
Arithmetic Circuit Complexity
Prof. Nitin Saxena

Department of Computer Science and Engineering
Indian Institute of Technology-Kanpur

Lecture - 06

In the last class, we showed that determinant is equal to this expression 1.

(Refer Slide Time: 00:17)

Let us say expression 1 here is this big sum of signed weights of all clow sequences

with length exactly equal to n, which is the number of vertices. So this in particular

contains cycle covers. And cycle covers is another way to look at permutations. So we

are actually computing a bigger sum, but then the extra things we showed cancel out.

So now what we will do is we will show that for some weird reason this big sum is

easier to compute than the previous sum. Okay, any questions?

Okay, so we will prove this lemma by Mahajan, Vinay. So we will actually show that

there is an ABP of width and depth n + 1. Okay, so there is an ABP n2 n2 × n + 1

where every path from s to t will be implementing a clow sequence with the signed

weight, exactly as in the expression. So the sum over all the parts will give you

determinant, okay.

So before that, let me just point out a physical interpretation of ABP because that is

what we will be using here. So ABP width you can think of as the number of registers

in your machine, okay. So width corresponds to memory. So registers and depth

corresponds to time. So basically, if you have width-many registers, then you can

implement any ABP of that much width in time equal to the length or depth of the

ABP.

So in other words what we will be doing is, we will show that determinant can be

computed using registers in time n okay. That is an alternative way to look at this n2

implementation. Now note that width or registers is not too much because n2 n2

your matrix already had entries.n2

So you can think of the matrix entries being stored one per register and within those

many registers, you can actually do computation and in n time you will have the

determinant. And when you convert this via matrix multiplication iterated matrix

multiplication into circuit then you get a different complex or different interpretation.

So there you will get actually time. So the things are a bit different there.log n

So this ABP is actually a stronger result, because you can derive the circuit result

from here, right. So the way we will do this is we will have layers labeled by l

wearing from 1 to n + 1. So one l = 1, l = n + 1 are the source and target vertices. But

for l,2 to n layer l,2 to n has each of them have around nodes which will be labeled n2

by a pair. So i, j. And the layer label will be in the superscript for different i, j

between 1 to n, okay.

So the vertices that you see in a layer are these . So these around , many vi,j (l) n2

things you can imagine them to be stored in the registers. At time l, they are stored in

the register and what they represent is well, i will represent the head whose clow we

are currently building or the walk we are doing and j will be the current vertex. So

nothing else will be remembered okay.

So at time l all we remember is what is the head of the close walk that we are

currently trying to do and where are we in the closed walk because of these two things

and then based on this you have to take the next step. So that next step will go to l + 1.

You will pick an edge and you will go to some .`v i,j
(l+1)

So this will be basically in the closed walk. What you are doing is that you are trying

to build a clow with the head equal to i and from j​th vertex you are moving to j` and

the only thing you have to ensure is that both j and j` are greater than i. Okay this is

the only constraint. So using this nearly oblivious walk, you will be able to complete a

clow.

So when you come back to i then the interpretation is that you have completed the

walk, closed the walk and at that point you should introduce a sign because every

clow introduces a sign of -1 and these -1 then get multiplied out to get the actual sign.

So let us look at the details of the implementation. The idea is as I just mentioned that

in , i remembers or i in fact is the head and j the current node in the current clow vi,j (l)

being constructed.

It is not yet a closed walk, but it is just a walk which will ultimately close back to i.

So in particular i will be less than j. So here actually the subscripts i, j denote vertices.

They are exactly the vertices, so i has to be smaller than j vertices in the graph G. So

let me write that down in fact. And so we intend to hard code a clow sequence as a

path in the ABP. This is the overall idea. So let us look at the layers in more detail.

(Refer Slide Time: 10:00)

So layer has the node with edge of weight to , so there is so we l = 1 s vi,1(1) v1,i
(2)

are drawing an edge from first layer to second layer with the weight and this you x1,i

do for all i. So this is just the first layer. So this is basically the s vertex. That is the

first layer going to the second layer and we are just describing how the edges will be

from s to neighboring vertices.

So neighboring vertices are n - 1 and when you are looking at a path that takes this

, it is like you are building a clow with head one and moving to vertex i. is Ix1,i x1,i

mean you should think of it as the symbolic variable in the matrix, but you can n × n

also think of it as the weight of the (1,i) edge in the graph. If you are given something

in the input then you can use then you should think of as that.x1,i

And okay so now let us look at a general layer l. So for , so 2,]l ∈ [· · · , n − 1

intermediate layers and for all . In fact, let me suppress this. So we are at layer l ji <

and is the vertex. So this has an edge to of weight equal to, so the weight vi,j (l) vi,k (l)

should be? If you are at and you move want to move to , what is the vi,j (l) vi,k (l+1)

weight that you should put on this edge in the ABP; right. So that is the thing.xjk

Do this for all and k should be the only condition is it should be more n]i < j ∈ [

than i. Okay, so do it for all these k’s that are bigger than i and between 1 to n. And

for all these (i, j)s also. So this describes the edges that will cross layer l to go to layer

l + 1. So that describes all the intermediate layers and the first layer. So then what is

the meaning of interpretation of this? This grows the i headed clow from j to k.

Okay, this is what we are doing. When we pick in a path in the ABP in the graph xj,k

what we are doing is we are actually walking in a clow. Where? That is what we have

in the picture. So we are in a clow whose head is i and then currently we are at j. We

do not know what happened between i and j. We also do not care. We just want to

move to something bigger than i which is in this case k.

Okay, so it is an oblivious, nearly oblivious, walk. So oblivious to what happened

before. But we cannot just continue walking, at some point we have to fall back to i to

the head. So that needs special treatment because till now we have not introduced any

sign. So how do you introduce the sign. So that we will do when we are folding back

to i. So that is here.

So for , so let me ignore the brackets and the comma. So 2,]l ∈ [· · · , n − 1 vi,j l vi,j l

has an edge to . Yeah, so now i has gone, so if you look at the subscript i has vk,i
l+1

gone to the second coordinate. So what this is meant to signify is that i headed clow

we were at j, we go back to i and then we create a new head called k. Okay, so this is

the transition point from current clow to the next clow.

So this is the place where we should introduce a minus sign. Every clow development

introduces a minus sign. Lets first talk about the weight. Yes. No so okay. Let me

write it down here. Sign of a clow sequence is equal to where r is the number −)(1 n+r

of clows. So let us ignore the because n is common across all the clows. The −)(1 n

thing that is different is this r.

How many clows are there in your clow sequence? So whenever you are developing a

new clow, just introduce a minus sign. So that is the formula we are using. we −)(1 n

will assume to be just one. So we just ignore that. We could have put that in the

beginning when we looked at we could have put it here. It is not very important. l = 1

Okay, so here we are jumping to the next clow.

So what should be the conditions? Has an edge to with weight . So vk,i
(l+1) − xj,i

usually it would have been just this j to i edge weight, but here we are also

introducing a sign. And just introduce this for all and . You want n]i < j ∈ [k > i

the next head to be bigger than i. So that is all you have to remember. So what

happened is clow ends, sign changes and the new head is k, right.

This is the interpretation in the walk in the graph. So this describes everything from

layer 1 to layer n – 1. So the last layer what do you do? So has an edge to t of vi,j n

weight equal to, well so in the last the layer just before t so that has to close the

current walk, right. It cannot leave it open and it cannot create a new clow. So if i, j

was the, so you are in . So then you should go to from j we should just go back to vi,j n

i.

Okay, there is no option. And you have to flip the sign then. So this will be and − xj,i

do this for all . So what happened here is clow ends, sign changes and clow i < j

sequence ends. So not just the clow but also the clow sequence ends here. Do you get

the feeling that every path from s to t will give you a clow sequence with the correct

signed weight if you take the product of the edge weights?

So then ABP by definition computes sum over all the paths, which will be

determinant. So those are the observations. So the observations are each ABP path

corresponds by design to a unique clow sequence of G. Moreover, the signed weight

the respective signed weight matches. So every part defines a unique clow sequence

and when you look at the signed weights of these two they are the same.

And second observation is that each clow sequence okay so when you look at a path s

to t in this ABP you will get a clow sequence, but you also have to show the converse,

that every clow sequence in the graph has been implemented as a path. Is that true?

Right. But we fix the first head to be 1. Is that kosher? Could the head have been 2?

No. So note that the clow sequence has length exactly n.

So I think the heads are already fixed. So the first clow we could start with 2 and okay

I see! So basically these clow sequences that start with 2 are not being produced here.

But will it matter? It would not matter because it does not contribute to determinant.

So that is the only small point that we do not really care about all the clow sequences.

We just want those clow sequences that have a potential of contributing to

determinant.

So those are being produced. So each clow sequence of G with first head equal to 1

corresponds to a unique path in G. So the only thing we have fixed here is the first

head. After that you have all the freedom. You can move wherever you want to, but

that is fine. Okay, so these the sum of over all the paths of the signed weights will

give you determinant. So that finishes the proof.

“Professor - student conversation starts” I mean when we look at any monomial or

the determinant we can just start of with sum . So then that is why you are putting x1,i

sign. But to make such an argument we have to make sure everything cancels right?

But that was shown last time, because if anything that is not covered it is bound to get

canceled. ​“Professor - student conversation ends”. For that you have to observe

that a clow sequence that starts with head 2 head equal to 2 under join or break will

give a clow sequence of head equal to first head equal to 2.

So in the partition, we are actually removing elements together with their

transformation. So on the subset also our map is actually an involution. Yeah, so those

are minor points. This basically is done. So what did we learn from this?

(Refer Slide Time: 27:32)

So this is actually a big result, it shows that determinant as a polynomial has an

iterated matrix multiplication expression where the matrices are and they are n2 × n2

n of them. Determinant can be kind of factored into matrices. So it was an

determinant of an matrix. But these factor matrices that you are multiplying are n × n

slightly bigger. They are square.n2 × n

So that may be something to optimize, but we do not know whether it can be

optimized. It is an open question. This is the best representation for determinant and

then second thing when once you convert this IMM into circuit, so since you have n

matrices to multiply, right, you can do it by you can do it recursively by having and so

that gives you a circuit and what is the depth?

Same as the number of recursive calls right, which will be . So you actually get log n

a depth arithmetic circuit that will compute the same thing and its size will log n

obviously be polynomial. So that gives you a very fast fastest possible parallel

algorithm. So determinant and there is no division happening. So over any

commutative ring has depth, poly n size. If you analyze the size is also not too log n

bad.

It will be, I do not think it will be more than . So you have matrix and you n5 n2 × n2

have n of them. So I think is a trivial bound on the size. It is not too big a circuit, n5

but the time that it gives you is log n. So this is an improvement even over the first

result you saw, where we showed determinant is in VP. There we got lock square n

depth. Now this is log n depth.

Slight difference is that here this is unbounded fanin fanout. Unbounded as in it is not

bounded by a constant it is not 2. So fanin and fanout are bounded only by the size

because when you look at the recursive implementation of iterated matrix

multiplication. So when you want depth to be log n, then you actually are forced to

add and multiply many things. So addition multiplication gates are actually

multiplying many things. Okay.

Maybe multiplication can be bounded the fanin but addition certainly is unbounded.

You have to add many, many things. ​“Professor - student conversation starts” Is

there anything similar known for permanent? What do you mean? I mean do you

have, can I be able to compute permanent like this, permanent. Permanent has a poly

time algorithm? No what is the barrier? ​“Professor - student conversation ends”.

The barrier is the cancellation. In the proof we had this involution, which was

canceling things. So that was happening because of the sign. So that kind of a result

we do not have for permanent. We do not have a mathematical result for permanent.

[Student]​ If we ignore the signs we probably will overcount the clow sequence.

No so then you would just yeah, the more clow sequences you look at, more things

will get added here.

It never converges to something meaningful. ​“Professor - student conversation

starts” So this was unbounded fanin like it should not be a problem like if we

consider as if the bounded as well because if we like bound the fanin then it should

not like depth would increase but. Depth will increase. So then you will get the

previous result. ​“Professor - student conversation ends”.

Depth will become . Because if you have if there are things going inside an nlog2 n5

addition gate, again by divide and conquer, you can implement this in log n depth,

depth. So then the depth just gets multiplied by , which is . Solog n5 log n5 (log n)O 2

then you go back to the previous result, but the previous result does not give this

result.

So this is really a stronger result and except the constants in the exponent of size this

is really optimal. You cannot improve this. Neither in theory nor in practice. So yeah,

but there is a meaningful question for determinant that it has not answered, which is

the assumption of commutativity. So what can you say about determinant over

non-commutative rings.

So for all practical purposes, this result is good because well you only look at

determinant, usually over fields or integral domains. So those are all covered. But if

one day you choose to pick your entries in the matrix as being matrices themselves so

you are looking at determinant of a matrix whose entries are matrices. So then

actually, you are looking at determinant over a non-commutative ring because matrix

algebra is non-commutative.

So we do not know results for that except just brute force computation. So it will

really depend on the order the way you are multiplying these entries. Yes, so that is a

question which is not answered or even considered here in this analysis. So this was

so I think, currently it is known that for general non-commutative rings, determinant

is as hard as the usual permanent.

So there is I think, no hope for doing this efficiently. But you can still ask for special

rings. So I do not know what the results are there. So this completes the discussion

about basic models and what they can compute. So this shows that determinant and

ABP are the same. And ABPs are contained in circuits.

ABPs are, I mean circuits are at least as strong as ABP, believed to be stronger and

where do you think are formulas? On the left yes but that we have not shown. So

some time we will show that formulas are on the left. So formulas are weaker than

ABP which is equal to determinant and these are weaker than circuits. Circuits also

we have two kinds, circuits with bounded, with poly degree.

So that is VP and we also can look at circuits with unbounded degree. I mean general

degree okay. So the circuits at poly degree is VP. That is the VP class. And circuits

with no assumption on the degree just on size, this is the class VP subscript nb which

just stands for not bounded not bounded degree. Yes, so this is currently the summary

of what we have learned in terms of complexity classes.

So formulas you can call as defining complexity class VF, okay. Let us say Valiant’s

formula. ABP you can use it to define a complexity class called VBP, so Valiant’s

Branching Programs. So these are basically polynomial families for which there is a

polynomial families with I mean index by the number of variables n for which there

are a ABPs of size poly n, right.

VF Det​n​ ABP VP VP​nb≤ ≡ ≤ ≤

So these are classes of polynomial families, VF, VBP, VP, and VNP. Right, so we

have some understanding of how they compare and how powerful they are. But we do

not know anything else here. So we do not know whether VF is strictly weaker than

VBP, VBP is strictly weaker than VP. Well we know that VP is strictly weaker than

VP nb just because of degree, right.

So that we already know by definition. But this is an open question and strictness of

these two, the first two inequalities it is an open question. So what we will do now is

we will look at some very powerful results, structural results here, okay. So circuits

with poly degree, which is VP. So we will now look prove some structural theorems

about VP okay which will really be some of them will be very unexpected, okay.

You will not conjecture them looking at the definition just like you will not conjecture

a determinant equal to VBP from the definition, with equally unexpected results.

(Refer Slide Time: 40:36)

In the previous thing, there is another branch which is by adding non determinism. So

that gives you VNP, right which obviously is our central open question. So these are

your complexity classes in this course. You can define more but those will be

straightforward definitions. Okay. So one thing about arithmetic circuits that we will

see over the next few weeks or months is that they have some striking

self-reducibility.

So they have striking self-reducibilities that makes studying very special cases

worthwhile. So the term self-reducibility means that in general arithmetic circuits you

can convert them into something much simpler: a much simpler arithmetic circuit, a

special case of arithmetic circuits. And so then studying these special cases becomes

an interesting question. So when you can understand these special cases good enough,

then you actually will have results about the general circuit model.

Okay, so these self reducibilities are actually very special to the algebraic model.

Their Boolean analogs do not exist. If you try to do the same thing for Turing

machines or Boolean circuits, those things are false. So this will really be a

consequence of algebra. So the first thing, first special property that we want to show

is, well, so a circuit computes a polynomial, let us say n variate degree d.

So you can talk about the degree d homogeneous part. So homogeneous parts means

that you only want those monomials and respective coefficients where the degree is

the same, let us say d. So you want to extract those monomials whose degree is d.

There may be monomials of degree d -1, d - 2. You want to drop them.

So the question is, if the original circuit has a small size or the original polynomial

has small circuit complexity, what can you say about the homogeneous part? Is this

also easy to compute? Right, so this is called homogenization. So a polynomial f is

homogenous if all its monomials well, when I say all its monomials, I mean those that

are in the support. I do not care for those monomials whose coefficient is zero.

So monomials that appear in f with coefficient nonzero they have the same degree, f

has equidegree monomials. So then we call it homogenous and a circuit is

homogeneous if so how do you want to define this homogeneous circuit? Right so the

definition will be syntactic so it should hold for every gate, not at the root. But every

gate should be computing homogeneous polynomials.

If every gate computes a homogeneous polynomial. The theorem that we will show is;

we will I will call it homogenization property of circuits shown by Strassen. So say f

has size as circuit. So then for all i’s where d you can think of as the degree of f. So

for all for any i you can compute the homogeneous part of f using a homogeneous

circuit. So there is a homogenous circuit of size square that computes degree i C i ds

homogeneous part of f.

So for every homogeneous part there is a homogeneous circuit of size slightly bigger,

. And in fact, the result is slightly stronger. So I do not need to assume d to be(sd)O 2

the degree of f, d is just any number. So basically, the circuit may have a very large

degree. But if you are interested only in low degree parts they can be computed

efficiently. So the thing becomes expensive only when you start asking for very high

degree homogeneous parts.

Anything that is low that can be extracted out in a size which is small. How do ds 2

you show this? It has a simple proof. Since you want a homogenous circuit already,

this demands that from the very beginning, so from the leaves you should be

computing the homogeneous parts separately. Okay, so at any point, any layer you

can assume that you have currently the homogeneous parts available of an

intermediate polynomial.

And so when you want to add two such things, you do it using homogeneous parts, I

mean, you add the corresponding homogeneous parts to get another homogeneous

parts for the sum. And when you want to multiply, then using the definition of

polynomial multiplication, you can again do this in a homogeneous way to get the

homogeneous parts directly.

No, so it is a, so you have two polynomials g1 and g2 let us say in the original circuit,

you had two polynomials and which were non homogeneous. So the g1 g2

multiplication gate that is multiplying these two this you have to implement by a

homogeneous circuit. So you actually have to break , into homogenous parts g1 g2

and part by part you have to multiply and output those things by different

multiplication and addition gates.

So this is what the simple proof idea is and you implement it just by, formally by

induction. So without loss of generality assume C has fanin just 2, if it the fanin is

more then convert it into fanin 2.

So this will increase the size slightly but not by much. So we will be using this fact.

So for any gate g in the circuit we intend to construct , , such that g0 g1 gd gi

computes degree i part of g. So I want to give a more general proof right. So I have to

say okay let me say that this was strictly less than d. I want things from 0 to d – 1.

And what I will do here is up to d -1.

So to are indeed the degree i homogeneous parts; is the rest. So degree g0 gd−1 gd

greater than equal to d part of g. So these homogeneous parts plus the 0, ,][1 · · · , d − 1

rest which is then the parts of degree d or more. So this is what we want to maintain.

So we are actually building from the leaves inductively we are building another

circuit such that for every gate g in C, there will be an analogous computation `C

happening inside in a completely homogeneous way.`C

So think of another being built inductively. That is our goal. That is our strategy.`C

(Refer Slide Time: 54:38)

We shall construct recursively or inductively. So let g have children u and v. So g gi

has fanin is 2 so u and v are the only 2 gates which are feeding into g. Now g itself

may be an addition gate or multiplication gate so we have to handle it separately. So

case 1 is easy case which is the sum, g is an addition gate. Well so for u you have u0

to available. For v you have to available. You just do the obvious thing. So ud v0 v0

define for .ugi = i + vi 0,]i ∈ [· · · , d

This is, the property of this is that it is a homogeneous addition. So using addition

gates you can compute ’s now inductively. And how much has the size grown? Not gi

much, by . Just an additive growth. So this is under control. So next is when you (d)O

are multiplying, this will grow slightly more because here what will be ?.gi

These are available to you, ’s and ’s . So now when you want to compute the i​th ui vi

homogeneous part, what do you do? So should be multiplied with some . And u0 vi

with the one behind and with the one behind and so on. ​“Professor -u1 vi u2

student conversation starts” And I think we can handle quite a bit of fanin right?

Because there this is this x + y = d they may have 3 variables x + y + z = d I mean like

that.

No, but they are not just u v, there is u, v, w. Yeah, so once you take something from

u and something from v what you take. No, but the number of products exponentially

starts blowing up. ​“Professor - student conversation ends”. If you are multiplying r

things, then you have d to the r many products. So we do not want that actually, we do

not want to go there. Let us just do with the fanin 2.

So define as now this convolutiongi

 , ∀i 0,]gi = ∑
i

j=0
uj * vi−j ∈ [· · · , d

This product * is homogeneous. Homogeneous multiplication gate and also the sum is

homogeneous. So we have computed all the . The price we pay is for every , we gi gi

have around many multiplication gates that we have introduced. And so there (d)O

are many gates being introduced.(d)O 2

Yes, so as you can see the multiplication fanin is not growing. This remains 2 in the

end. But the addition for fanin is d, okay. Yeah actually one has to be careful here

also. In the boundary case this should only go up you should only go up to d - 1.

Yeah. Because if you start introducing the dth parts yeah there it is inhomogeneous.

So but then you can define it easily.

u v) ugd = 0* vd + u1 * (d−1 + vd + · · · + d * vd

So the properties of homogeneity are there only for these up to ; we can g0 gd−1 gd

compute, but we do not care about homogeneity. Yeah, so I should have rephrased it

maybe in a different way. So part is really not homogeneous. Will that be a gd

problem?

Well, okay, so the it is still fair to say that the circuit resulting circuit is homogeneous

circuit, because if you are only interested in parts up to d - 1, then at no point of time

in your intermediate computation, will you need degree d, or more homogenous part.

So actually, could be forgotten. If in the end you do not want to compute, you gd

only want to compute up to d – 1 homogeneous part then at every intermediate

computation could be forgotten.gd

So this part is actually not needed. This can be dropped. If you include I mean gd gd

also can be computed, but if you include then there is the slight non homogeneity that

is being introduced. So note that on introducing these extra gates for each gate in C,

we get a circuit C` whose size grows per gate by . So its size is now .d2 (sd)O 2

Yeah, so we are computing all the homogeneous parts up to d – 1 using a

homogeneous circuit. That was not too difficult. So what do you do with a formula?

So you are given a formula which means fanout is one and you are interested in

computing all the homogeneous parts as formula. So fanout should remain 1. So you

observe that here in our proof, we are using this .uj

We are assuming that has been computed once here below or well, Here and uj uj

have been computed and then we are using them again and again. The fanin ofvj uj

is more than one. So that is not allowed in the case of formula. So this proof will fail.

Does it mean that you cannot homogenize a formula? So it can be done. Think about

that.

It is a proof even simpler than what we did. Okay, so for that I should clarify. You

know if your demand is to get a homogeneous formula, then that I think is an open

question. But if you just want a formula for the homogenous part, formula complexity

of homogeneous part that you can show is low. But if you also want the resulting

formula to be homogeneous then I think it is not clear.

Yeah, so this is a fair question. Do this for formula. Do some things but not

everything.

(Refer Slide Time: 1:06:30)

Okay, so we will move to the next property which is partial derivatives, okay. So

since we are working with polynomials after you have understood the homogeneous

parts you want to understand other operations on polynomials. So the first natural

operation is differentiation. So you differentiate let us say with respect to variable .x1

So what is the complexity of the derivative polynomial and you can differentiate now

you can look at higher order derivatives. So like or or . So what is x1
2 xx1 2 x xx1 2 3

the complexity of these partial derivatives? So let be the partial derivative ∂xi

operator with respect to . So these are the first order derivative, the simplest ones. xi

So we know that it takes n variate polynomials and send them to itself with the ∂xi

same ring.

And this is a linear operator. Why is it linear? Simply because f + g derivative is equal

to derivative of f plus derivative of g, that is all. Well, if you take the base field to be

the function field having variables x to say i is 1. So has the property that if you ∂xi

look at the function field with variables . So over this function field, you are x2 · · · xn

looking at univariates in .x1

So is actually also linear. So you can also push the other variables ∂x1
 [x ,]F 2 · · · , xn

inside in that function field also it is actually a linear operator. But it has the same

proof. Moreover, it has this really unique property that well so the it preserves

essentially the addition operation, but it does not preserve the multiplication

operation. There it has a unique, it follows a unique identity which is called Leibniz

rule or the product rule.

Leibniz rule is

 (fg) f (∂ g) ∂ f)g∂xi = xi + (xi

This is one nice property of derivatives. And it goes without saying that the third

property is if you differentiate a polynomial

 if is - free.f 0∂xi = f xi

So this also we will be using all the time. Derivative vanishes unless its polynomial

depends on .xi

So what we will do next time is show that these first order derivatives, they can all be

computed simultaneously by a circuit whose size is the same size and the same depth

as before? Okay, which should be a pretty surprising thing because there are n

derivatives first order derivatives, all of them can be computed essentially the same

size and depth. Okay. So that is not at all clear from the definition of a circuit. Any

questions? Okay.

