
Arithmetic Circuit Complexity 
Prof. Nitin Saxena 

Department of Computer Science and Engineering 
Indian Institute of Technology-Kanpur 

 
Lecture - 07 

 
Last time we proved this theorem about homogenization that, so this theorem. 
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That given a circuit of size s does not matter what the degree is, degree can also be                  

exponentially large, but as long as you are interested in lower degree parts, they can               

be extracted by using an efficient circuit, the size is merely quadratic, it is this ds 2   
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The next structure result that we will show is to do with computation of derivatives.               

We will use to denote the first order derivative of a polynomial with respect to   x∂ i              

the variable . This is a linear operator and the most interesting thing is that it  xi               

satisfies Leibniz rule ,which is basically the action on the product. So, the action on               

the product is differentiating one at a time and taking the sum. 

 

The effect of this is essentially to linearize a problem. This actually linearizes             

problems. The reason why differentiation is so helpful, generally in mathematics is            

because of this identity. It can be make non-linear problems somewhat linear, and             

then you can use linear algebra algorithms to solve ultimately. And the obvious thing              

that if is constant with respect to .These are the properties or you can also take  f       xi           

them as the definition. 

 

These are the axioms defining differentiation. how do you compute this at the level of               

circuits? We will prove this theorem by Baur and Strassen from 83. Let be a             (x)C    

size s, degree-d circuit. Then there exists a circuit whose size is and depth         (x)D     (s)O    

is also roughly the same. Yes, I wanted the depth not degree. 

 

Depth is also the same that simultaneously computes all the derivatives, first     (d)O         

order, .In the same size and depth, you can actually compute all the n x  C∂ i              

derivatives. This is the theorem by Baur and Strassen. So actually, in the beginning, it               

was not even clear whether you can compute the derivatives efficiently. And this             

theorem is actually giving you much, much more. 

 

How do you prove this? Most of these proofs in circuits are based on induction on                

size or depth. So in this case, we will do basically induction on the size, but also on                  

the depth. We will basically I mean if you are looking at a variable then               

differentiation is very easy . So derivative at that variable is 1 and otherwise it is just                 

0. And in the leaves you have actually variables. 

 



So you start from the leaves, your inductive argument and then gradually go to upper               

levels.  

“Professor - student conversation starts” 

Student: ​What is the definition of ? ​Professor​: What is the definition of      ∂ xi        

differentiation? The definition of differentiation is given here. This is how it is             

defined. It is an inductive definition, including the linear operator thing. So these three              

things give you the definition of differentiation of any order. 

 

Oh, so then maybe that it should be 1 yes and that you are not getting by .. So                xi × 1   

we can add the base case that defines differentiation. And this is how so you can                

basically implement this definition from the deepest levels of the circuit and then             

move, move upwards.  

“Professor - student conversation ends” 

The idea is very simple and the implementation is also is not hard. So, let us do that. 

It will be a constructive proof. You will actually get an algorithm to construct D,               

efficient algorithm. So we prove existence of D by induction on the size s. So if C is a                   

variable then obviously we are done by the definition of differentiation.  

 

“Professor - student conversation starts”  

Student:​Here, will the size not depend on the number of variables because suppose u              

as a variable then we so the circuit then computes all the derivatives. It should be like                 

n many, it will not have like n many? ​Professor: - So first of all, usually the way we                    

have defined it size includes n and secondly that has I mean n has to be included in s                   

otherwise we should simply look at the roots the outputs they are n. So order s means                 

that well n is subsumed.​ student :​ So is O(s). Sorry.sn   

 

So suppose we make it as size s and then we cut short and use circuit as size say s                    

times n. ​Professor: No, the expressions written here are correct. So I am just              

reminding the definition. The definition is size includes n. It is not s times n.               

“Professor - student conversation ends”.  

 



So otherwise when it is not when circuit is not just a variable so then it has things                  

above the leaves and you pick the deepest gate, call it v. 

 

Let v be the deepest gate in C and denote v's children by u and w. Maybe I am                   

assuming that the fanin is 2, that is possible. So let me add that assumption, fanin is 2.                  

You have v here. So the circuit is above v and v is the deepest, one of the deepest                   

gates which means that u and w are not gates. They are just variables or constants. So                 

what do you do now, for induction? 

 

Obviously the idea should be to just surgically remove this these 3 nodes. So remove               

them from the circuit, replace the replace them by a variable, a new variable . Think              y   

of it as a new variable and a new leaf. So that is the modified circuit that it has clearly                    

smaller size because three things have been removed and replaced by one. The size              

has fallen. And so for the remaining circuit, you know that by induction hypothesis all               

the derivatives can be computed including this new variable .y  

 

And so use, together with that use Leibniz rule. Use the axioms of derivatives to               

finish the proof. Let us do that. Consider circuit . So is now a new variable         Cv=y   y       

where subtree of is replaced by a new variable . We have defined this. That is a   v        y         

smaller circuit. The size of this circuit is smaller than s clearly. 
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What this means is that by induction hypothesis a circuit of size ,        ∃    D′   α(s ) − 1  

where alpha is a constant that we will fix later. So induction hypothesis gives you               

alpha times the size which is at most . Size is a circuit computing all the        s )( − 1      D′     

derivatives. So , .x C , ......∂x C∂ 1 v=y . n v=y yC∂ v=y  

 

So these we have. We have a circuit computing all these n + 1 thing simultaneously.                

So now let so now we have essentially 3 kinds of circuits and corresponding              

polynomials. So original was is the polynomial computed at inside . So that    ,f f v       v   f    

is a very small polynomial. And is what remains after you remove the subtree      f v=y          

and replace it by . So these are the three relevant polynomials.y  

 

These are the output of and respectively. Let us define these three     ,C v   Cv=y        

polynomials. So let be the variables appearing in the circuits u and w, . These   X ′                

were the children. So either they are constants or they are variable. So is at most 2.             X ′      

We have at most 2 variables. And what can you say about the relationship between               

these 3 polynomials? 

 

So in , if you substitute what do you get? You get the original polynomial,  f v=y     y = f v           

right? This is the basic identity.This inner thing is this polynomial is in and if you             y     

remove by substituting you will get the original polynomial. So on this let us do y    f v              

differentiation. let us first write . In y you are substituting     : y (x, y )y = ∑
 

i
ai i = f v=y = f v       

.f v  

 

That is the association. this is just to define the . That is the definition of . It          sai′       sai′   

just follows from the above observation. So this is the equation which we now want to                

differentiate,   So differentiating with respect to  will give you the result :xj  

                                             ∂x j (∂x a y ∂x y )f = ∑
 

i
j i

i + ai j
i  

where is a product.. And we are always thinking of this as in this yai i             y = f v    

equation. 



 

Let us look at the individual sums. The first one this one with gives you             Σ    

and the second one gives you the sum. And I want to write it like thisx f |∂ j v=y  y=f v                 y∂

. you just differentiate w.r.t . No, so maybe we should do it in steps first. Thisf v=y      y             

thing this other one instead of, so to differentiate with respect to , you can first            xj     

differentiate with respect to  and then  with respect to  .y y xj  

 

So use that, use the chain rule that follows from the definition of derivation. So maybe                

I write that down. So this is equal to this is equal to the chain rule. So first with                   

respect to then with respect to . So on this you take the sum. So then this part is  y      xj              

independent of . So that comes out and what remains with the sum isi   

                                                 ( .y∂ )  . (∂x f )f v=y y=f v j v   

 

That is it. You differentiate it in different ways. This new polynomial you            f v=y   

differentiated once w.r.t and another time w.r.t and then you just did some   xj      y        

simple operations. Now is such a trivial polynomial, that computing is just   f v         x∂ j    

some constant size being added. And both these derivatives and , I mean both         x∂ j   y∂     

the derivatives of  , they have already been computed simultaneously.f v=y  

 

That is what did. So already gave you these two values and you just have to do   D′    D′              

some trivial computation to get the circuit for . I want to deduce from this that ,        x∂ j f           

size( )     size ( )  +  O(1)x∂ j f ≤   D′   

 

So as, you sorry, has to be used actually otherwise this would seem like as you    X ′              

vary over j, you get  multiplied by n.  

 

​“Professor - student conversation starts” I think it is because you can take , you              D′   

can first substitute for and then that will increase s by constant and then in two    y f v              

of the output gates we just have to modify it to r, d whatever. ​“Professor - student                 

conversation ends”. 



 

So otherwise you do not even add. The addition is not there, actually. So that is an                 

additional observation. Let us write it down. So if then the above formula         xj  ∈/  X ′      

gives you, so is basically you are saying that is not in not in . So   xj  ∈/  X ′        xj     u    w   

then it is not in . So this part actually vanishes. So this is just a transfer.f v   

. whatever was computed by D that is just beingo,  ∂x f   x f |y  S   j  = ∂ j  v=y  = f v           

transferred. That does not take any size. 

 

The size contribution, I mean the addition and multiplication will happen only when             

 is in  which happens only 2 times. So actually you get something stronger. Soxj X ′   

ize(D) ize(D ) s ≤ s ′ + α  

 

So for the two variables and you will add multiply also. So these will be     xj   X ′           

constantly many gates being added. So let us call that . That is the constant growth.          α       

And let us use the same in the induction hypothesis. It’s the that was yet to be      α        α       

fixed is this . So this is, (α α )  .s  (s)   s − 1 + α = α = O  

And similarly, depth of D gets bounded. So that finishes the constructive proof to              

compute derivatives simultaneously, without changing size and depth. So it is an            

interesting proof although it is only using the definition of differentiation. But it is              

also inventing something about circuits which is that you can remove a sub circuit and               

replace it by a new variable. So that's an auxiliary circuit. 

 

And you are working with that auxiliary circuit to compute the original polynomial.             

So that is the idea which we will now mine in the next theorems. We will develop this                  

idea more generally, that when you look at the parts, various parts of a circuit, they                

are also computing some useful things in a way in this proof, they are computing               

derivatives already. If you look at the parts of a circuit, you can actually see               

derivatives. You just have to combine them in a simple way. 
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Let me write that down. This theorem suggests parts of a circuit almost compute              

derivatives. So just have to look at the correct parts of a circuit and you will be able to                   

see by combining in a simple way derivatives. So we will develop this theme to get a                 

very strong depth reduction property. This is a property which was never seen in other               

models. 

 

This property will say that if you want to compute a polynomial of degree delta or d                 

then there is no need to go beyond depth log d. So somebody gives you a circuit                 

computing a degree d polynomial with depth arbitrary. Say the depth = size. So then               

we will give an algorithm that will modify the circuit to another circuit of similar size                

where the depth has come down to log d. 

 

And that is a very surprising thing, it actually seems impossible that if originally the               

depth was d, how can you reduce it exponentially to log d. So we will be able to do it                    

because of these hints which were available in this proof that actually parts of the               

circuit are already computing useful things. 

 

And since in the end you are going to compute only a degree d polynomial, if                

somehow you are able to make sure that every multiplication gate doubles the degree              

then the number of multiplication gates cannot be more than I mean in a path the                



number of multiplication gates cannot be more than log d. So that is how we will get                 

to depth reduction theorem. 

 

But before that there is an open question for derivatives. So what does this give you if                 

you want to compute derivatives of the second order? How much size? Correct. No,              

not the same size. You get a multiplication. There is a multiplicative growth. Because              

just to look at  and  with how many ’s are there, .xi xj   ji n2  

 

So when you have this circuit D that has computed all the first order derivatives, so                

the circuit D which has given you all these ’s naively what you have to do is for         x∂ j          

every again apply the same thing for a different or for another . So there will x∂ j            x i     

be a multiplicative growth. So you get order O(ns) .It is a multiplicative growth. 

 

So and then hence, I mean similarly you can go to any order derivative. So maybe I                 

write that down that is kind of important but a simple observation. So t -order               

derivatives in let us say, . This seems fair right? For = 1 you are    (s  . n ) izeO t−1 − s       t      

getting s times n and then similarly. So the open question is to improve this. So let us                  

leave this as an exercise. 

 

And the open question is could all the second order derivatives  

“Professor - student conversation starts” Will there also not be an type term.           α × t    

Professor: ? This is just like . This is . ​“Professor - student α × t      ( )t
n    ( )t

n     

conversation ends”.  

 

So can you compute second order derivatives, all of them in linear size? So without               

paying much of a price, can you also go to second order from first order. 

 

First order was a surprise and maybe the surprise continues to second order. There is               

no reason to disbelieve this. And you will not believe that if you do this, you will                 

solve a very old practical problem. So this esoteric question if you solve it positively               



then you have solved a very practical basic problem of the history of decades. Do you                

know which problem? 

 

You will solve matrix multiplication in quadratic time, you will solve it in quadratic.              

So currently n by n matrix requires  or , .. and you will solve it in .n2.41 n38 n2   

 

“Professor - student conversation starts” PIT will also be solved? ​Professor:           

Sorry? Well PIT is practically solved. Nobody doubts. ​Student: I mean after this PIT              

will also be solved because. Yeah, no but no second order derivative. If second order               

is done and then, third will be, Professor: Why? There is no promise. I am not sure                 

that second order implies third order. Just like first order did not apply second order.                

“Professor - student conversation ends”.  

 

This is related to fast matrix multiplication. Anything that depends on matrix            

multiplication or basically any linear algebra computation depends on this. Sorry. No,            

that is too complicated. 

 

Anything that any linear algebra computation is matrix multiplication based. I mean, I             

think the list is literally into millions, problems that reduce to linear algebra. In fact, I                

heard from insiders that all Netflix does to decide where to invest the money, what               

series to make is matrix multiplication. So they just buy billions of GPUs and run               

matrix multiplication to solve this. I mean, essentially it is a joke on ML. 

 

So ML algorithms, they ultimately do matrix multiplication. If there is really a             

practical way to hasten matrix multiplication then it helps them. This connection may             

not be obvious. Let us just go through this. So we will look at a polynomial that is                  

related to matrix multiplication and then we will differentiate it using second order             

derivatives to get matrix product. So let me just give the construction because once              

written down it is easy. 

 

The polynomial is this. You have two matrices say for simplicity, these are             n × n  

square matrices AB. So you are interested in A times B. So to get a polynomial out of                  



this you just consider the corresponding multi linear form. So you multiply on the left               

side by a row vector y and on the right side a column vector z. So say                 

. So these are formal matrices.(x )) and   B (x ))A = ( 1,i,j = ( 2,i,k  

 

There are these lots of ’s and ’s and 's and ’s. So ’s are 2n square many     x1   x2   y   z   x      

and and are n many. So this is variate. So what is the size of this y   z        n   2n2 2 +           

polynomial? I mean what is the smallest circuit you can think of for C? So size of this                  

circuit, circuit size of this polynomial is at most, so it seems nq but you are wrong                 

because the magic is that this breakup significantly simplifies life. 

 

Use first multiply by y on the left side, so that will give you only and similarly               n2    

symmetrically on the right side with B and then it is only a question of taking inner                 

product So the circuit is order . So this polynomial construction actually is not      n2         n3 

, but only the size is only . And what about its second order derivatives? So if you       n2            

compute that second derivative,  right?zyi j  

 

That is your product entry. So that is just , for all . So if you can compute         AB)( ij    , ji         

all these second order derivatives simultaneously, in size C, that will be . Then we            n2    

have an optimal way. So this actually seems even better than matrix multiplication             

algorithm because this is actually a circuit of size merely quadratic. So there are              n2  

variables and the circuit size is also , O( .n2 )n2  

 

So this is actually too good to be true. But you can modify it slightly, you can maybe                  

give it leeway or leeway and ask the same question, right? Or and that  n2.1    n2.2          n2.36    

will still break the world record if you are into world records. Now we want to prove                 

depth reduction results. We will start with formulas before moving to circuits. 
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That is also how it happened historically. And I do not think this will follow from                

circuit depth reduction. So let us first do this depth reduction for formulas. If you use                

circuits, no, so in circuit reduction, then we have to carefully check whether fanout is               

being preserved to 1 or not. So usually for formulas you have to repeat proofs.               

Because just proofs that work for circuits do not directly work for formulas because in               

circuits, you can just compute something using it hundreds of times. 

 

That is not allowed for in the case of formulas. So we start with a result or even an                   

algorithm to reduce depth to log (degree). This is the goal. So it is not clear why you                  

would conjecture this but it was conjectured and proven by Brent. So because you              

have to note that the degree is, in formula’s degree is like size and depth originally                

was size and now you are bringing it down to log of size. 

 

So it is an unbelievable reduction in the depth. So let C be a size s formula. Then so                   

we are starting with the assumption that it is a size s formula, no talk about depth. So                  

depth could be as high as . But the conclusion says that there is an equivalent      s           

formula of size will be poly , depth will be . It will have more properties.      s     (log s)O       

So fanin will be bounded and obviously formula so fanout = 1. 

 

So bounded fanin is important. This shows that there is no chance of cheating. It is                

really an optimal result because fanin is 2 of multiplication gates especially and still              



only in log s, so minimal depth of multiplication depth required to get to degrees s is                 

. If you are below that, then you cannot even compute degree s monomials. Solog s)(                

 really is the minimum. So this depth is really an optimal at the scale.log s)(  

 

It is an absolute optimum. So how is this shown? This is shown by identifying what                

will be later called frontier gates.These frontier gates are always multiplication gates            

at which the degree suddenly jumps. So say the degree at the root is d. So then                 

frontier gates would be those multiplication gates somewhere in the middle of the             

circuit where the degree is jumping from d / 2 to d. That is not quite correct actually. 

 

Maybe I should say that it will be a gate where I should actually say that it is a,                   

frontier gate is a gate where the degree of the children d /2. But at this gate it           ≤         

grows, it goes beyond d/2. So it is the place where this d/2 is being crossed. Those                 

are frontier gates. So these gates are somehow important, and we will work with              

them. 

 

And then we will, we will also need to modify the circuit using the frontier gates. So                 

it will be a constructive process, it will be an algorithm. The proof will be an                

algorithm. So we assume in the beginning that fanin is 2. It starts with this. So from                 

the root, let us walk down looking for frontiers. So walk down from the root by taking                 

the child whose subtree is larger. It is a randomized algorithm. 

 

So practically this can be done, yes. Actually for formulas we will not talk about the                

degree. It is more about the size. Then we have to change the proof for circuits. So                 

consider the first node. Anyways for formula size and degree are kind of synonymous.              

They are analogues to each other. we will talk about the size. Consider the first node v                 

in this walk that you are doing whose formula size   .≤ s/32  

 

This is the first one where the formula size drops below this threshold . So this is             s/32     

think of this as a frontier node. We will call this . So this sub formula we are           Cv        

defining it . So this is let us say v and the path that you are or the walk that you are  Cv                     



taking is this. So you are coming down from the root towards the leaves and the first                 

place where the sub formula size falls below the threshold of  is this v.s/32  

 

And in this walk remember that we will always take, we will always go to the child                 

where the which is heavy. So heavy means subtree is bigger, the size of the sub                

formula is bigger. Well, if the two are the same, then you can just say you move to the                   

right. Anyways, we can we could have transformed the formula so that it is right               

heavy. You can assume that the path always goes to the right because otherwise you               

can just flip that part. 

 

So all those things you can do efficiently. So this is what we are calling the sub               Cv    

tree or the sub formula rooted at v. And so now what we will do is we will write, we                    

will use this frontier node to rewrite the final polynomial being computed. And let us               

first make this simple observation. So the size of and it is at least correct         Cv  ≤  s/32        

it is at least ./3s  

 

The reason is its parent has size more than and is heavier. It is at least .         s/32   Cv        /3s  

You can even take it strictly. And let us use the old notation of . So that is the              Cv=y      

modified circuit after removing this v replacing it by a new variable y. The original               

circuit . This is obvious because if the parent of v is a multiplication  .C   C = A v + B              

gate then, no that is not clear, this is not about degree. 

 

Yes, so it is obvious by the fanout of . The fanout = 1, so it contributes so it gets         Cv            

multiplied by some A if the parent of v was a multiplication gate and eventually might                

it eventually it will get multiplied, sure. So it is just . And what is ?            .C   A v + B     Cv=y  

So you remove C v, replace it by y, i.e  .yCv=y = A + B  

And what do you know about A, B? So for polynomials A, B that are free of y, so                    

that is their specialty. 

 

They are y free. These two identities basically eliminate A, B from this. A, B are the                 

unknown polynomials. You can eliminate them and you can write C as just a simple               



formula in and . So let us do that. So maybe in steps. So what is B? B =  Cv   Cv=y                 

and what is A? So A = So that is it. You have A and B andCv=y  |y=0         C )  ( v=y y=1 − B            

so you have rewritten C in terms of these, in terms of  and .Cv Cv=y  

 

This is clearly reminiscent of the derivative construction and this is again a recursive              

proof. So instead of using the way C was given before you use this representation.               

This representation is basically C, to compute C you have to compute            Cv=y  

recursively and then take two different evaluations, difference of that. So an addition             

gate and multiply it with which is again a recursive call and then add B which is     Cv              

again a recursive call. 

 

Let us analyze this new representation. This can be done efficiently if you want an               

algorithm. But it is also enough to see this as an existential proof. 
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So that is the new representation, We will write C in this way . . So             C | C || v=y + | v ≤ s   

which means that | , So this is, so that is the key thing. That when you   |Cv=y  2s/3≤               

are making this recursive call is smaller by a fraction,. So recursive call is     Cv=y           

happening on this, this small n instance. 

 

And as well. So this is this should now be taken as the motivation for whatever Cv                 

we are doing in this proof. So we have identified a frontier gate such that when we do                  



recursive calls, two recursive calls, both of them are fractionally smaller. This            

reminds you of merge sort. So you know that something good is going to happen in                

this recursion. So equation 1 involves 4 formulas of size .s/32  

 

Thus we get recurrence for the size function, let me say. Thus we get the recurrence                

and similarly for depth you will get a recurrence. So if you started with the formula of                 

size( ), then this process will give you ultimately a formula ofs   

size . This is, so remember that this is the final formulas)( 4. size(2s/3) O(1)≤  +             

based on 1. 

 

You start with formula size (s) and you end up with formula size, size ( s), s is being                   

thought of as a parameter and this recursive proof will give you this recurrence and               

what is the solution? So size (s) is polynomial in s, sure. Certainly sub cubic, not even                 

cube. So it is between quadratic and cubic. Correct. And as an exercise you can show                

that the depth function for the formula which is actually the important thing, we              

wanted to show depth. 

 

So the depth of this resulting formula based on equation 1, repeated applications of              

equation 1. This will be the number of recursive calls , which is log s. Is that clear? So                   

this is just a number of recursive calls. We have a super quadratic size log s depth                 

formula which is equivalent to a given and arbitrary formula of size s. So this is a very                  

powerful theorem. Any questions? 

 

What is the problem if C was a circuit and not a formula? The formula will, the                 

equations will be wrong. A and B will not be y free. And then what happens? So since                  

A and B are not, I mean in the case of circuit or if A and B were not y free, so that we                        

have used implicitly here. So if this B is a function of y, then this equation is not                  

computing B at all. It is computing , right? Sure you can.B(0)  

 

Correct, but then it is not the 4. It is not a constant. The recursion is now full-fledged.                  

It is d. So the recursion is now into d instances. So this is full-fledged. So you will get                   



super poly. Yes, so that was an implicit understanding we had that these two              

equations are indeed giving you A and B because A and B are not functions of y. If                  

they are functions of y then obviously, you are not computing B, you are computing               

B(0). 

 

That is the problem. So this proof has to be drastically changed. But at least now you                 

can make the conjecture. You can ask the question why is this not true for circuits,                

right? Circuits also should have a log depth. After all, they are a much stronger model.  

 

“Professor - student conversation starts” Then you can probably count and say that             

there is a lot of circuits. So and it is more circuits than formulas.  

Professor: ​No, but the counting argument is only on the size. How will counting tell               

you specifics about depth and fanin and fanout? These are more these are semantic              

details in your inside your model. You cannot see this in the count. Counting is just                

for the number of representations. You are just thinking of your circuit as a string, and                

then you just see the size of the circuit. Everything else is invisible. ​“Professor -               

student conversation ends”. 

 

 

So that is the problem. I do not think we can do it now. So let us just mention it here.                     

In circuit C, and overlap and the pool fails. We will try to run the same   Cv=y   Cv              

proof based on the degree and recursively reduce it. So we will instead of defining the                

frontier with respect to size, we will define it with respect to degree, that is just one                 

thing. 

 

There will be more details which we will see when we come to it and that will give a                   

similar depth reduction for circuits as well. But in that case, there will also be more                

parameters. So here there was only one parameter which is s. In the case of circuit if                 

you just work with the size (s), then the degree can be as high as . So log( is               2s   )2s   

again . So this is not impressive at all.s  

 



So what you would want to prove is that if your polynomial ultimately has degree d,                

then the depth required is log d. Already the semantics suggests that, you should use               

degree as your potential function. And we will do that. So we will define frontiers               

with respect to degree and then show that in the recursive calls number is only log of                 

the degree. No well, degree is d. There are two parameters. Circuits have two              

parameters. 

 

No but what he is seeing cannot be achieved if you are given size s circuit degree s                  

does may not give you anything because the circuit maybe computing something            

much more than s like by repeated squaring for example. So d is a different     2s            

parameter. Whatever d is, based on that you get depth. Exactly, it is useful in those                

cases when d is poly, poly in s. 

 

Well, we have to see. We have to then say, make these statements that the degree of                 

both the things are small. So we can check that. Any other questions? 

  

 


