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Lecture -02  

Introduction 

So let us get started, so last time we were discussing the class NP and we saw certain examples 

of problems that are there in NP. So let us continue with our discussion. So what we will see 

today is this notion of completeness, completeness of a complexity class.  
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So let us look at the class NP and see what we mean by NP completeness. So intuitively NP 

complete languages or NP complete problems are those problems in NP that are the hardest 

problems in NP. So NP complete problems are in some sense the hardest problems in NP, so we 

need to define a notion of hardness. So what do we mean by hardness? So whenever we talk 

about hardness or easiness we do so in relative terms.  

 

So something is hard means it is hard with respect to some other stuff. So we need to define a 

notion of relativity here and so that comes from the notion of reductions. So let us look at 

reductions and formally define them. So we will see what are known as a polynomial time Karp 

reductions. So the book uses this term polynomial time Karp productions to denote these kind of 



reductions but in other texts or in other places you might find things like polynomial time many 

one reduction and or just polynomial time reductions and they typically mean the same thing.  

 

So what are these reductions? So let we say that a language time L, polynomial time Karp 

reduces to a language. Let us say L prime, if there exists a polynomial time computable function 

f. So f basically takes strings and outputs string just write it here triple function f from 0, 1 star to 

0, 1 star. 
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Such that for all strings x, x is in L if and only if f of x is in L prime. So basically f is mapping 

the s instances of the language L to the s instances of the language L prime and the no instances 

of language L to the no instances of language L prime. It means that there is a polynomial time 

Turing machine which given a string, let us say it is given the string x it will output the string f of 

x on its output tape.  

 

So we consider the following models. So our Turing machine has these three tapes, so it has an 

input tape and the input tape is read only it has a all powerful work tape, which means that you 

can read as well as write on to this tape and then it has an output tape and this is just write only 

so you cannot read information of this tape. So now this is a polynomial time machine which 

when given the input x on its input tape it will output f of x and then halt.  

 



So now that we have the tool of reductions with us let us define what we mean by these so called 

hard sets. So first we will define this class known as NP hard. So a language is said to be NP 

hard if for all languages L prime in NP L prime reduces to L. So this is the notation that we use 

for these kinds of reductions. So let me just mention it here, so I just write it here denoted as so 

here we were reducing L to L prime so that is denoted as L reduces to L prime and this subscript 

p means that it is a polynomial time reduction.  

 

So we say that a language is NP hard if all other languages in NP or any language in NP reduces 

to L in polynomial time. 
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And, we say that L is NP complete if L is NP hard and L belongs to NP. So it is not necessary 

that all NP hard languages will belong to NP in fact you can very easily find v hard languages 

that are not in NP I mean take some really hard language may be an undecidable problem an 

undecidable language. Of course, every other language in NP will reduce to it but there is no 

algorithm in particular there is no NP algorithm for that problem.  

 

So NP completeness in some sense characterizes the most hard languages in NP up to 

polynomial time reducibility, any questions? So, let us look at some easy to prove properties of 

these concepts firstly if L polynomial time reduces to L prime and L prime polynomial time 

reduces to let us say some language L double prime then L also reduces in polynomial time to 



the language L double prime in other words this operation the polynomial time reduction 

operation is transitive. So this is known as the transitivity property. 

 

So why is this true? Because if you take; a polynomial and look at its product with another 

polynomial what you get is also a polynomial. Let us look at another property. So let L be an NP 

complete problem then L is in P, if and only if P is equal to NP, again this is easy to see because 

if you take any NP complete problem and if you assume that language is in p then all problems 

in NP will also reduce to that particular language. 

 

And, then by using that the p algorithm for this language you can show that all of NP is 

contained in p this is again by the same idea and the other way is also true. So if p is equal to NP 

it means that all problems in NP line p in particular the NP complete problems also lie within p 

so both directions are true, well so it depends how you are looking at the reduction. So if you just 

assume that you have access to many tapes then what you are saying is correct? 

 

You can just look at the sum because then what you do is that you have a machine which 

computes this reduction let us say m1 and you have another machine m2 for this reduction you 

construct a third machine m we just takes the output of m one feeds it onto the input of m2 and 

then just outputs the output of m2 but it is using one extra tape for that but suppose you do not 

want to make use of that extra tape. 

 

Suppose, you have only one work tape you want to construct a third machine which only has one 

work tip then what you do is that for each bit that is required by m2 you go back to m1 and you 

do the entire computation of m1 get what that bit is and then carry on with the computation of 

m2. So you are doing some extra work but just cutting off the use of an extra tape so you are 

right.  

 

So what if we assume L to be NP hard here? Can we make the same statement? Can we still have 

the same conclusion? Why not, so basically we can conclude one of the directions. So if we 

assume L to be NP hard then if L is in p it would imply p is equal to NP but the other way need 



not necessarily it will be true. So if L is NP hard and p is equal to NP it need not imply that L 

will also belong to p because as you said it is a wider set.  

 

So, let us move on and so what we will see next is our first NP complete problem in fact we will 

construct the first NP complete problem.  
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Because, so far I mean with all these theory I mean nowhere are we saying that there has to exist 

an NP complete problem I mean it might turn out that I mean even proving existence or 

constructing an NP complete problem is not possible. So what is the guarantee that there are 

problems which have this property or there are natural problems which have this property. So we 

will prove that this problem satisfiability is the first as our first NP complete problem. 

 

And, historically also when researchers were studying NP completeness and they came up with 

the first NP complete problem this is what they had shown. So this was proved in early 70s 

independently by two people Cook in 71 and Levin in 73. So cook was in a]America and Levin 

was in Russia so communication was not that good in that period so they both basically came up 

with the same result but independently they showed that SAT is NP complete. 

 

So, let us quickly see what the problem sat is? So a Boolean formula phi basically consists of 

what? It consists of some variables and the operands AND, OR and NOT. So Boolean formula is 



basically a string of variables together with the following operands where the operands have the 

usual definition. Suppose you have a Boolean formula on n variables, so suppose phi is a formula 

on n variables and z is some n bit string then phi of z denotes the value of substituting the 

variables of phi with z in order. 

 

So basically you take the first variable of phi wherever it occurs and you replace it with the first 

bit of z and so on. So whatever value that you get as a resultant is what phi of z is. So then when 

do we say that a formula is satisfiable?  
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So we say that a Boolean formula phi is satisfiable if there exists some string. So let us say we 

are looking at Boolean formulas over n variable if there exist a string z such that phi of z 

evaluates to one or sometimes will refer this to also as it evaluates to true I mean the same thing. 

Otherwise we say that phi is unsatisfiable and there is a special kind of Boolean formulas that we 

would focus at for the purpose of our proving this theorem that is formulas which are known as 

CNF formulas in conjunctive normal form.  

 

So phi is said to be in CNF which stands for conjunctive normal form, if phi is an AND of ORs 

of variables or their negations. So this is what a CNF formula is and in fact what we will prove is 

that a Boolean formula which is in conjunctive normal form basically satisfies the language SAT 



will consist of all Boolean formulas in conjunctive normal form which are satisfiable. Set of all 

formulas such that phi is a satisfiable Boolean formula in conjunctive normal form. 

  

So we will see this proof for the remaining part of our talk. So the first thing that we need to 

argue in order to show that SAT is NP complete is to show that SAT is in NP and that is easy to 

see so how do we prove that SAT is in NP. So what would that SAT equal to NP? It is just a 

string z corresponding to assignment of values to the variables of phi and if phi satisfiable then 

we know that such a certificate exist which would evaluate phi to true otherwise not.  
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So SAT is in NP, so this is easy to see, the hard part is to show that it is NP hard. So before we 

go into the actual proof of that result let me state easier to prove claim. So let us look at the 

following claim first suppose we have a Boolean formula on L variables. So let f be a Boolean 

formula on L variables then there exist a CNF formula, let me call this phi of f just to denote that 

this formula will depend on this function such that it has two properties. 

 

Firstly, phi of f on any input z is equal to f of z and second this formula has size l times 2 to the 

power l and by size what we mean is the number of gates in the circuit. So essentially what we 

are saying in this claim is that if you are given a Boolean function any arbitrary Boolean function 

from l variables to 0, 1 we can construct a corresponding CNF formula which will exactly 

replicate that function in the sense that it will have the same value for all strings of length l. 



 

And, it will have size actually at most let me just say this it will have size at most l times 2 to the 

power l, how do we show this I will not give the complete proof but I will give the essence of it, 

you can always fill in the details.  
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So suppose if you look at string, some string of length l. So let z be a string of length l then for z 

actually we can create a CNF not a CNF but actually we can create a formula which has the 

following structure there exists a formula let me call this a phi subscript z on l variables. Let us 

say from x 1 through x l such that phi z on z is equal to 0 and for any other y that is not equal to z 

it is 1 for all y not equal to z. So this is not difficult to see. 

 

So any ideas how we can construct a formula like this? Exactly, so let us just see this with a 

small example so suppose if you have a string so suppose z is the string 1 1 0 your corresponding 

phi z will be the formula x 1 bar because I have a 1 here odd with x 2 bar odd with x 3. So the 

only string for which this formula would evaluate to 0 is z and nothing else.  

 

So now that we can do this let us go ahead and construct the formula phi f. So what would phi f 

look like? So phi f would be the AND of it will be AND of all phi z's; let us say our variables x 1 

through x l such that which z do we consider no so we hope so we look at all z such that f of z is 

zero. So I will not it is not difficult to verify I will just leave it as an exercise. So you can verify 



that this formula will have the property that for any string of length l it will be equal to f of that 

string and the other thing is about the size. 

 

So now, so what would be the size of this thing? So, if you look at phi z so phi z will have size l 

and at most there can be two to the power l such strings of length l. So therefore the total length 

will be at most l times two to the power l, we can take, yes, but then it will not be a conjunctive 

normal form know, we need it to be in conjunctive normal form but yes you can take that also. In 

fact, there are many ways to do this. 

 

So this is just one way of doing it but the point is that whichever way you pick you will see that 

always it will have I mean it will always require exponential size. So let us come back to the 

main claim. 
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So what does it mean to say that SAT is NP hard it means that if we take any language L in NP 

there should be some way of reducing L to SAT. So let us take a language L in NP this means 

that there exists a poly time Turing machine m and a polynomial p such that for all strings x, x is 

in L if and only if there exist some u of length p of x such that m of x, u is equal to 1. So what we 

will do is we will given this language L and given a string any arbitrary string x. 

 



We will construct a formula phi of x such that if x belongs to L then phi of x will evaluate to true 

and otherwise it will evaluate to false so the idea is given x, we will construct a CNF formula phi 

of x in polynomial time such that phi of x is satisfiable if and only if the following happens if and 

only if there exists u. So there is a trivial way. So let me first discuss a method which will not 

work and then we will see how that can be modified.  

 

So if you look at this claim and if you try to replicate this claim there is a very easy way in which 

we can come up with a formula phi of x. So what we do is so let us just consider the following 

function.  
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Let me just call it potential approach. So let me consider a function f which does the following it 

takes strings u, so f basically takes a string u and it outputs whatever the value m of x, u would 

be so we can always define a Boolean function. So given a string x we define a function f from 0, 

1 to the power p of x to 0, 1. So we can define a Boolean function like this and now you see that 

this f will have the property that if such and u exist then m of x u is equal to 1 and hence f of u is 

equal to 1 and if such a u does not exist then f of u will never be 1.  

 

So now what we can do is given such a function f I can just replicate this claim. So by claim one 

so let us give a number to this claim so by claim one there exist a CNF formula phi of f such that 

phi of f is satisfiable and only if m of x u is equal to one. So we have come up with a CNF 



formula but what is the problem with this approach? So it will take exponential time and the 

reason for that is that phi of f what can be the potential size of phi of f? 

 

If you just see what the claim says, so phi of f potentially can have size how large it will have 

size p of x times 2 raised to p of x. So we have a CNF formula but it has a very large size and 

hence this approach does not work but we were being very lazy in this approach in the sense that 

we never use the fact that m is a polynomial time deterministic machine. So that fact we never 

used and also we are not using another crucial fact that is the computation of m is very local. 

 

In the sense that every time, so if you look at two steps of the Turing machine so going from one 

step to another step or going from one configuration to another configuration involves only a 

constant change in the configuration of machine. So it will go maybe from one state to another 

state and it will probably replace one bit with some other bit and so on. So we are just assuming 

that we have a two tape Turing machine so there is only a constant change that is happening. 

 

So these two facts somehow need to be used and to come up with a CNF formula which has 

polynomial size. So let us look at the correct construction now. So we will assume two things 

about our Turing machine m and both these things can be assumed without loss of generality. 
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Assumptions on m; so firstly we will assume that m is a two tape Turing machine in the sense 

that it has a one input tape and one work tape and the second assumption that we will make. So if 

you looked at here the exercises that I gave last time regarding this assumption we can assume 

that m is oblivious, so m is what is known as an oblivious Turing machine. So what does this 

mean so this means that the computation of m does not depend on the content of the input cells.  

 

So it only depends on the size of the input and the current step. So if the machine is taking the i 

th step no matter what is present in the tapes of that Turing machine it would always take the 

same step. So the transition function is a function of the size of the input length and the position 

of where the tape head is. It does not depend on the actual, which one, right. So the movement of 

the head is dependent only on the index of that head not on the content of that head for difference 

and yes it might be different of course.  

 

So we will make these two assumptions and the fact is that even with these two assumptions it 

only creates a polynomial amount of overhead. So suppose if you have a Turing machine which 

is general enough a corresponding Turing machine which has these properties only creates a 

polynomial amount of extra overhead, so we are still fine. So I guess I will stop here today next 

class we will continue and will complete the proof of this theorem. 


