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Okay, so last time we did Brent’s proof for formula reduction of depth in the case of                 

formulas. 

(Refer Slide Time: 00:17) 

 

So depth can be reduced to that was our result. And we noticed that for the case      log s             

of circuits that proof will fail. So now we will give a different proof, a proof based on                  

degree as a potential function instead of size. 

(Refer Slide Time: 00:47) 



 

So this is a theorem by VSBR. It is quite old already from 1983. They showed that if                  

you have a degree d polynomial with size s circuit C. So let degree d polynomial f                 

have a size s circuit C. Then, so although in the assumption in the hypothesis there is                 

no mention of depth, which means that the depth can be as high as size. What we will                  

show is we will give an algorithm a constructive way to reduce the depth to log d and                  

size will not blow up by much. 

 

So then there is a polynomial in s. Forget n because that is contained in s,                

size and depth, circuit that also computes f. And proof willoly(s )p log d    (log )O d    `C         

be mostly constructive. So degree d here can be arbitrary. It can be as high as in                ss   

the case of circuits. Like these are general circuits. But the depth will reduce to               log d  

and accordingly the size will grow. 

 

But the growth in the size will be dependent on only log d, not d okay. So this is                   

actually applicable to also exponential degree polynomials. This is much stronger than            

the homogenization result. It is actually efficient for exponential degree polynomials           

also as long as there is a small circuit computing it. 

 

This is very different from formula. And the proof will be long and technical, but the                

idea is to work with the degree as a potential function. So without loss of generality                



assume that C has fanin 2 and that C is right heavy. So right heavy will be defined as                   

for every gate v in C  

eg(v ) eg(v )d L ≤ d R  

where  are left and right children respectively.,vL vR  

 

Yes. So this is without loss of generality because we are assuming fanin to be 2 and if                  

for any gate, for some gate if degree on the left is more than you just swap. So this                   

you can do efficiently also. So we will assume that the circuit is right heavy. Heavy in                 

terms of degree and not size. This proof exposition is not following VSBR. We will               

follow the exposition given in a survey by Ramprasad. 

 

So that is available online. We are following that exposition. But the main idea is               

same as in [VSBR’83]. So by this notation , we denote the polynomial computed        v][       

at the node v, or at gate v. And so you should think of the proof as building circuit                   `C  

step by step looking at C as you walk down from C from the root to the leaves. 

 

And in the nodes that we will put will exactly be the type. So this will also be  `C            v][        

a node simultaneously in . It will be made a node or a gate in the new circuit .    `C               `C  

So this has two interpretations. This is happening in parallel. is being built as  v][          `C      

we are analyzing C. 

 

So as we have seen in the previous proofs in derivatives and also in Brent’s formula                

depth reduction, we had some notion of identifying a subtree and removing it from          v      

the tree and replacing it by a new variable. So we now formalize it in terms of                 

quotients, quotienting process. So for gates  define gate quotient  as -,u v u ][ : v  

● [u:v] = 1 

●  For a leaf  & , .u  =u / v u ] 0[ : v =   

 

The idea would be that if appears below , below the gate then the quotient      v    u     u     

should be the thing which intuitively you should get if you divided by , not the            u   v     



remainder but the quotient. So ignore the remainder and look at the quotient if you               

expand  in terms of , like .u v vA + B  

 

And you can do this arithmetic. If two gates are being added, then quotient by               v  

should be defined as- 

● u ] [u ] v[ 1 + u2 =  1 : v +   

So we are now inductively going upwards right. If you know and then the           /vu1   /vu2    

sum should just be the sum of the quotient. So this is the definition, inductive               

definition and also a property. 

 

And finally, you might face a multiplication gate, so intuitively you should quotient             

only one of these, or . It does not make sense to quotient both and multiply    u1   u2            

intuitively.  

● ] [u ] u ]u1 × u2 : v =  1 × [ 2 : v  

is just , whatever was computing. So is not changed, just is][u1    u1   u1     u1      u2   

changed. 

 

So this is essentially the definition of quotient for all the gates. It is an inductive                

definition, goes from leaves to the root level by level. So looking at this definition,               

what are the immediate properties? So first of all, this is a polynomial right? We are                

calling it a quotient, but this is not a fraction. It is always a polynomial.  

 

Because base cases it is 1 or 0. And then when you are adding you obviously get a                  

polynomial and the multiplication gate also gives you a polynomial. So this is always              

a polynomial. So you can talk about its degree. What is the degree of this polynomial               

? I do not know it exactly but at least the upper bound is the difference right.u ][ : v  

.eg[u ] eg u deg vd : v ≤ d −   

 

This again follows just inductively from the axioms. ​“Professor - student           

conversation starts” But when you quotient you might quotient itself. Then deg u             

minus deg v is zero. Yeah, right ​“Professor - student conversation ends”. ​That is              



consistent with our norms and it is also consistent with if the degree of is strictly              v    

more than then the RHS is a negative number. Left hand side also we can  u               

understand it to be a negative degree because question is 0. So 0 is somehow        u   v        

special, its degree is not 0 but negative, which makes sense. 

 

The other simple observation is if does not occur in the tree rooted at , so you      v          u    

look at the sub tree under and if is not a gate there. Then . This is      u    v        u ] 0[ : v =     

just an extension of this leaf property. So the proof sketch. In the induction base cases                

that of a leaf. So you will end up downwards starting from u and ultimately you will                 

reach a leaf and you will still not have found v. 

 

So you will get 0 and the 0 will just add and multiply. Giving you 0 at the top. Details                    

are skipped, and can be filled easily.  

These are the tools that we will use now a lot in the proof. The proof will really                  

develop on this quotienting idea. 

(Refer Slide Time: 15:12) 

 

Let me write down again the intuition for the quotient. Say in the subtree of ,               u  v  

appeared. So . The intuition behind the quotient definition is,  u] A[v][ =  + B         u ][ : v  

should be so this is for some polynomials A, B. We would like to talk about the                 

circuit that computes A. But in this tree computing it is not immediately clear         u       

whether A was computed. 



 

So maybe A and B and were all computed together. So it was all mix and match. A      v              

may not have been separately computed. This is why we need a new notation to talk                

about A and that is exactly . It is formally obtained by quotient . You can      u ][ : v       u   v    

see that this actually equals A. Assuming that is on the right because in the axioms        v          

of quotienting , when we have a multiplication gate we are preferring the right side.v  

 

So should appear in the tree of as a right child of its parent. And then you can v        v             

see inductively that the claim is correct. So this is the sole intuition     u ] A[ : v =           

behind the quotient operation. The circuit may not be computing A as an intermediate              

polynomial, but still we can refer to it by this operation. If you think of as the root               u     

then what are the ’s to look at.v  

 

refers to all the gates in the circuit, so which of these v’s are good for an algorithmv                    

to reduce depth. So those will again be Frontiers. We defined that frontier gate. The               

frontier at degree m is  

.= {v | deg v   eg v }Fm :  L ≤ m ≤ d  

 

Simply put it is just those frontier at degree m are those gates, where the degree of the                  

polynomial computed is at least m but the children it is smaller than m. That is                

naturally the frontier. Like the first time it crosses m or it falls. So the first is the              v    v    

gate where the first time it is crossing m as you go from leaf to root. 

 

“Professor - student conversation starts” If we go from the leaf to root the degree               

would not change monotonically, right? Oh, but somewhere it has to increase. Yeah,             

but it could, on the same path it could increase and then decrease and then increase                

again, right? ​“Professor - student conversation ends”. No, I am not sure we want to               

do all that. The definition of frontier stands as it is as written here. 

 

Let be the deepest multiplication gates with degree greater than equal to m. So Fm               

put this in the definition. So F m will be the deepest ones. 



 

So once degree m has been crossed, maybe later on it will fall. But we do not care                  

about that for now. Let us see in the future if there is a problem we will redefine. And                   

the other thing is that it has to be a multiplication gate. In the definition it was any                  

gate . But if the degree is increasing then it has to be, it has to be a multiplication v                   

gate, addition cannot increase degree. 

 

So these are the deepest multiplication gates. So now if there are two gates in the                

frontier what can you say about the quotient?  

. =   u ]u / v ∈ Fm ⇒ [ : v = 0  

Because cannot be in the subtree of u, so that is 0. That is almost by definition. is v                  v   

not in the tree rooted at u. That is what because if it was then u would not be the                    

deepest. Now for the root u, we have these frontier gates. 

 

So we want to expand the root using the frontier gates. So we will write something                

called the frontier expansion lemma. So suppose u is a node with degree at least m,                

then you can you have this identity using the frontiers.  

.eg u  u] [u ] w]d ≥ m ⇒ [ = ∑
 

w∈Fm

: w × [  

Since u has degree, at least m somewhere in the tree at u, degree must have crossed m                  

because at the leaves, the degree you start with is 1 or 0. 

 

So somewhere there was a transit there was a jump and so that gives you at least one                  

frontier gate w. With respect to this you can quotient. will be a nonzero          u ][ : w      

polynomial. You multiply that with the w and take the sum. We want to show that this                 

sum will come out to be u if you go over all the frontier gates. This is a slightly non                    

trivial statement. So let us prove this. 

 

Actually, I want to make more statements. So that is one thing. In the lemma we will                 

also say that 

eg u eg v [u ] [u ] w ]d ≥ m > d ⇒  : v =  ∑
 

w∈Fm

: w × [ : v   



the quotient this will be consistent with the above formula in the way above.  u ][ : v              

So we have the original formula of and that we can also quotient by a with a       u          v    

lower degree and this would be the change. 

 

So we will prove these two things in the same way and obviously it will be inductive                 

proof. So we will do reverse induction on depth, . The base case is in the         epth(u)d        

leaf, the deepest place. Which will be actually the frontier. So which means itself is             u    

the place where the degree jumped from something smaller than m to m or more than                

m. 

 

So u is the deepest which means that u is in which would then mean that if you           Fm         

look at the RHS, so in the sum can also be taken as . So that will give you this        w       u        

plus the other w's. Now obviously the first summand is just u and what about the other                 

summands? So since both u and w are frontiers, we have this observation here. So               

they are all 0. So this is equal to just u. 

 

That was the base case. Now the induction step will be working with addition and               

multiplication gates. 

(Refer Slide Time: 29:31) 

 

So if you are adding up u’s in addition gate. So in this case, is the sum of its              u       

children and each of the children follow the identity. So let us write that down. What                



is the degree of ? Degree of u is at least m. But degree of may not be at least m,    u1            u1        

maybe something smaller like . But will have degree at least m. So here we    m1   u2           

can use . So now what yeah I wanted to sum.Fm  

 

So is this LHS or was also, if it was the same w then I could have summed up.                   

Otherwise I have this leftover portion. Maybe the idea of homogenization can work             

but homogenization can be expensive. So is there an easy fix here? If has less             u1    

degree than , which is equal to the degree of u; in the lemma statement we are  u2                

talking about frontiers smaller than. 

 

Yeah so maybe antecedent is unnecessary. Maybe you just expand it by being             

dependent of u. We just in frontier expansion we use m as a parameter. Could try                

doing that. So you were saying that if the case when degree of is less than m. That             u1      

is the bad case. Let us just expand u with respect to .Fm  

 

Yeah m, u and m are given. Let us just think of frontier expansion lemma is                

expanding u with respect to . Yeah, no so actually I have to yeah m has to be     Fm              

smaller. If I take m to be bigger than the degree then this RHS will just be 0. There                   

has to be something below. So we have, let us look at the RHS, their summation. 

 

So this is equal 

.HS [u ] [u ][w]R = ∑
 

w ∈∖Fm
1 : w +  ∑

 

w ∈Fm
2 : w  

But then I have to show that this sum is u. So then I have to go back and change the                     

theorem. Yeah otherwise I think I am stuck here. So then let me take back the big                 

claims. Let us just be happy with size. So if I am willing to spend       oly(sd)p          oly(sd)p  

size then I can as well make my polynomial and circuit to be homogeneous. 

 

So I look at homogeneous parts of f and I prove the theorem the depth reduction only                 

for the homogeneous parts and which will then summing up will give you also low               

depth for the original f right. So let me add that assumption here. f is homogeneous                



and C is a homogeneous circuit. Let me go through the proof with this assumption               

then I mean if later on I find that there is a stronger proof I will tell you okay. 

 

So for now let us just continue using homogeneity. So in the homogeneous case, the               

place where we were stuck yeah now it will be fine because you know that degree of                 

u is the same as degree of . Intuitively it should be possible, but let us proceed.       u1           

There is no counter example for that. It is only in this proof where we are getting                 

stuck. So anyways that homogeneity addition gate also has to be homogenous. So it              

will be adding up gates of the same degree. 

 

In fact, are homogeneous of the same degree. So all these degrees are the same.  ,u1 u2               

The frontier expansion for will be with respect to that is allowed and for    u1       Fm       u2  

also frontier expansion with respect to is allowed. Okay both of them are      Fm         

allowed. And this then comes out to be u. Let me write the step. 

  HS [u ] [u ][w] [u ] [u ] [u]R = ∑
 

w ∈∖Fm
1 : w +  ∑

 

w ∈Fm
2 : w =  1 +  2 =   

So the first thing is by induction hypothesis and the second thing is . So RHS        u1       u2    

equals u, this expression that we started with is in fact u. And in the same case what is                   

?u ][ : v  

 

So the other identity in the lemma statement.  

u ] [u ] [u ][ : v =  1 : v +  2 : v  

By the axiom of quotient A. And now individually you can use the induction              

hypothesis to get , plus the symmetric thing. And which you can   u ][ 1 : w  w ][ : v          

again take the summation out, take the common and you will get this equality.       u ][ : v         

So both the identities in the lemma statement are done in the user addition gate. 

 

Then you cannot use the induction hypothesis. You cannot complete the proof            

because the RHS I mean this red part which I am calling RHS, this is then just equal                  

to sum which is equal to . So you do not even get u then. You get ] w]u2 : w × [      u2            

only a part of u. Well which is also in a way it is intuitive because if you are using                    



frontier gates whose degree is higher than , then expanding with respect to them       u1        

can never give you .u1  

 

So you will actually only be able to compute . So it is a fundamental problem in         u2         

this proof method, so I had to change the theorem statement. Let us prove the weaker                

version first. Second case is that of the multiplication gate. 

 

So in the case when u is a multiplication gate since the degree of u was at least m you                    

know that has degree at least m, because the circuit is right heavy. No that I  u2                

cannot say. In the non-base case, u is not in . So not being in the frontier means          Fm         

that the right child degree is at least m. This is not the first time that the degree                  

crossed m. 

 

Degree of is greater than equal to m. We will need this conclusion. So now since  u2                

the degree of is at least m, we can intuitively when you use frontier gates from   u2               

they will be able to give you . That would be enough in the induction step. SoFm         u2           

which is? So now you can expand by the frontier that isu] [u ] u ][ =  1 × [ 2     u2           

allowed and can you bring u 1 inside? 

 

So if you bring inside you can multiply it with and get which is u.    u1        ][u2 : w    u1 · u2     

That is again an axiom of quotienting. In the non-base case u is not a frontier but we                  

are using homogeneity here as well and this is equal to u. So that is our first identity                  

in the lemma statement and let us simultaneously prove the second identity. So in this               

case, when you take the quotient of  you will divide .u1 · u2 u2  

 

And now you can use the induction hypothesis. So that will give you with respect to                

frontiers and when you bring inside you will get the result. That is the form as     u1             

claimed. So this completes the proof of frontier expansion lemma. The import of all              

these calculations is simply that a node u can be expanded by frontier gates of smaller                

degree, at smaller degree. 

 



So just the frontier gates are enough, nothing else is required as long as you are doing                 

this at a degree below or at most u. And you can also do the same thing with                  

quotienting, . So using this we will now see what the circuit is, okay. So u ][ : v            `C     

will have these and as nodes and it will be using frontier expansion`C     u][   u ][ : v           

lemma to do things faster in terms of depth. 

 

So in a way it will be faster because in the original circuit C, between u and the                  

frontier gates, a lot of extra calculations may have been happening. All those will be               

now optimized by these frontier expansion lemma identities. So in one shot you will              

be jumping to high degree. Yeah, but still I mean it will have some technicalities. So                

we have to go through that. It is not straightforward. 

(Refer Slide Time: 51:22) 

 

So we will use this lemma to write the depth, reduced circuit C prime. So we will take                  

a top down approach, which is what the frontier expansion lemma already suggests             

that expand u with respect to the frontiers come down and then proceed inductively.              

So we will recursively compute u and the quotient from nodes in C of a lower degree.                 

But m is actually a parameter. 

 

It is any number below the degree of u. So you now want to fix m. So let us fix m to                      

be half of the degree of u. Because we are interested in optimizing the depth. Llet us                 

look at the frontier which is exactly half degree or around half degree of u, expand                



with respect to that. So this frontier expansion lemma will in a way be doubling the                

degree. 

 

Yeah, so let us fix m to be that. So let be the new notation for frontier. So this is           (u)F           

the frontier of u at , so that is what we are defining that is . The     eg(u)/2m = d           (u)F   

degree of may also be half right and or it may also be 1. This will happen when  /2u                  

you are looking at really things close to the leaves. So that part you handle separately;                

make that your base case. 

 

So we can assume that so that doubling really happens. You are      deg(u)/2 1m =  >          

above 1 and then when you double you will get 2, and bigger integers. So m is an                  

integer bigger than 1 or at least 1 and when you use frontier expansion lemma on u,                 

you will get that identity, w frontier of u. And you know that the w is a multiplication                  

gate, right. So let us further expand this. 

 

u] [u ] w] [u ] w ] w ][ =  ∑
 

w ∈F (u)
: w × [ =  ∑

 

w ∈F (u)
: w × [ L × [ R  

 

So u we have expanded as sum over the frontiers of u of these three gates, their                 

product. So let us just write down what we have got here. So u we have written as an                   

addition gate with a fan in less than s. In this summation the number of summands is                 

equal to the number of frontier gates and that cannot exceed the size s. These               

multiplication gates which is this part its summand is a multiplication gate of fan in               

only 3. 

 

And these input multiplication gates so these multiplication gates have what is the             

degree that you see here? So deg of , , What is the degree upper        u ][ : w  w ][ L  w ][ R       

bound on these? Since we have taken m to be half the quotient has degree upper                

bounded by the difference. So that is half of the for w by since it is a frontier          eg(u)d          

gate at m .eg(u)/2d  

 



Left and right both of them have. So w was a multiplication gate. Its children cannot                

have a degree more than that. So all of them have degree . So this you            eg(u)/2d     

should think of as something happening inside circuit . So there is a node        `C       u][  

which is an addition gate with lots of inputs, each corresponding to a w in and               (u)F   

each of these are actually multiplication gates with only three inputs. 

 

And these three inputs are the lower gates. So we have developed       u ], w ], w ][ : w [ L [ R       

this sigma product layer of by one application of frontier expansion lemma. The     `C          

input to this layer is of a low degree which at the output doubles. So this is   ΠΣ                

exactly the progress that we wanted, doubling the degree. So does it mean we are               

done? 

 

Right, so to complete this inductive proof we now have to so we have analyzed .               u  

Now we have to do the analysis also for type of things, which appears here.         u ][ : w        

So what is the equation frontier expansion lemma for that? So for that we will need a                 

frontier of this type. Let me define frontier of u, v to be for, so this is the           (u, )F v    Fm       

frontier for the frontier expansion lemma of .u ][ : v  

 

So you are given u and v. What should you fix your m as? So u in the tree of u, there                      

is somewhere there is v and so the w should be in the middle because in the frontier                  

expansion lemma you get u divided by w and w divided by v. So w is the average. So                   

let us take m to be average. So average is just degree of u plus degree of v which is                    

actually also degree of product half . And let us expand with respect to      eg(uv)/2m = d         

this. 

 

So this is allowed, this is a legal expansion. So what you get is this. And just                 

following the previous calculation above we want to now see a doubling of degree              

here. So this will be our snippet for in . So the gate how is that        u ][ : v   `C     u ][ : v     

being computed? Again as two layers. One for the sigma gate and other for the               

multiplication layer. 

 



So we can immediately write with respect to because w is a multiplication        ,wL wR       

gate, being a frontier. So that would mean outside and ,. We get this,        wL    w ][ R : v     

these three things. 

u ] [u ][w ] [u ] w ] w ][ : v =  ∑
 

w∈F (u,v)
: w : v =  ∑

 

w ∈F (u,v)
: w × [ L × [ R : v  

Now are these three things, is the degree less than half of degree . So the              u ][ : v    

problem is actually, if you look at this what is the degree bound that you have, m        wL           

right? Which is .deg(u) eg(v))/2( + d  

 

But that is more than the degree of u by v, right. So this is the gate which may have                    

actually degree more half of the degree of this. So we cannot stop here, I mean we                 

have to develop more, so that this problem is corrected. So degree of could be   `C            wL    

more than . So what should we do? Yeah, it is negative.eg([u ])/2d : v  

 

So we have defined, we were at least forced to define m like that, it should be                 

between u and v. So we picked exactly in between. But then the place where it hurts                 

is, in the LHS you have u by v, which has degree as difference. So the difference may                  

be smaller than the mean by 2, the difference can be small. This is well difference by                 

2 can be smaller than the mean, which actually usually it will be. 

 

Whenever stuck in such a situation we will use the only thing we know which is                

frontier expansion lemma. So we will expand by another application of frontier       wL       

expansion. So we apply frontier expansion lemma again. So that will give us a big               

sum. 

(Refer Slide Time: 1:05:26) 



 

So u quotient v is now w we already had and for look at the frontiers. So this will            wL         

be you have , you have now , , and . So that is the   u ][ : w     w ][ L : p  p ][ L  p ][ R   w ][ R : v      

thing which is new, the red thing that is the frontier expansion of the single node .                wL  

So now we have five things instead of three. And what can you say about their                

degrees? 

 

So the degree of is upper bounded by which is the mean,    u ][ : w      eg(u) eg(w)d − d     

which is half of what we are computing. That is fine. Degree of the is              w ][ R : v   

smaller than the mean minus which is again half of what we are computing. In     eg(v)d            

the red part we want to claim the degree of the and and they are           w ][ L : p   p ][ L   p ][ R    

all smaller than this. So this we have to check. So why is that? 

 

So remember that p is here. So what it is expected of degree of and ? So              w ][ L : p   p][   

they are at most and the degree of will be smaller than the degree of    eg(w )/2d L      wL         

. That will be the proof. Well may not be half of the final thing, but itu ][ : v        wL            

cannot exceed that degree. Not by 2, I am just saying that the degree of is at most               wL     

the degree of LHS. There is no half. So that is a simple demand, okay. 

 

So as an exercise show that degree of . That is all. So since that is        eg([u ])/2wL ≤ d : v         

true, and on that we are doing frontier expansion. So will now be    wL        w ][ L : p     

bounded by degree which is then smaller than half of the final thing. So   eg([w ])/2d L             



now we have a perfect case of I mean, we have this snippet, this part of , where                `C   

there is a big sum the feeding which is in which you are feeding multiplication gates. 

 

And these multiplication gates have fan in only 5. So this is the bound you get. You                 

get that fanin of multiplication gates, is 5. Fan in of addition gates is unbounded and                

whenever multiplication happens, the degree at least doubles. So you get all these             

structural properties which imply the theorem. 


