
Computation Complexity Theory 

Prof. Raghunath Tewari 

Department of Computer Science and Engineering 

Indian Institute of Technology-Kanpur 
 

Lecture-20 

One-sided and Zero-sided Error Probabilistic Complexity Classes 

 

Hello everyone, so we will continue our discussion of probabilistic turing machines. Today we 

look at probabilistic turing machines which have one sided and zero sided error. So I am going to 

start by mentioning what we mean by one sided and zero sided error machines, and how do they 

compare with whatever we have seen about probabilistic turing machines so far. 

(Refer Slide Time: 00:40) 

 

So, the class BPP that we saw had two sided error. So, what do we mean by two sided error? So, 

what it means is that if the string x belongs to the language, even then there is a probability that 

the machine might give a wrong answer, the machine might reject. And if does not belong to the 

language, then also there is a probability that the machine might accept. So, in both cases, there 

is a small probability that the machine can make a error. So, this is what is known as two sided 

error. 

 

Now what if we allow only one sided error? What if we do not allow any error to happen on 

either when x is in L or x is not in L, what kind of complexity class do we get, and how do they 

compare with the two sided error classes? So, we define the class RTIME T of n analogous to D 



time T of n as follows. So, a language L is said to be in RTIME T of n, if there is a probabilistic 

during machine M running in time T of n. 

 

Such that if x belongs to L, then the probability that the machine accepts is greater than half. And 

if x does not belong to L, then the probability that the machine accepts is 0 or in other words the 

probability that the machine rejects is 1. Now if you compare this definition to the definition of 

BP TIME T of n, you would realize that in BP times T of n, there is a probability of an error in 

both sides, when x is in L and when x is not in L. 

 

Here when x is not in L, we do not allow any error to occur. So, when x is not in L the machine 

always gives the correct answer. Now the class that we get by looking at RTIME T of n when T 

of n is polynomial is the class RP. So, this is analogous to the class BPP for one sided error 

machines. And now we can define the complement of this class, we can define the class coRP as 

the set of all languages L, such that the complement of L belongs to RP. 

 

So, what this means is that if we have a language which is in coRP string, if a string is in the 

language L, then the coRP machine will always accept that string. And if a string is not in the 

language then the coRP machine will reject with probability greater than half. So, one small 

point that I want to make before we proceed forward is that although here we choose the number 

half as a constant. 

 

One can actually arbitrarily increase this probability by a significant amount or by let us say 1 - 1 

over a polynomial. So, I can always by repeating the same computation, I mean by basically 

running the same input on the machine again and again. And by taking, so if the machine is let us 

say, suppose I take an RTIME Machine, which has these parameters, that is if x is in L, then it is 

probability of accepting is greater than half and if x is not in L, then the probability of accepting 

is 0. 

 

So, if I run this machine again and again and whenever I have a yes answer, I just halt an output 

yes, whenever I have a no answer, I keep on repeating this experiment. So, if we actually repeat 

this experiment, a sufficient number of times, one can show that the probability can be brought 



very close to 1 the probability of correctness. Or in other words, the probability of the machine 

making an error will be very small. 

 

So, this actually we will be discussing in our next lecture more thoroughly when we talk about 

strong BPP and weak BPP and how we can use (()) (05:16) to improve their I am show that these 

classes are equal. So, coming back to the class RP or coming back to the base definition of RP. 

Next is that one can easily show that RP is contained in BPP and coRP is also contained in BPP, 

so this actually follows directly from the definition. 

 

So, in BPP, although here we have just greater than half in BPP we require it to be greater than 

two third. But as I said that by this running this a few times one can increase the probability of 

correctness to greater than any constant. And the last relation that I would like to state is that RP 

is contained in NP is contained in the class NP. And this also actually follows by definition, 

because just observe the following that if x is not in L. 

 

So, think of a probabilistic turing machine as a turing machine where it is a non deterministic 

turing machine. And so, whenever the probabilistic turing machine does a coin toss to decide 

which direction it wants to go to. The non deterministic turing machine also basically does the 

same thing, it non deterministically chooses which direction it wants to go to. Now if x is not in 

L, then observe that no computation part of this machine accepts which is exactly what a non 

deterministic machine should be. 

 

On the other hand, if x is in L, here what we have is that at least half the many computation parts 

accept. In other words at least one part definitely accepts it is much more than 1. So, therefore a 

probabilistic RP machine by definition is also an NP machine because if the input is in the 

language, we have at least one accepting part. 

(Refer Slide Time: 07:25) 



 

Next we move to zero sided error. So in BPP, we had errors in both sides, in RP we had error 

only in one side, RP and coRP both. Now what do we mean by zero sided error? So, zero sided 

error machines are probabilistic turing machines that do not output the wrong answer ever. So, if 

it does not output the wrong answer, then what do we mean by probabilistic? How is it a 

probabilistic? 

 

So here, what we allow is that the machine might output a I do not know answer with a small 

probability or a question mark output with a small probability. What do we mean by that? So, 

formally, if I want to look at it, so a language L is said to be in the class ZTIME T of n, if there is 

a probabilistic during machine M running in time T of M with outputs from the following set 0, 1 

and ?, it will give three types of output. 

 

Now if x belongs to the language, then the probability that the machine accepts is greater than 

half and the probability that the machine rejects is 0, a machine will never reject. This is what we 

mean by saying that the machine will not give a wrong answer. So, what it does in the remaining 

computation paths is that it just outputs ?. So, in at least half the fraction of the computation 

paths, it outputs 1 and or it accepts. 

 

And in the remaining computation paths, it just output ? or I do not know. Similarly if x is not in 

L, then the probability that the machine rejects is greater than half and the probability that the 



machine accepts is 0. So, once again, if x is not in L, then on more than half the fraction of the 

computation paths the machine would reject and on the remaining computation part it again 

outputs I do not know. 

 

So, it will never give up. If x is in L, it never rejects and if x is not in L it would never accept. So, 

the polynomial time analogue class of ZTIME T of n is known as ZPP. Now what is the relation 

between these classes BPP, RP and ZPP. So, we have already seen that RP and coRP both are 

contained in BPP by just the definition. And if you look at the class ZPP, again observe that ZPP 

is actually contained in the class RP. 

 

How do we show that it is contained in RP? So, we just have to make one modification, so I will 

just come to that in a moment. If that one can show that ZPP is contained both in RP and coRP. 

(Refer Slide Time: 10:41) 

 

So, relation between ZPP and RP, so what one can show is that not only is ZPP contained in both 

RP and coRP, actually ZPP is exactly equal to the intersection of RP and coRP. And it is easy 

result, but nevertheless it is interesting result. So, how do we prove this? I will just give a proof 

sketch. So, first we showed that ZPP is a subset of RP intersection coRP. So, given a ZPP 

machine, we show an equivalent RP machine for that machine. 

 



And how do we build that RP machine? So, we build that RP machine by changing the ? output 

to a reject output or 0 output. Now what happens in this case, just analyze? So, if the ZPP 

machine was accepting, so suppose if I had an input, which was in the language. Now we know 

that the ZPP machine accepts with probability greater than half. And the RP machine also now 

accepts with probability greater than half. 

 

Because we are not changing the accepting criteria over here. On the other hand, if we had an 

input x which was not in the language, then the ZPP machine was rejecting it with probability 

half and it was going to the question mark output with probability, the remaining probability. 

And now what happens is that, because I am changing ? to 0 the ZPP machine will always be 

rejecting if x is not in L. 

 

So, therefore this shows that the ZPP machine can be converted to an RP machine by this kind of 

a modification. And analogously you can also convert a ZPP machine to a coRP machine. So, 

this proves that if a language L is in ZPP, then it also belongs to RP as well as coRP. So it is in 

RP intersection coRP. Now what about the converse direction? So, the converse direction is 

suppose if I have a language, which is in RP intersection coRP, how do we prove that it is in 

ZPP? 

 

So, let us say that a language is in RP intersection coRP via the machines M 1 and M 2 

respectively, so M 1 is a RP machine for L and M 2 is a coRP machine for L. Now given an 

input x, how do we build the ZPP machine? So, given an input x, first what we do is, we run x on 

the machine M 1, if M 1 accepts then we just halt and accept. If M 1 rejects, then we run x on the 

machine M 2, if M 2 rejects we again halt and reject otherwise we output ?. 

 

Now verify that if x was indeed in the language, then the machine M 1 always accept with 

probability greater than half, therefore your entire construction also accepts with probability 

greater than half. On the other hand, if and it is access a probability greater than half and it would 

never actually reject. Because if x is in the language, M 1 might reject. 

 



So, if M 1 is rejecting your anyway going to M 2, but M 2 would never be rejecting, because M 2 

is a coRP machine, M 2 would always accept if x belongs to the language. So therefore, so M 2 

always accept if x belongs to the language. So, therefore the machine accepts with probability 

greater than half and for the remaining probability it would output ?. And similarly if x was not 

in the language analogously one can show, that again the machine will give the correct answer. 

So, I will just leave this sketch, I will just leave the complete proof to you as an exercise. 

(Refer Slide Time: 15:23) 

 

In fact I have the following exercises. So, firstly show that ZPP is contained in BPP or, so how 

does one prove this? Next exercise is give a formal proof of the result that I just mentioned. So, 

the one in the previous slide is just as proof sketch you have to actually modify it a little 

formally. And then you have to argue that ZPPS is RP intersection coRP. 

 

Of courses you also have to argue that whatever construction you are giving it runs in 

polynomial time. The third exercise in fact, the most interesting exercise is to show this alternate 

definition of ZPP. So, one can analogous one can alternatively define ZPP as the class of 

languages for which there is a deterministic turing machine that runs in expected polynomial 

time and always produces the correct answer. 

 

So, what this means is that, for some inputs the machine can take a longer time or longer than 

polynomial time, it can actually take maybe even exponential time. But on an average the turing 



machine runs in expected time. Basically if I take an average over all inputs, then the running 

time of the turing machine is polynomial. So, this proved that this is a alternate definition of 

ZPP. 

 

In other words if you take a language that is in ZPP by the previous definition, then that language 

is also in this class, that I have defined in this third exercise. And if you take a language in this 

class, then it is also in ZPP, both directions you need to show. So, that is all that I had for this 

lecture, thank you. 


