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Last time we say that BPP is computable by polynomial size circuits in other words it is p by 

poly so we will look at an, another important result concerning BPP. 
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So what we will show today is that BPP is also contained in sigma 2 inter section Pi 2. So 

remember that when we first introduced BPP we discussed that why we do not know whether 

BPP is contained in n p or not. Because of this 2 sided error thing so that is I mean that is still an 

open problem whether BPP is in n p or whether BPP is in co n p or not. But this is actually 

known so and this was due to the following people so Sipser. 

 

I think in the late seventies we proved that BPP is in the polynomial hierarchy and then this 

result was due to Gac’s and Laute man in 83. So Gac’s actually gave the first proof that BPP is in 

sigma 2 intersect by 2 but Laute man subsequently gave a simpler proof in fact the proof that we 

will discuss now is due to Laute man. So I mean so BPP is closed under complement it is enough 

to show that this is in just sigma 2 because BPP is equal to co BPP. 

 



So the idea is as follows so the idea is to, basically and let us also assume that the random string 

that this machine uses has learned some f. So suppose we are looking at for x and 0 1 to the 

power n r belongs to 0, 1 to the power n. So since the machine that we are considering is a 

polynomial time machine m cannot be more than polynomially larger as a function of n.  
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So the idea is as follows so let us look at the space of all random strings. So this is the set of all 

strings of length m how many good strings do we have in this strings? Suppose we have a 

instance which in the language for that instance how many strings are there which makes the 

machine to give a correct answer? So is that question clear? So basically I mean r can be any of 

these 2 to the power n strings.  

 

So suppose if you pick a string in the language then what fraction of these 2 to the power n 

strings will make m accept x correctly at least 1 – 1 over 2 to the power n. So basically it is quite 

a large fraction so this fraction so this has size at least 1 – 1 over 2 to the power m times 2 to the 

power m correct. On the other hand so this is for correct let me say that for x in l this is the set of 

random strings which we make it give a correct answer or it will make it accept. 

 

On the other hand suppose if you have an instance which is not in the language then how many 

strings will need m access? It is less than 1 over it is some small fraction which is smaller than 2 

to the power m – n for x naught in l. So the idea is to basically distinguish between 2 cases. So 



suppose I can construct the sigma 2 machine which can distinguish between these 2 cases then I 

am done. 

 

So I will just give some names to these sets so let so given an x let S x be the set of all random 

strings such that m accepts x with the help of that random string. So what I want to distinguish 

is? Is S of x greater than this number or smaller than 2 to the power m – n. So how do we go 

about this? So before we proceed with the proof let us take a D tour and look at the some 

definitions. 
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So given 2 strings let us say u, v in some universe 0, 1 to the power n let u + v denote the bit 

wise XOR of u and v. Suppose you have 2 m bit strings you can consider the bit wise one that is 

the bits are 0 or 1 you make it 0 or otherwise it is 1. And similarly given a sets and some u in 0, 1 

to the power n I can extend this definition to the set +u as it has the natural definition it is the set 

of all w such that w is u XOR v for v belonging to S.  

 

So you maybe I should have written this I mean it does not matter because this thing is 

commutative but just to be consistent I should write this as v XOR u. And this operation is 

commutative because it does not matter whether you look at u XOR v or v XOR u is the same 

thing.  
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So the first claim and let us fix a constant so it also defines this constant K should be (()) (10:53) 

of m by n+ 1. We will come to this later on why we have this particular definition but let us just 

define it this way for the time being. So the first claim is that if S of x is smaller than 2 to the 

power m – n then for all vectors u 1 up to u k belonging to 0, 1 to the power n. If I look at the 

union of all these sets S of x XOR with u i going from 1 to k. So this is not equal to the entire 

universal. 

 

So in other words what this claim is saying is that? So this is my S of x suppose S of x is small 

then no matter and if I take k vectors no matter what k vectors I take and I consider the XOR of 

this set with each of these vectors. And I take union of all those elements that will never match 

up with entire universe. So there will be some element here which will not belong to that union. 

And the reason for that is that because this set is small so this proof is actually quite easy I mean 

it just follows from simple counting. 

 

Because what is the cardinality of S of x XOR with any u i can it be strictly less than S of X it is 

actually equally it cannot be actually less than S of x also because look at XOR of any element 

here in fact with any other vector any 2 different vectors it will always give 2 different values. So 

in other words for the same vector it will not give for different vectors it will give 2 different 

values. 

 



So this cardinality is equal to S of x what this implies is union of cardinality of union of S of x 

with u i is less than or equal to. Of course in this union can have common elements this is less 

than or equal to k times S of x and S of x is smaller than 2 to the power m – n. So this is strictly 

smaller than 2 to the power n for large enough m because k is just a m by n so it cannot cancel 

off 2 to the power n.  

 

So which implies that union of S of x (()) (15:20) not equal to 0, 1 to, n any questions? So what 

is m? You can do that then there will be at least so then S of x is a small set which is fine. But 

then we are not done we have to look at the other side also so the claim 2 is that if you have such 

an S of x. And if you look at the XOR which these u i’s for a large enough S of x it would 

basically fill up this entire space.  

 

So if you take the error to be too small then you might have a problem it should not matter 

actually I mean you can have m = n. Because you can have a randomized machine where the 

number; of random choices is equal to the length of the input. So that can happen. 
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So the second claim is what I just that if S of x is bigger than 1 – 1 over 2 to the power n times 2 

to the power n then their exist vectors you want to u k such that union of S of x with u i = 0, 1 to 

the power n. This is a slightly more complicated than the other one but these 2; game together 

will show the actual result. So how do we prove this so the proof is again a probabilistic so we 

will prove that the probability that suppose we randomly pick these vectors u 1 through u k. 



 

Suppose these are picked randomly then the probability that the union of all these sets will not 

span the entire universe is non-zero in other words there exist some vectors u 1 through u k for 

which it will span the entire universe. So let me just write that down so repeat u 1 to u k which 

are m vectors uniformly at random. And then what we claim is we will show that the probability 

over all this vectors. 

 

So the probability that we do not spend the entire space is not one in other words there exist a set 

of vectors for which it does that any questions? So far so let us define this event given a string S 

0 1 to the power n we define the event b of s as equal to given that s does not belong to. So all we 

have to do is we have to calculate what is the probability of the union of all these events taken 

over all strings s. 
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We will define b s of 5 as the event that S does not belong to S of x XOR u i. So then basically 

this implies that B s is the intersection of all these events so the probability that it does not 

belong to the union is the probability that it does not belong to each and every set S x + u of i. So 

how do we compute this probability? So each B s i is an independent event exactly. So once we 

can compute this we will get this but how will you conclude this exactly so the point is that so 

what we want to check is that. 

 



So S does not belong to so S is not equal to some u XOR u of i is the same as writing this as u is 

not equal to s XOR u of i because of way we have defined this operation. So now we have fixed 

n x and u i is chosen uniformly at random from this entire universe so the probability that the 

vector u is not equal to s XOR u of i. So the probability that vector u is not equal to s XOR u of i 

is the probability that u does not belong to this set.  

 

And that we know is smaller than u does not belong to this set so this is smaller than 2 to the 

power m – n. So the probability that B s of i happens is (()) (25:24) no so u is the vector in 0, 1 to 

the power. So that is not equal to vector of the form, s XOR u of i equal to should yes you can 

check the other one instead of (()) (26:47). I am just no this probability no but so this is for a 

fixed s and randomly chosen u of i.  

 

Probability is over the choice of u of i so you have fixed x and a fixed u no but when I am talking 

of one particular event s n you are fixed as a, vary actually this is not the way. So I was getting 

confused because so this is actually does not make sense here because so what is s? If I am 

picking s from the set s of x then what we have written here is correct. But for any string s so the 

probability that this is not equal to this is just depends how we are picking this 2.  

 

So these 2 are picked randomly then it will just be one over 2 to the power m or something like 

that the basically the size of the same. But actually what I want to claim here is that so the 

probability that s XOR u of I does not belong to s of x. So this is 1 over 2 to the power of n 

because all these elements so they are uniformly distributed in this entire universe. So, therefore 

the probability that any one element does not belong to this set is smaller than 1 over 2 to the 

power of n.  

 

Therefore the probability that B s of i is true is s does not belong to s of x so it is less than 1 over 

2 to the power n. So now we have a upper bound on this probability. 
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So now we can again bound the probability of b of s so what is the probability of this? If this is 

the probability of B s of i whole raised to k. Because all these events are independent event the 

probability that s does not belong to a certain s of x union XOR with u of i is independent with 

the even does not belong to s of x XOR with some other u j. So therefore this is less than 2 to the 

power minus of n whole raised to k. 

 

And what is the definition of k that we had? Was m by n so therefore this is less than 2 to the 

power -m strictly less than 2 to the power –m. So now we can write this as probability that for 

some s that when b of s happens is less than or equal to the union of all these events. So union 

over all s probability of b of s and by the union bound we have this as exactly this is equal. But 

this is less than or equal to so how many s is can we have? 2 to the power n this is less than 2 to 

the power n times 2 to the power –m strictly less than. 

 

And this is less than 1 so are we done here? So the probability that for some s does not belong to 

this union so we are showing not to be less than 1 and that is what we actually wanted here that 

is the probability that there is some s in this set it does not belong to the union.  

(Refer Slide Time: 33:50) 



 

So therefore there exist some set of vectors you want to u k except the union of s of x and u of i 

is the entire universal. So the crucial thing here is that yeah got, myself a little bit confused here. 

But the property that this thing is commutative this operation the way it is defined. So the we can 

write that x does not belong to u XOR or u of i or s not equal to u XOR u of i or s not equal to u 

XOR u of i. So this is equivalent to saying that u is not equal to s XOR u of i so now let us 

complete the proof. 
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So what do we know that x is in l if and only if this set as a large size so when does the set have a 

large size there exists u 1 to u k such that for all strings r. Or let me just put it as s since I am 

using here of all strings s belongs to the union of s of x XOR u of i. So this is what we have and 



now the thing is that we have to convert it this into a sigma 2 p definition. So this can 

equivalently be written as there exists vector c 1 through u k such that for all s. 

 

If I look at this machine m that is given the string x and another string which is basically the 

random string that it simulates s XOR u of i. This machine should accept and we just do not 

make one run of this machine we make several runs of this machine. And if just in one of those 

runs the machine accepts then we accept. Because let us just pause here and see what this 

statement is claiming so this is claiming that for all strings x all strings s in the universe. 

 

If this machine is provided with s and some u of i then it should accept x and that is what we 

know from our initial definition that if x belongs to the language then there is some u of i for 

which all strings s we will belong to this u m. Then length of the random string that is true. So let 

us look at couple of more things so similar to b p we can also define the log space analogs of 

these class this class is BPP and RPP.  
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So log space probabilistic classes so we have the class BPL so I would not go ahead and formally 

defined it. But this is just a log space analog of BPP so there is a probabilistic machine which 

uses login amount of space and it makes an error of at most 2 by m. And we also have that class 

RL which is the log space analog of RT. So there is one very interesting problem which is 

contained in this class RL and that is the problem of undirected reachability in graph.  

 



So recall the path problem that we defined the so similarly we can define the problem u path. So 

this is given in graph g and 2 vertices s and t where g is an undirected graphs and their exist path 

from s to t so what did you say? Because this was the first non-trivial result that was shown 

about the undirected path problem but then there are subsequently many improvement over it. 

And only in 2005 it was shown that this is in it. 

 

So we just quickly mention some of those things but it is very important to understand this RL 

algorithm.  
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So this was shown in 79 I like 79 or 78 that few path is in RL and this algorithm is quite simple. 

So what this algorithm says is that u yes it is the NL of course because you can always guess a 

path and take the correct answer. But it has been shown that it is in l as well so there is the whole 

sequence of results. So first it was shown in RL in 79 then I think in late eighties it was shown 

that this problem is in l to the power 3 by 2. 

 

So what that means is? D space log to the power 3 by 2 n then I think in 2000 or 99 sometimes in 

the late nineties. It was shown that this problem is in D space log to the power 4 third of n and 

then finally it was shown by Rhine Gold in 2005 that this is in l that kind of catches the 

complexity. This are the very important line of work because the, I mean as you all know that the 

direct version of this problem is for hard for n. 

 



So any improvement on directed version would immediately give a collapse on class NL. So for 

the directed version for example we do not even know whether it is in RL or whether it is in 3 by 

2. The best we know is by Savage’s theorem which is log square because again if you can show 

it is in that RL that would immediately imply that NL is contained in RN which is not known 

which one? 

 

I mean all these are the randomization results actually all these results kind of look at this and is 

some kind of de-randomization. But this is more complicated and it uses this theory of expanded 

graphs. So, expanded graphs are undirected graphs which have very low degree but very high 

connectivity. So when I say high connectivity it means that the, diameter of these graphs are very 

small. So from one vertex in the graph you can go to any other vertex let us say log in number of 

steps. 

 

But these are certain things that you expect only for graphs which are very high degree so 

expanders are graphs which simultaneously have both these properties. So what Rhine Gold did 

was he took an arbitrary undirected graph and then he converted into an expander. Because once 

you have an expander once you have a graph which as diameter of let us say log n you can brute 

force DFS or something and you can solve it in l. 

 

Because suppose the graph as constant degree let us say it has degree 2 and it has diameter log 

in. Then you can always keep a log in bit vector which will help you to do a DFS and whenever 

you are going left store 1 and whenever you are going you store 0. And you can explore all 

possible parts from S to any vertex in that component. But the crucial thing about this thing is 

that how do you convert it general undirected graph into an expander. 

 

So that was the heart of his book so what I was mentioning here is that the first result in this line 

of work was this thing which showed that undirected path is in RL and the algorithm is quite 

simple what the algorithm does is? It starts at s and it just performs a random work of some 

polynomial length I think it does a random of some 8 times 10 to the power 4 where n is the 

number of vertices. And it claims that if t is reachable from s. 

 

So in a undirected graph reachability is the same as checking in 2 vertices belong to the same 

component. So if s and t belong to the same component then what they argued is that with 



probability greater than half you will reach t and of course if t does not belong if s and t do not 

belong to the same component no matter how long you are you will never reach. So the other 

direction is quite easy. 

 

So one direction is a little bit non trivial but it is also not that complicated so what I will do is I 

will not proves this result in class but I will just post a link to a proof of this theorem. So those of 

you who are interested you can just go back and read it. So it is not very difficult it is about 1 or 

2 page proof but it is a nice argument. So I will so it uses the undirected property because it 

checks for the fact that 2 vertices are same component. 

 

Because in directed graphs there can be 2 vertices which are in the same component but they 

might not be path between them. But here they are using that so what they showed here is that I 

mean again let me get the idea is that if you have a stationery distribution on your graph the 

stationary distribution is again a. If want informally define it is basically assigning probabilities 

to every vertex of your graph such that if you take one step from any vertex. 

 

The next probability distribution that you get is the same as your original distribution. Just to 

give a quick example suppose you have a triangle. So this is; the graph and let us say you are 

with equal probability of one third likely to be in any of the 3 vertices. And then suppose if you 

take a step from a vertex so let us say this is a, b and c so suppose if you go for vertex a to b. 

 

So let us say the probability of going from a, to b is half the probability of going from a, to c is 

also half. So what is the probability that you were at k and in the next step you go to b 1 by 6. 

The other way also that you can come to b is from c what is the probability that you were at c in 

your previous step and you come to b. That is also 1 by 6 the probability that after 1, 6 you are at 

a vertex 3 is again 1. 

 

So in this graph no matter how long a walk you take if you start with this distribution you will 

always remain at the same distribution. So this property is not true for directed graphs. In 

directed graph this notion of stationary distribution is not guaranteed. In an undirected graph you 

can show that any undirected graph you there is always a stationary distribution for that graph. 

But that is a crucial difference but anyway I mean I do not want to go into the details of that just 

post that link and (()) (49:52). 


