will be but again this can easily be made deterministic also this 

approach. 

 

So, that is the easy case but generally we will have Boolean formulas where clauses will repeat 

literals, that is why this proof is not quite trivial but this is what is known. So, let us come back 

to PCP is now, so what is the PCP so first let me give a informal idea and will then formalize it. 
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So, we have a prover and we have a verifier. So, given an input x, both the prover and the 

verifier what the prover does it? In generate say certificate pi and if that x belongs to the 

language then there always exists a proper certificate and if the input does not belong to the 

language the goal of the prover is to some over cheat the verifier. Basically, try to convince them 

falsely that x does belong to the language. 

 

What the verifier does is, the verifier is firstly a probabilistic polynomial time algorithm it picks 

some r random bits, so see what we want our r to be and it makes random access queries makes 

let us say some q many random access queries to the proof pi and then finally it outputs 0 or 1 

depending on whether it thinks that x does not belong to the language or it belongs to the 

language. 

 

So, these parts are, we are familiar with these parts but what does it mean to say that it makes 

random access queries. So, basically what the verifier does is that it does not of course it does not 

go through the entire proof it just writes an index of this proof. So, let say there is some special 

tip, there is some special address tip where the verifier writes i then in the next step the verifier 

will basically get what is the bit which is contained in the ith position of pi. 

 

Basically, what is the value of pi of i? So, that is basically one query, so this query is something 

which is very valuable and the verifier does not have too many queries at his disposal so he very 



carefully selects what is queries are going to be. So, let us say he says 10 may be he writes binary 

of 10 and in the next step he gets what is the bit at the 10th position of pi then again he may be 

using some random coin tosses and he says that may be 99th. 

 

So, he will get what is the bit at the 99th position. So, in this manner he is allowed to make some 

q queries. So, the reason why this model is useful is that now note that the length of pi can 

actually be exponential in the address that the verifier writes. Suppose, if the verifier wants to 

come see what is the 99th element in pi you needs to writes the binary of 99 and the binary of 99 

is just some log 99 bit number.  

 

So, if the verifier has let us say the polynomial time machine and he writes some polynomial 

address then I mean, ideally the proof pi can be exponentially long. By writing a polynomial and 

address you can refer to a proof, which is 2 to the power, that polynomial in length that is what is 

crucially. So, this clear to everybody we are saying here. So, pi is a certificate which the prover 

generates.  

 

So, again prover is somebody who is all powerful I mean, there is no computational bound on the 

prover. Prover can generate any certificate. So, his goal is to always convince the verifier that the 

input belongs to the language. For example, let us look at that case again when we are looking at 

the language SAT. So, then given let us say a Boolean formula phi the verifier what we know I 

mean the standard certificate based definition the way I mean, the proverb basically generates an 

assignment to than Boolean formulas. 

 

So, such that if the Boolean formula is satisfiable then plugging in those values will get it 

satisfied and if it is not satisfiable then no matter what assignment he produces, he can never 

satisfy the formula phi. So, now how many so suppose you have this model how many bits does 

the verifier need to query an assignment. So, what is the length of an assignment? It is n bits, 

suppose if you have a formula on n variables it is an n bit string. 

 

So, you only need a log n bit, you only need log n bits to make your queries to denote the index 

of that that is what I am saying that the random access model basically enables to vary something 



which is by using space that is much smaller than the actual length of the proof. Here the, how 

long the query can be is not bounded but what is bounded is that it is a probabilistic polynomial 

time algorithm, more importantly it is a polynomial time algorithm. 

 

So, what can actually happen is that you can have proofs in this model which are exponentially 

long. So, we will see so we will actually look at an example of a problem where there is an 

exponentially long proof with a PCP verifier, but let us look at the formal definition. See again, 

let me go back what is crucial, I mean the resource that is very important in this case is how 

many queries you are making. 

 

So, that is the resource that is very crucial to the verifier it is does not want to waste that 

resource. So, here very carefully select is a queries and also of course this is also another 

resource how many random bits is using. So, one notation that we follow is we will use the 

random variable V pi X. So, V pi X is a random variable that denotes that takes values either 0 or 

1. So, V pi X is 1; if the verifier accepts and or if the verifier outputs 1 and it is 0 otherwise. 

 

And, it is a random variable because the value of V pi X will depend on the random string of the 

verifier, so basically what random bits the verifier chooses will determine what this value is 

going to be. 
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So, let us look at the definition of what PCP verifier is? So, let r and q be functions from natural 

numbers to natural numbers and so we say that the language L has a rn, qn PCP verifier 

expression if there exists a probabilistic polynomial time algorithm V such that so V have the 

following properties V uses rn random bits and makes qn many queries. Such that for all x there 

exist a proof pi. 

 

That is x belongs to L then the probability that V with pi as it is certificate of x and output 1 is 

equal to 1. And, if x does not belong to L then the probability that leads pi of x of outputs 1 is 

less than or equal to half. So, basically a language has said to have a rn, qn, PCP verifier if there 

is some proof there is some prover, verifier where given an x the prover produces pi and the 

verifier firstly is a probabilistic polynomial time algorithm. 

 

 

It uses at most r n random bit and it makes q n queries. Again, as I said that these queries are 

done by this random access such that if x belongs to the language then the probability that the 

verifier over his choice of random strings will accept x is equal to 1 and if x does not belong to 

the language then no matter what proof the prover produces, so just sorry for this but let me just 

change this a little bit because this is not exactly same what I wanted to say. 

 

So, for all x if x belongs to the language then there exists a pi such that the probability of this 

happening is 1 and if x does not belong to the language then for all pi no matter what proof the 

prover produces this probability is at most half. 
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And, now so we define this set PCP of rn, qn as the set of all languages such that there exists 

some constants there exists some c, d greater than 0 such that L has a c dot rn d dot qn PCP 

verifier. So, the c and d are just to replacing the big O notation. So, PCP r n, q n is basically the 

set of all languages for which there exists some c rn, d qn PCP verifier, where this is what a PCP 

verifier is. 

 

So, this is the definition of this class and the famous PCP theorem; you call this theorem 1, is 

also known as the PCP theorem because so basically after the PCP theorem was discovered I 

mean many variants of this theorem came along, there are many other PCP theorem but since 

this was the first one and this was in some sense the most important one this is known as the PCP 

theorem. So, what this says is NP is equal to PCP log n, 1. 

 

So, in other words you are using only log n many random bits order log n many and making just 

some constant queries to your proof, this was very surprising and not only that it is an equivalent 

condition I mean it exactly characterizes NP. So, this direction is easy to show I mean why PCP 

log n, 1 content in NP is very easy to show we will see that but the it is the other direction which 

is difficult and even showing one part of the other direction is quite easy. 

 

So, you always suppose I take a language in NP and so let I take SAT for example, then I can 

always say that my prover will produce as it is certificate a satisfying assignment, so no matter 



which constant bits of that satisfying assignment you query, the verifier will always accept. So, 

does not matter which bits it queries but it is this thing that is very difficult that if you have an 

instance which does not belong to the language. 

 

It will reject with the probability at least half for any certificate. So, maybe I should also say the 

author so there was an earlier paper prior to some basically this is credited to these two authors 

so Arora and Safra so Arora is the same guy who wrote text book that you are following and 

there is another subsequent paper by a Arora, Lund, Motwani, Madhu Sudan and Szegedy, that 

was also 92 and Motwani is actually an alumni of this department. So, that is a good thing. 

 

So, basically, so these two guys meet some progress in this theorem I mean, they showed some 

intermediate result and it was in the subsequent paper where this theorem actually appeared. So, 

there is also another variant of this theorem which appeared soon after that I just called that m 2 

that is the class NEXP is equal to PCP of using polynomially many random bits and constant 

number of queries. 

 

This was not very easy I mean, this was not just an immediate extension of this but the proof was 

along similar lines, some modification is you so any questions about the model?  
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So, let us look at an example so what we will show is that a graph known isomorphism problem 



has a PCP verifier that uses polynomially many random bits and one query. So, in the second 

half of this course this graph known isomorphism problem is become quite popular this 

occurring in several contexts but anyway, so, what do we know about the graph known 

isomorphism problem? It is in am and it is not minutes, it is not known to be in NP. 

 

It is of course in co NP because if it were to be in NP then by the PCP theorem it would have 

implied that it has a log n, one PCP verifier but that is not the case. So, let us see why this is the 

case; so suppose you are given as input two graphs G 0 and G 1 this is the input, what is the 

prover does this? So, let us again assume that both these graphs are on n vertices because of the 

number of vertices are not the same then one can immediately accept they cannot be isomorphic. 

 

So, let us assume there over the same they have the same number of vertices so what the prover 

does is, he constructs a certificate pi that has length equal to the number of graphs that is possible 

on n vertices. So, one way to look at that is so suppose if you have a graph on n vertices, what is 

the size of the adjacency matrix? It is an n by n matrix, so it has n square bits. So, what you can 

do is that you can refer the ith bit of the proof to the graph, which is represented by the ith 

adjacency matrix. 

 

I mean, I can always look at a lexicographical ordering of all n cross n matrices over 0 ones and 

once I have a lexicographical ordering I can talk about the ith matrix and that matrix corresponds 

to some graph pi i is equal to b if the, ith graph, let us call it h of i is isomorphic to G b. So, if the 

ith graph is isomorphic to 0 then I said pi of i to be 0 and otherwise I said pi of i to be 1. So, I am 

defining what my proof is going to be, so I am defining what I mean, what is the optimal choice 

of the prover, so I want to define a PCP I mean I want to give a PCP verifier.  

 

In other words, it should have the property that for every x in L there will exist a pi such that the 

verifier always accepts and if I have an instance which is not in the language then no matter what 

the proof is the verifier will always reject. So, I am just looking at the case when let us say I have 

an instance which is in the language that is these are the two graphs are not isomorphic. What is 

an optimal choice of pi when any other choice of pi I am claiming will be a bad choice but that 

will come to later on.  



So, the ith bit of pi, so pi of i denotes the ith bit of pi, so this bit is equal to b, so b belongs to the 

set 0, 1. If you look at the ith graph, as I said that you can always consider the ith graph. If the ith 

graph, h of i is isomorphic to G of b absolutely it can be that ith graph is not isomorphic to either 

of them then you set it to be any value. So, let us say without loss of generality, you always set it 

to 0.  

 

So, what the verifier will do is the following; so given this input G 0 g one first it picks, let me 

not use the same b let us say b prime takes a bit b prime randomly from 0, 1; so note that it can 

use polynomially bits. So, first it takes a bit and then it picks a random permutation, so it picks a 

permutation sigma randomly from the set of all permutation of 1 to n. So, again we call that from 

what we had done earlier in the case of I P.  

 

S n is the set of all permutations of 1 to n takes some random permutation for this it will 

basically need a many, many bits and then what it does is, it applies the permutation on this 

graph G b. Looks at what sigma G of b prime is and it outputs so if there is the proof pi using j. 

So, basically try it writes down this j on it is address tape and it looks at the jth bit of pi. So, if pi 

j is equal to b prime then it accepts else rejects.  

 

So, let us again understand carefully what is happening here? It picks a bit b prime at random, so 

basically b prime corresponds to which graph it will pick. So, let us say b prime without loss of 

generality is zero, so it looks at the graph G 0, it again picks a random permutation sigma and it 

permutes the vertices of G 0 using sigma. So, that will give it some adjacency matrix. So, it 

queries what is the bit corresponding to that adjacency matrix?  

 

It queries that and then depending on what that bit is, is that bit is equal to b prime then it accepts 

otherwise rejects. So, let us see why this correct this is the algorithm clear?  
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Suppose, if G 1 is not isomorphic to G 2 and what happens is that, let us say that b prime is G 0, 

or sorry b prime is 0 without loss of generality 0 and 1. So, let b prime be 0 without loss of 

generality, so then what is sigma? G 0. So, sigma G 0 is sum H j and what do we know about H 

j, H j is of course isomorphic to G 0 because it is a permutation I am just renaming the vertices 

but what is the relation between H j and G 1? They are non isomorphic. H j is not isomorphic to 

G 1. 

 

But now, what it does is it looks at the jth bit of pi? So, what will the jth bit of pi b? The jth bit of 

pi in this case will have to be 0 because the jth bit corresponds to this graph, H j and H j is 

isomorphic to G 0 but it is not isomorphic to G 1, so the jth bit does not have any other choice 

but the construction it has to be 0, so it is 0 and therefore this is 0 and therefore V accept it will 

always accept. 

 

And, if these two graphs are isomorphic then what happens? Again there I mean, they are 

basically the prover stuck I mean the prover in it is jth bit can put a 0 or 1, so I mean, it does not 

matter what he puts but the thing is that with probability at most half because initially the verifier 

is doing a coin toss to decide which of the two graphs it will pick there is a probability exactly 

half that it will pick the graph, which is not the same as that bit. 

 

So, these two graphs are isomorphic the probability that V accepts basically exactly half, because 



H of j in that case will be isomorphic to both the graphs, I mean does not matter what 

permutation if they picks always picks random permutation, but since the bit b prime since, the 

bit b prime was picked random depending on what that b prime is we will either accept or reject 

the probability exactly half, this is the correct protocol. So, is this clear to everybody? A few 

observations about this PCP verifier; 
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So, firstly so suppose if you have a verifier with which uses r n random bits and q queries, what 

should be the maximum length of pi? So, ideally pi can be anything but I mean how much of that 

pi can the verifier actually access? So, let us let us just break that problem talk, suppose the 

verifier suppose qn is equal to 1, in a sense that suppose the verifier can make only one query. 

So, he has access to rn many random bits what is the length of the proof?  

 

That is actually of any use to the verifier with only one query. Suppose qn is 1, in the sense that I 

mean 1 in the sense not 1 according to this definition but just 1 query. So, basically if you look at 

I mean, how many random strings can you have of length rn. You will have 2 to the power rn 

random strings and because of this because we have this d sitting here that is just assume it is 2 

raise to order of rn or some d rn. 

 

And for each of those different random strings, it can query a different bit of pi potentially. If the 

prover has only one, I mean if the verifier has only one query allotted to him I mean, the length 



of proof that is of any used to the verifier is 2 raise to order of rn. So, now suppose if he has qn 

many queries that he can make it will be qn times 2 raise to the power rn, correct there is no size 

of the query. 

 

But a size can be basically so that is what I said the size of the query can be anything I mean as 

long as it is accessible by a polynomial time machine. So, ideally the size of the query can be 

polynomial. Now, it will not be affected because we suppose, so I see what you are thinking a 

think of it this way the prover always knows what is the verifier strategy so the prover has access 

to the algorithm V.  

 

So, in other words, suppose if the verifier writes down a very large address, although that address 

refers to just one bit, the prover is part enough to just keep that one particular bit. So, let us say 

the verifier writes down the address 1298. The prover will basically I mean, he knows the 

difference. Suppose the verifier is a deterministic machine who makes just one query and he is 

saying that I will query the cell of the verifier that has this particular address.  

 

So, what the prover will do is that he will just keep that one particular bit in his proof. It does not 

need to keep the other bits. Every time both the prover and the verifier gets an input that is the 

only bit that will be of any use. Since it is a randomized machine then since the verifier is a 

probabilistic machine based on different choices of random strings the verifier can make 

different queries.  

 

That is why he needs the proof to have length at least 2 to the power r n and since the number of 

queries allowed is q that has to be q times 2 to the power rn. So, actually his point is a very good 

point I mean, it is a good question. Because I mean ideally the verifier has polynomial time. So, 

nobody is stopping the verifier from writing down an address which has polynomial length and if 

the verifier is writing down an address, which is polynomial length that can basically, query a 

proof that has length exponential.  

 

But the point is that in that case the prover will only keep that one particular bit in its proof. The 

rest of the proof is of no use. No, I mean in which case here constantly many times because of 



this c here, 1. So, in each query it gets 1 bit. In queries for some address and whatever is the bit 

present at that address of the proof it gets that bit. So, the first point is that effective length of the 

proof.  

 

So, by effective what I mean, whatever is actually necessary for the verifiers algorithm to 

proceed is bounded by two to the power order of r n times q of n. Although the proof as I said is 

ideally unbounded but this is what is of any importance. The second point is that the verifiers 

algorithm that is this algorithm V is non-adaptive. So, what do we mean by non-adaptive? 

Basically earlier queries precisely.  

 

So, basically when the verifier goes on making queries it does not depend on what the earlier 

queries were. So, the only variables on which a query will depend is what the input is and what 

the random string is. So, this is basically what I mean, although adaptive verifiers are considered 

in the literature, but we just assume that our verifier is non adaptive. And there was another 

point.  

 

So, what can we say about the PCP of rn, qn in terms of a non-deterministic time bounded 

machine? I want to simulate a PCP verifier using a non-deterministic machine. How much time 

do you think it will take? So, let me give the answer maybe then we can see why that is true. So, 

the amount of time that basically non-deterministic machines will take is basically the length of 

pi.  

 

In other words, that is q n times 2 to the power let me just skip the whole. I will just write it as r 

n. So, why is this that case? Any ideas? Everything is not done. So, what do you do? So, I want 

to construct a non-deterministic machine that is allowed to use so much time. But it has to 

simulate a language in this class. What you said was correct partly. I mean initially what it does 

is it will guess the proof. It will guess this certificate pi. Then what?  

 

If it guesses the random bits, suppose it guesses the random bits then it can deterministically go 

to the random position and then based on. So, guessing the random bits actually will not work. 

Because there can be one random string. Let us look at this strategy. So, the strategy is basically 



so what it does is it first guesses, the string pi. And then what it does is that it cycles through all 

strings are in 01 to the power rn. Whatever is the length of the random string that the PCP 

verifier was using its cycles through all these random strings.  

 

And for each random string it can then deterministically check whether the verifier is accepting 

or not. For each random string it will just look at that particular bit of pi and then it will see that 

whatever is the answer of the verifier. So, it keeps a track and then finally when does it accept? 

In other words for all random strings the verifier should accept. So, this machine accepts if for all 

r the verifier is accepting and it rejects if for at least half the fraction of r is rejecting.  

 

I mean since we are looking at a language in this class we know that by definition it will be one 

of these two quantities. Either for all random strings the verifier will go ahead and accept or there 

will be at least half many random strings for which no matter what proof is being guessed a 

verifier will end up rejecting. So, this is a very simple way of simulating a PCP verifier using a 

non-deterministic machine.  

 

Is this clear to everybody what we are doing? But the other thing that you are saying the reason 

that might not work is suppose if you guess a pi and then you guess a random string what 

happens? It is only looking at basically one case. There can be two to the power r n random 

strings. So, depending on if you take your decision based on just one string that might be wrong 

because that string can accept. 

 

But maybe there are other half fraction of random strings which will reject which will lead to a 

wrong answer. What does this give us? What does this containment give us immediately? Let us 

see if we plug in those parameters suppose if you choose r n to be log n and q n to be constant 

what we get is an immediate corollary is PCP rn, qn is contained in n time of some polynomial. 

That is why I said that one direction of this proof is quite easy.  

 

It is the other direction which is difficult. NP is in PCP log n, 1. It is not known for general qn 

and rn. Maybe so you are saying that for certain functions qn and rn the reverse containment is 

not true. Because again there are certain rn and qn for which this is true. Basically when rn is 



equal to log n and it is equal to 1. So, I mean what would be a candidate choice for r n and qn in 

that case?  

 

I do not know. I mean, maybe it is known but what my guess is that probably it is an open 

question. I mean showing something is not contained in something is a difficult problem anyway. 

So, I do not think that is. Because essentially what you have to show is that even if you pick let 

us say two good candidate functions for qn and r n. What do you have to show is that there is no 

PCP verifier possible with rn and qn as its parameters that will contain every language in this 

class.  

 

So, what were the other things? The other thing is that this constant half is not against something 

which is very crucial.  
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This is also known as the soundness constant. Half is let me call it universal. I mean the sense 

that you can always make suppose if I want to reduce the error if I want to bring it down to 

maybe one fourth or one tenth or something I can always repeat this experiment many times this 

algorithm and by the usual strategy bring that down. That is not very crucial. So, that at least 

ends one way of looking at the PCP theorem.  

 

The other way as I said is the hardness of approximation. Can anyone say? Forget about the poly 



part for now. What does that 0 mean? So, the certificate is redundant in some sense. So, BPP, 

RPP, ZPP. So, what is happening? So, it is a probabilistic algorithm polynomial time is more 

than P and what kind of error does it have? It has a one sided error. It is not BPP but is it RP? 

Think about what kind of error it is having. Yes, it is co-RP actually.  

 

Because for x belonging to the language you are accepting with full probability, but for x not 

belonging to the language you are rejecting with probability at least half. So, it is basically co-

RP. So, just think before you leave. So, what does the hardness of the approximation theorem 

say?  
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So, this is the third important theorem that we will see today. This is generally known as the 

hardness of approximation result. So, what this says is there exists a constant let me call it sigma. 

So, there exists some sigma less than 1 such that for all languages L in NP there exists a poly 

time computable function f that maps strings to let us say 3 CNF boolean formulae. Then for 

those x's which belong to the language; 

 

If I look at f of x so by definition f of x is a Boolean formula. I can therefore look at val of f of x. 

So, recall what val was? What was val? Fraction of assignments which are satisfied. So, val of f 

of x is equal to one and for those x's that do not belong to the language val of f of x less than 

sigma. So, there exists some fixed constant such that any polynomial time function I mean, if 



you take any mapping from else basically this f kind of corresponds to reducing it to the MAX 

3SAT problem.  

 

So, you take any language in NP and you reduce it to an instance of MAX 3SAT. What it is 

saying is that if x belongs to the language then this is always satisfiable. But if x does not belong 

to the language then you cannot get any more than a sigma fraction of satisfying assignments. 

So, this is the small signal. Sorry, satisfying clauses not assignments.  
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This immediately gives the following corollary that there exists a rho less than 1 such that there 

exists a rho approximation poly time algorithm A for MAX 3 SAT. I am sorry if there is such 

that if there exist such an algorithm then P is equal to NP so there exists some constant maybe 

rho is half or something like that of course. It has to be more than 7 by 8. So, there is some 

constant rho such that if there is a rho approximation polynomial time algorithm for the MAX 3 

SAT problem. 

 

Then P is equal to NP. So, in other words what this says is that you cannot get any 

approximation algorithm you do not expect to get any approximation algorithm that is better than 

rho. That is equal to rho. The moment you get an approximation algorithm that approximates it 

up to a factor of rho its equivalent to showing P is equal to NP. So, not only is deterministically 

solving an NP hard problem difficult, even approximating an NP hard problem is difficult upto 



any constant.  

 

So, let us see why this corollary follows from the theorem. How do you prove this? So, let us 

take a language in NP. In fact, let us take the SAT. So, I think it is enough if we show that SAT 

as a polynomial time algorithm. So, let us pick SAT. We are looking at 3 SAT and let us take an 

instance phi. So, how do we prove this? What does this theorem tell us? So, what the theorem 

says I mean, if I just imitate that theorem what it says is that for this problem SAT. 

 

I mean there exists some constants sigma less than one then such that if I pick the problem SAT 

and I pick some instance of SAT there exist a function f such that if I look at f of phi. So, f of phi 

has either all its clauses satisfied or f of phi has less than sigma fraction getting satisfied 

depending on whether phi belongs to SAT or not. Sorry for moving so far left. So, basically if I 

pick my NP language to be SAT. 

 

What it says is that there exists a constant such that there is a polynomial time computable 

function f. f is poly time computable, this is important such that if I construct this formula f of 

phi f of phi either has all its clauses that gets satisfied or at most sigma many. So, what does this 

tell us? What should the rho be for us? So, now what happens if I set my rho to be equal to 

sigma? 

 

So, what do I get? So, what I get is if I set rho to be equal to sigma what I have is an sigma 

approximation algorithm for this problem. In other words what does the sigma approximation 

algorithm mean? It means that if an instance belongs to the language. No, I am sorry. So, what is 

sigma approximation algorithm for MAX 3 SAT means is that at least sigma fraction of the 

clauses are always satisfied.  

 

Suppose if I start with phi which is in SAT what would f of phi be? Let me just replace this a 

little bit. Maybe I am just misleading here. So, we have f of phi which is an instance of MAX 3 

SAT. 
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So, what is A? What can we say about the A f of phi? What is if I feed this input f of i to this 

algorithm A? Suppose if phi is satisfiable what can we say about A f of phi? So, it will come out 

with a satisfying assignment such that so I am setting rho to be equal to sigma. So, it will come 

out with an assignment that satisfies at least rho many clauses in f of phi. So, let us I mean once 

again so we have phi.  

 

So, phi gives us f of phi and we know that in f of phi all the clauses are satisfied by some 

assignment. Since A is a polynomial time approximation algorithm by definition given a formula 

phi it always produces an assignment which satisfies at least rho many clauses. I mean rho 

fraction of the clauses. So, basically A f of phi will produce an assignment that satisfies more 

than rho fraction of the clauses. So, this is the case when phi belongs to SAT.  

 

And both these things are computable polynomial time. So, f is also a polynomial time 

computable function so A is also a polynomial time computable function. So, basically whatever 

this assignment that I will get that is obtained in polynomial time. Now what happens in the other 

case when phi does not belong to SAT? What do we have from here? So, sigma and rho are the 

same. So, just think of them as the same.  

 

So, what that means is that in f of phi how many clauses are satisfiable? So, by this result in f of 

phi at most rho many clauses are satisfied. So, f of i has less than rho clauses that can be satisfied 



for any assignment. Not for some particular, for any assignment. So, now if you apply A to f of i, 

of course, it cannot give you better than that. It will always be less than that. Even if I assume 

that it gives a perfect approximation when applied to f of i it will still be less than rho fraction.  

 

It will be some same rho, but I wrote sigma here. So, if I apply A f of i here the number of 

clauses the fraction of clauses that will be satisfied will be less than rho and greater than rho 

square because it is an approximation algorithm. So, then what we can do is then finally we can 

just count how many clauses are getting satisfied? So, if the count is greater than rho times m, we 

accept and if the count is less than rho times m, we reject.  

 

So, just think and let me know if something is not clear. Actually nothing complicated is 

happening here. It is just plugging in the definitions. I mean, this is to recall the definitions of 

approximation algorithm and what is going on in this theorem that is all that is being used. There 

exists so this function is basically producing another Boolean formula which has this property. 

So, basically we know from this theorem that there exists a polynomial time computable function 

that produces 3CNF Boolean formulas where either all the clauses are satisfiable by some 

assignment or at most rho fraction of the clauses are satisfiable.  

 

So, again forget about sigma. Let us say we have just one constant rho or at most rho fraction of 

clauses that are satisfiable. So, either all or rho fractions. So, there is a gap between them. Now 

that is the gap which we are exploiting. So, now if phi belongs to SAT, by that theorem, we 

know that f of phi in f of phi all the clauses get satisfied by some assignment. So, an 

approximation algorithm has to have the property that it satisfies at least rho fraction of them.  

 

In fact strictly greater than rho fraction of them. On the other hand if it does not belong to SAT 

then this theorem has the property that f of phi has less than rho fraction of clauses that are 

satisfiable. So, even if I apply the best possible approximation algorithm that will still be less 

than rho. So, it basically lies between rho and rho square which is smaller than rho. So, 

ultimately what do we do after this is we just count how many clauses are getting satisfied and 

that is the algorithm.  

 



So, that will show that SAT is in P. So, this corollary is what? No, it will not because I just do 

this is not quite correct. So, what I do is that then I look at A f of phi as in the earlier case and 

this produces some assignment u right as here. So, I just plug in this u in f of phi and then I 

count. I am not counting over all possible strings. So, look over it. I mean, it is very interesting. 

So, although this is the main hardness of approximation theorem this is what is mostly used in 

practice.  

 

I mean again here we can change a MAX 3 SAT with any other problem in NP. Because from 

any problem in NP there will always be a reduction to SAT. So, that is always there.  
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So, I intended to show that theorem 1 and 3 are equivalent. So, in fact, this is I think section 11.3 

in your textbook and this is also a very nice proof. I mean it is easy. It is not at all difficult. But it 

has many notations. So, just have to carefully work through the notations. But the nice thing 

about this proof is that it is connecting to very seemingly different areas. So, theorem 1 if you 

recall was basically that NP is equal to PCP log n, 1 and theorem 3 is talking about hardness of 

approximating NP hard problems.  

 

So, these seemingly different areas or the seemingly different results are equivalent to one 

another. So, I think I will go and it is better not to do it now. But I do advise that you go and read 

this section 11.3. It is a nice book. So, what we will do tomorrow is we will just complete our 



discussion on communication complexity and we will do a review of what we have seen so far in 

this course. I mean I plan to do a review. I do not know how much successful I will be. Thank 

you. 


