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So, Last time we were looking at alternating turing machines. So, we saw the following. So, we 

saw what an alternating turing machine is. Basically, every state is associated with the particular 

quantifier whether existential or a universal. And depending on what quantifier it is you decide 

whether to accept x or not. So, if it is an existential quantifier then at least one of the choices 

should lead to an accepting state.  

 

If it is a universal quantifier then both the choices from that state should lead to an accepting 

state. We also saw how to define running time of alternating turing machines. So, I mean it is the 

time taken. I mean it is the maximum time taken over all input and overall computation parts. 

And it is looked upon as a function of the input length. And based on the running time we define 

the class A TIME T of n.  

 

So, why were we studying this? I mean, what was the motivation behind looking at these special 

types of turing machines? So, what I said last time if you recall was that we wanted a different 



characterization of the polynomial hierarchy. So, the way we defined polynomial hierarchy was 

based on these certificates. And we wanted a machine based definition. So, that was the 

motivation for looking at these machines.  

 

So, let us carry on and see how polynomial hierarchy can be studied using these machines. So, 

we look at a special subclass of these alternating turing machines, basically those alternating 

turing machines which have a fixed number of alternations. What I mean by that is if you look at 

the alternating turing machine so any computation path can alternate between an existential and a 

universal quantifier.  

 

But suppose if I restrict that suppose if I say that you can alternate but let us say you can only 

alternate so many times. So, what does that give us? So, let us define a class based on restricted 

number of alternations. So, we denote sigma i time. Suppose you are setting a limitation let us 

say 10. Maybe the longest path only has 2 but maybe there is a shorter path but which has more 

frequent alternations.  

 

But no matter which part you pick the number of alternations should not increase this upper 

bound of 10. So, that will become more clear from this definition. So, sigma i TIME T of n is the 

class of all languages L such that there exist an alternating turing machine M with L being equal 

to the language of M running in time T of n. And along any computation path from the start 

configuration M alternates at most i – 1, times between there exist and for all state.  

 

So, one more thing, so it must begin with a for all. And the start state is a for all state. I am sorry 

is a there exist state. This is sigma i time. So, yes, it is longish definition but nothing very 

complicated. So, all we are saying is that it is an alternating turing machine which runs in time T 

m and the start state is a there exists state. And along any computation path there are at most i 

minus 1 many alternations.  

 

So, there can be may be several there exist along a path but then it switches to a for all. And then 

may be another there exist. So, the number of such switches should not be more than i minus 1 

along any point. So, if you so then if you look at this definition what does sigma 1 time T of n 



mean? So, yes, it is not exactly NP because we are not saying what the function T of n is. So, if T 

of n were to be union of for all polynomials then many of you who said NP you are right.  

 

But you have to be careful. I mean since T of n can be any arbitrary function if I fix i to be 1 then 

this gives the class N TIME T of n. Because I am starting with a there exist state and basically all 

the states are there exist. I cannot switch to any form.  
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So, similarly we can define pi i TIME T of n. So, the entire definition is the same. The only 

difference is that the start state is a for all state. So, I will just mention that the start state is a for 

all state. Yes, so now we are ready to prove the first equivalence. So, sigma i p is equal to what 

do you think it should be equal to in terms of these classes. So, sigma i TIME of n to the power i. 

n to the power c. Yes, so basically look at all machines which have a polynomial running time.  

 

And they have at most i alternations and they begin with a there exists state. So, I would not 

prove this. So, basically, I will give you the idea as to how. So, let us look at the case when i = 2. 

So, when i = 2 this means that sigma 2 p is union of c greater than 0. Sigma two times n to the 

power c. So, let us just look at the idea as to how this proof goes about and basically you can 

generalize it. And you can also prove the other theorem.  

 

So, the other theorem is that so this is part one, the second part is pi i p is union of c greater than 



zero pi i TIME n to the power c. So, anything else? So, how do we prove this equality? So, let us 

look at the complete problem that we know for sigma 2. So, we know that this language sigma 2 

SAT is complete for sigma 2 p. And what is the definition of sigma 2 SAT? So, what is the 

definition of SAT? So, basically SAT is you are given a boolean formula phi and you check is 

there an assignment to all the variables which makes it satisfiable. So, sigma 2 SAT is nothing 

but you divide the set of variables into two sets.  

 

Let us say u 1 and u 2. And then you ask the question that is there an assignment is there some 

assignment to the variables in u 1 such that for all possible assignment to the variables in u 2 phi 

minus p satisfiable. So, this is, let me just write this again. So, it is all tuples of the form phi u 1 

and u 2. So, u 1 and u 2 are two vectors of variables such that there exists some assignment to the 

values of the variables in u 1 such that for all possible assignment of values to variables in u 2 

phi of u 1 comma u 2 is equal to 1.  

 

So, this first sigma 2 SAT. So, how can we show that sigma 2 SAT is in this class? Because if we 

can show that then we have showed one direction of this equality. So, we have a machine which 

has this form. Basically, we have an alternating turing machine which can make one alternation. 

So, it can start with certain there exists states and then it can move to some for all states. And 

depending on what it does it can either go to an accept state or a reject state.  

 

So, what do you think we should do if we are given an input of this form? So, basically that is 

the most natural way to proceed. So, what you do is what is suggested? So, look at the variables 

that are present in u 1. So, you start at your start state and you start guessing values for the 

variables and u 1. So, let us look at a small example.  
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So, maybe we have a formula phi on three variables x 1, x 2, and x 3. And let us say that these 

two variables are belonging to the vector u 1 and this belongs to u 2. So, they should exist some 

values to x 1 and x 2 such that for all possible value to x 3, phi should be satisfiable. So, what 

you do is the following. So, you start at your start configuration and then you guess a value for x 

1 using a there exist state.  

 

So, there can be two possible guesses. So, you can either guess a 0 or you can guess a 1. So, that 

is the non deterministic choice that you make. And you assign this to be a there exist state. So, 

what we are doing here is we are constructing a machine that will belong in this class. Again, I 

do the same thing but now for x 2. So, I guess a value for the variables x 2. And again, I do this 

with there exist state and it can be the 0, 1. And now I do the same thing for x 3. But this time I 

use it for all state.  

 

And I will get some values 0, 1, 0, 1 and 0, 1, 0, 1. So, now I need to designate which are my 

accepting states and which are not. So, what would be my accepting states? Basically, I need to 

just club them. So, if x 1 is 1 and x 2 is 1. So, these two will be my accepting states. Phi is the 

input that is given to us. Yes, so the accepting states will basically depend on the formula what 

the formula is. 

 

Because so this will give you a setting of the values. So, now you just evaluate the formula phi 



on these values and then depending on whether it accepts or reject you go to an accept state or a 

reject state. So, at this point you evaluate phi and you accept or reject. So, I am just I give a 

sketch of the argument this can be generalized. How do we show the other way round? Suppose 

you have an alternating turing machine which runs in polynomial time with one alternation. So, 

yes, you have to be little bit careful but essentially that is the thing.  

 

So, what you do is you look at the configuration graph. You look at so you let say you take a 

language in this class and as you suggested you look at any string x and you want to decide 

whether x belongs to that language or not. So, look at the configuration graph of that instance x 

with respect to the machine. And now I want to decide basically reachability if the final c accept 

is reachable from c start.  

 

So, what I do is something similar to what we did for. So, when we showed that TQBF is in P 

SPACE. So, recall what we did. So, what we did was we for each possible assignment of the 

values to a variable whether 0 or 1. We recursively did the computation and then we were 

basically reusing that space. So, we basically again do the I mean the same kind of computation 

here and that will be a sigma 2p computation.  

 

Yes, you need to come up with certainly. Actually, you need to come up with a formula also. So, 

you need to come up with a formula and then you need to specify which what the certificates 

would be. How do you construct the formula and the certificates from the graph? I was trying to 

argue that this reachability problem can be reduced to this sigma 2 SAT but it is basically the 

same thing.  

  

I mean, you can also give a machine with two certificates that will also work. So, what can 

happen is I mean, you can have the graph. Suppose this is your graph. So, maybe up to this level 

you have all there exist configurations and here you have all for all configurations. So, a 

certificate will basically depend on these vertices and these vertices. So, just think about it. So, 

any other questions. So, let us move on. So, now what if we relax this condition if we consider 

arbitrary number of alternations?  
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So, we define the class AP to be union of c greater than 0 A TIME n to the power c. Basically all 

alternating turing machines which have a polynomial running time. So, we do not have any 

restriction as to what the initial state would be or how many alternations it will have. So, it is a 

generalization. And what is known is AP is equal to P SPACE. So, at initial glance this looks 

quite surprising. I mean it does not look very surprising but it looks nice.  

 

But if you just think about it a little bit the proof is not very difficult. Actually, the proof is 

exactly the same as the proof of this theorem. It is essentially the same proof. But it is quite nice 

that you have some polynomial turing machine I mean, although it is a very powerful kind of a 

turing machine but still it has polynomial running time. But it does characterize the class P 

SPACE. And you also have other results.  

 

So, this is the first in the series. It is also known that AP SPACE. So, these are alternating turing 

machines which have polynomial space bound. So, this is equal to the class. Exp. Again, the 

proofs are very similar. And similarly, even in the log space domain if you look at the class A L 

that is alternating turing machines which have only log space what do you think this should be 

equal to? What is your guess?  

 

That is equal to the class P. So, that is another way of characterizing P. So, all those languages 

which are accepted by log space bounded alternating turing machines. So, there is also a third 



way of describing the polynomial hierarchy. So, we saw a certificate based definition, we saw a 

machine based definition. There is also another machine based definition, but it is little different.  
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So, it is based on the use of oracles. So, recall what oracle turing machines are. So, what are 

oracle turing machines? So, basically you have a regular turing machine and it is fitted with 

some an extra oracle tape and it has as you said three special states. So, one is the state query and 

there is a state q yes and there is a state q no. So, the idea is that at any point during the 

computation of this machine M, it can write a string on to the oracle.  

 

So, let us say string y on to the oracle. Now, there is a designated language with respect to 

machine. So, let us say we have a language O. And this language is called the O. So, now after 

the machine writes y on to its tape it moves on to the state q query and that is when the oracle 

checks does y belong to this language or not? So, it just checks that in one step and if it belongs 

to the language it returns it moves on to the state q yes and if it does not it moves on to the state q 

no.  

 

So, the essential idea is that in one step you are able to perform the entire computation of this 

language O. So, you are bypassing the entire computation and you are able to answer whether a 

given string belongs to that language or not in just one step. So, is this clear? Is this model clear 

to everybody? Any questions? That will be considered within the running time of M. So, it I 



mean it can be several things.  

 

Now maybe it writes one bit of y. But it does not enter the state q query. It then goes and does 

some other computation within M maybe then it gets the second bit it writes on to the oracle tape 

and so on. So, finally when it finishes writing out the entire string y then M says that now I am 

done writing the entire string y and I want to check if y belongs to O or not. So, this step is y in 

O. So, this question can be answered in just one step of the machine M.  

 

So, if you are using space bounded machine and you want to use a long enough oracle tape, then 

you have to make it a write only tape. But I am just assuming that it is a time bounded turing 

machine in which case it does not matter. So, depends on the definition I mean. But that is a 

good point. So, some quick notations about these things. So, M O of x denotes the output of 

machine M on x with oracle access to some language O.  

 

That is what M 1 x denotes. And similarly if we have, so we can define for any complexity class. 

So, this any is I will just put it within quotes because there are certain complexity class for which 

this does not hold. But at least for our purposes we can assume it is for any complexity class C.  
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C to the O is the class of all languages L such that there exists a turing machine M such that L 

prime is equal to the language of this machine and L is equal to L of. I can just let us see. And L 



is equal to L of M with oracle access to O. So, this I did not define here, but basically this means 

all the strings that are accepted by oracle access to O. So, I defined what M of x means. So, for 

all strings which are accepted by oracle access to O that denotes the language L.  

 

Maybe I can just write it also to be complete. So, M the language of M with oracle axis to O is 

the set of all strings such that M O of x accepts. So, now again with respect to these oracle turing 

machines we have a very nice characterization of the hierarchy.  
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So, the theorem is that sigma i p is equal to NP to the sigma i-1 t. So, this is you find it kind of a 

recursive manner. Again, in a similar way pi i p is co NP to the pi i-1. Actually, this does not 

matter. So, we will see that in a moment. But we can just define it this way. So, what do we 

mean by this class over here? This class. So, maybe just change this a little bit for the time being. 

So, let me write it as NP to the sigma i minus 1 SAT.  

 

Because this is more consistent with the way we are defining oracle. So, later on we will see that 

why we can write it in the earlier form that I mentioned. I just erase this. So, what does that 

mean? So, it means that I have a base machine which runs in NP and it makes oracle queries to a 

sigma i minus 1 SAT language. So, if I look at the case when i is equal to 2 this means that sigma 

2p is what?  

 



So, what sigma 1 SAT. Sigma 1 SAT is just SAT. So, it is just NP to the power SAT. So, yes, so 

again, I mean the general thing can be proved very easily once we see what is the proof of this 

statement. This is actually one direction is quite easy, the other direction is a little bit nontrivial. 

But before I proceed to the proof of this theorem let us look at a simpler statement. How do you 

show that SAT is?  

 

So, this is very trivial but let us say how do you show that SAT bar is contained in NP to the 

SAT. So, first of all, we do not know whether SAT bar is contained in NP or not. Because SAT 

bar is a complete problem for co NP and we do not know whether these two classes are the same. 

But what I am claiming here is that we can show that SAT bar belongs to this class. How do you 

prove this?  

 

So, what is I mean, how do you show? So, basically what are you given? You are given some 

formula phi and you have to accept if this is not satisfiable and you reject if this is satisfiable. So, 

what do you do? That is very easy. It is just a one line algorithm. Yes, so basically if you have 

oracle access to SAT what you can do is you just copy this on to the oracle tape and you ask does 

this belong to SAT or not. It will say yes or no.  

 

If it says yes then you output no if it says no then you output yes. So, in fact the base machine is 

not even doing anything. The base machine is just copying its input to the oracle tape and 

whatever answer it is getting its transferring it to again the base machine. So, it is not even as 

difficult as NP SAT. What we just showed is so as somebody suggested that SAT bar is in just a 

class P to the SAT. So, it is in a much smaller complexity class.  

 

And not only SAT bar the same argument also shows that SAT is in this class. And since these 

two languages are complete for their respective classes what this implies is that both NP and co 

NP are so I will just write it as NP union co NP they are contained in P to the SAT. And hence of 

course NP to the SAT. So, this is just to illustrate as to how the oracle is getting used. And we 

know that this is not sufficient because when we first looked at this class, we saw that this is 

actually larger than the class co NP also.  

 



So, co NP does is contained inside this class. So, we have to do a little bit we have to spend some 

more effort to show that this is contained in NP to the SAT. So, I am running out of time. So, I 

will just leave the proof here. You guys can think about it. But next time we will complete this 

proof. And that will also end our discussion of polynomial hierarchy. So, we will move on to 

other topics. 


