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Last time we saw that ABP can be expressed as a determinant. 
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So, width w depth the ABP this can be written as a determinant of a matrix of size of                   

the dimension wdn and is the number of variables in f. As the proof was very simple it                  

was just converting. You are given an ABP with source vertex s, destination vertex t.               

Every path from s to t that contribution you get by a cycle. So give a reverse edge                  

from t to s of weight 1 and that will make a path into a cycle. 

 

So every path becomes a cycle. And together with that cycle, you can also use the                

self-loops to look at it as a cycle cover. So every path actually corresponds to a cycle                 

cover and that gives you the determinant by this combinatorial interpretation of            

determinant. Any questions? Now we will come to the more interesting part which is              

the converse. 

(Refer Slide Time: 01:38) 



 

So we now want to convert determinant into an ABP. And this will actually improve               

algorithms of determinant. That we have seen till now. So the determinant, we will              

show, has a width n​2 depth or length n ABP, okay. And all we will use is                 

commutativity of the entries in the matrix. So what will be the algorithmic implication              

of this? 

 

Well this will actually mean that determinant is again in VP as I mean which we have                 

already shown, but the depth will be better. So depth will only be now. Depth            log n    

will be and this will be a completely uniform way. You will get a fast algorithm  og nl                

to also compute this representation given an n, okay. So the advantage is that the               

depth is now  in comparison to in contrast to .og nl  nlog2  

 

That we saw using the other method, using Newton identities. One point of difference              

is that now the fanin will be unbounded. So depth will be , but in contrast to the            og nl       

other the older circuit where depth was and fanin fanout was 2. Here we are        n log2         

making the fanin fanout arbitrary. So it will be bounded by the size of the circuit only                 

and reducing the depth to .og nl  

 

And this cannot be improved any further. We do not expect this to be improved at all.                 

So this really gives you an optimal result for determinant computation using parallel             

algorithms. If you want a fast parallel method to compute determinant, this is the              



implementation to be used, okay, this is a unique result. We do not have anything               

better than this. No, so every addition, multiplication gate should be seen as a chip or                

it is simply a microprocessor. So if you have these, let us say size, if the size of the                   

circuit is , so for size to solve to compute, size n determinant, you pay the price of  n4                 

manufacturing these n’s, many microprocessors. And then whatever input matrix   n4         

is given matrix, the time to compute the determinant is only . Tthe   n × n          og(n)l   

parallel complexity, time complexity is only  for this  determinant.og(n)l  n × n  

 

All of them work simultaneously. So they are working simultaneously. The           

microprocessors are actually working in parallel, but their time will not add up. The              

physical time which you will see will only be the length of the path . Theoretically                

this is a nice result because it shows now equivalence of ABP model with the               

symbolic determinant model. These two models are the same. 

 

So determinant is something unarguably it is fundamental and we are getting this             

model to be equivalent to this new model which we had defined ABP and this we                

have defined in a completely different way. Still they are equivalent? So that is a nice                

theoretical result. So how do you show this? How do you convert determinant into an               

ABP? So determinant is defined, we saw the combinatorial interpretation using cycle            

covers. 

 

So you would want to convert or implement cycle cover as a path now and this does                 

not seem easy or even possible. It will be a non-trivial, it will be a complicated proof.                 

So what we will do is we will actually prove something more about determinant, more               

properties of determinants. The main tool in the proof is a relaxation of disjoint cycles               

which appear in a cyclic cover to closed walks while still computing determinant. 

 

So we had, in a cycle cover we use disjoint cycles of course. We want to relax it to                   

closed walks. So the difference would be that now you will be allowed to actually               

repeat vertices. Okay, these will not be simple cycles and moreover across so in the               



case of cyclic cover across cycles, the vertices were disjoint. That will also be false               

now. So across these closed walks, vertices may actually be repeating okay. 

 

“Professor - student conversation starts” Same cycle won’t repeat again? Yeah, so            

all kinds of repetitions are allowed now. ​“Professor - student conversation ends”.            

Within a closed walk you can repeat a vertex and across these, across closed walks               

also you can repeat vertices. So there will be only one thing which you would not be                 

able to repeat, and that is called head of the walk. 

 

So we would want heads to be distinct. So let us now define this formerly. So let G be                   

a graph on vertex set [n]. So what we will call clow, closed walk. So a closed walk or                   

a clow of G is a closed walk of length , say So C = ( , .., . So it is a          l      , vv1  2   , ) vl v1      

closed walk but the vertices other than maybe repeating with being unique and       v1     v1     

minimum. 

 

So it is the unique minimum here, okay. So we are thinking of the vertex set as                 

numbers 1, 2, 3, .. n. So there is an ordering and a closed walk is just you are basically                    

walking in a sequence of vertices. So obviously, to there should be an edge and        v1   v2        

then ​to there should be an edge. So you are taking, you are picking these edges v2   v3                

walking along them, but everything is allowed except you should not fall below ,             v1  

okay. 

 

So to all of these should be strictly bigger than . So that is the only v2   vl          v1       

constraint. Everything else you are allowed to do. So this is this designated vertex is               

called head. So, head(C):= . So head does not repeat, okay. That is the thing to    v1             

remember. It does not repeat as in it does not repeat in the middle. When you are                 

repeating it the closed walk ends, the walk closes. 

 

Okay, so the walk gets closed at the point you come back to the head. Any questions?                 

So that is one closed walk. So this is a relaxation of a cycle. Now to get a cover you                    

want to look at a sequence of closed walks with increasing heads, okay. So a clow                



sequence is a clow tuple. So a tuple of clows or a collection of clows to with               C1   Cr   

increasing heads. That is  head  head < .. <  head .C ) ( 1 < C ) ( 2 C )( r  

 

They are distinct and in increasing order. Note that here we are not putting the extra                 

condition of covering all the vertices. They may be missing some vertices, but it              

would not be important. For the final result this covering will not be important. So               

just think of this clow sequence as a set of closed walks, closed heads are strictly                

increasing. Within a clow you are allowed to do whatever you want. Just respect the               

head. Any questions? 

 

“Professor - student conversation starts” So, when we were doing the reason we             

were able to find that connection was because cycle cover that has very close link               

with permutation. Sure. Is there something. ​Professor: ​Yeah sure. This will also give             

you the determinant. That is the observation by, well invention and observation by             

Mahajan, Vinay. ​Student: And right now is there any link between clow and             

Professor: yes a cycle cover is a closed sequence. That is the connection. Student:              

Okay, but it is not the other way round. ​Professor: Well, so for we give it a sign,                  

okay.  ​“Professor - student conversation ends”.​ So for that we first define length. 
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So the length of a closed sequence is the sum of the length of the underlying clows.                 

So naturally it is just these vertices which you are seeing. So in a clow you will see                  

vertices back to and then sum it up over all the clows in the sequence. And v1    v1               

then the sign of a clow sequence should be, what do you want to define the sign as                  

minus so parity of some number which should be the length. 

 

Well okay not the length. So you have to again you have to define it analogous to                 

cyclic covers. So in the case when you are looking at a cycle when your clow                

sequence is a cycle cover what is the sign? Number of even cycles.  

 

The sign of a clow sequence is  .− )( 1 #even−clows   

 

This is inspired from the sign of cycle covers. Otherwise, there is really no motivation               

why you should look at the parity of even clows, number of even clows just to be                 

consistent with cycle cover, we define it like this. And now what will happen is that                

these clows, clow sequences which are not cycle covers in the sum we want them to                

cancel out and this is what we will show that, they indeed cancel out with the sign.                 

Okay, that is it. 

 

When once we have shown that we will have the connection with determinant. So let               

us just recall also the weight definition. So the weight of clow sequence this should be                

the product of weights of the underlying edges. So length of a clow I think is then                 

number of edges you see, not the vertices. It is the number of edges, which was also                 

the case in cycle cover. 

 

And weight is just you, you take the product of these edge labels. Okay that would be                 

the weight. So every clow gives you a signed weight. Every clow sequence you will               

just multiply these to get a sign weight for the clow sequence and, oh​, no you repeat                 

it. If an edge repeats you have to multiply. The idea is that it will not matter because                  

there will be a clow sequence of opposite sign with the same weight. 

 



So they will cancel anyways. Okay cancellation is the magic here. ​“Professor -             

student conversation starts” It is not bounded. The length of a clow sequence?             

Yeah, that is a good point, yes. ​“Professor - student conversation ends”. So is it               

bounded? The length of a, the number of clows is bounded because the heads have to                

increase and within a clows, within a clow does the definition allow doing this              

infinitely many times? 

 

The definition as it stands seems to suggest that you can do this infinitely many times.                

So I guess no, in the end, I think we will just put a bound on this. So do not, we have                      

to see in the implementation, but there will be a bound. So we will not be doing this                  

infinitely many times. Within a clow they are just a natural bound say more than n,                

say  is what is where we will stop.n2  

 

Within a clow sequence the number of heads cannot be more than n and within a clow                 

also you do not have to look at all these arbitrarily long clows. It will be clear from                  

the implementation when we want to compute it. But for now let me just continue               

with more observations. So first simple observation is that a cycle cover is obviously              

a clow sequence of the same weight and sign. That is by design. 

 

So this should be clear just compare the definitions. And so the surprising thing is that                

this sum will also give you determinant. So Mahajan, Vinay[MV’87] that paper shows             

this lemma:  If A is the adjacency matrix of a graph G, then, 

                                      det(A) gn(c) t(c) =  ∑
 

c ∈ clowSeq(G)
s · w   

So the attraction here is this equality, . You know that determinant is equal to the sum                 

if you went over all the c’s that are cycle covers, that we had seen before. Now we are                   

saying that even if you relax cycle cover to a clow sequence the sum is the same. It                  

does not add anything. In other words, so to prove this it is equivalent to proving that                 

C’s that are not cycle covers, they will cancel out. 

 

“Professor - student conversation starts” So again like he pointed out if we did not               

put that bound, this bound will be a finite. ? yes. ​Professor : ​Exactly yeah. So once                 



you have a cycle you can just keep repeating it. Sure. “Professor - student              

conversation ends”. So we will see that in the implementation. So for now just think               

of a very large upper bound. We will exactly see what that is. I think it will simply be                   

n. 

 

The ABP which will construct will be of depth n and it will just use n edges, not more                   

than that. So the idea is that you should be able to cover subsume all the cyclic covers.                  

And if you think of a cycle cover there how many edges do you see? You see only n                   

edges. So you restrict your clow sequence, clows to be just n. In fact the clow                

sequence you restrict to be n. 

 

You do not need to go above that, because within that, you will be able to subsume                 

any possible cycle cover and the rest of the things will be produced with in different                

ways with different sign and they will cancel out. So n will be the correct bound. So                 

maybe I mention it here. So . Just we are putting that restriction but you      ength nl ≤           

can take it to be any bound because then it does not matter. 

 

Just for finiteness we put that bound. So the thing we will show is exactly that. We                 

will show cancellation of bad clows. Key idea is the contributions of clow sequences              

that are not cycle cover, they cancel out. This cancellation we have to show. Usually               

showing this cancellation is I mean in a complicated computational model showing            

cancellation is highly non trivial. 

 

Here it will be made easy because we will actually show that if you look at a cycle                  

cover with a sign that is, you look at a clow sequence with a sign that is not a cycle                    

cover, then by a simple manipulation you can get another clow sequence with             

opposite sign. Which is in this one? it will be in this sum, because it will be a very                   

simple manipulation. We will just take two clows. 

 

Either we will join them or we will break a clow into two clows, okay. So either join                  

or break. So this will change the parity.  



“Professor - student conversation starts” Joining with length restriction is a bit            

tricky, right? ​Professor: ​No, but those edges are already there. Joining means, so the              

length is not changing. Student: So it is just like a union. Professor: The length is not                 

changing but the sign is. The sign will change. ​Student 2: But the sign depends upon                

the length right? ​Professor: No, it depends on the number of even clows. ​Student 1:               

Still it’s a bit tricky. ​Professor: So we will see it in the proof and then we will also                   

see in the implementation. ​Student 1 : Edges are allowed to repeat if we have a                

length less than n but still only got say length n but you only use half the edges, You                   

have another clow sequence that also have length n, that only uses half the edges.               

Professor: That is fine. ​Student 1 : ​Suppose you have to take the union of them to                 

cancel but only other are sequence of s to n. ​Professor: Sure. But that will be the job                  

in the proof.  So the operations will be join and break. Okay. 
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So consider a clow sequence increasing heads of length . So you     (C C.., )C =  1, C l      l    

see edges exactly in this and they may be repeating all that is possible. So if C is not l                    

a cycle cover what does it mean? This happens if and only if the vertex repeats so that                  

is possible in two ways. So then some vertex repeats. Yes, that is true. So shall we fix                  

it  to be n. Okay. Let us do that. So length is exactly n.l  

 

So length of a clow sequence you fix it to be n and so in C you see you see n edges,                      

but this is not a cyclic cover it means that some vertex is repeating okay. Let be the                i    



largest such vertex. Well okay let be first the largest clow. So let be the      i          r],i ∈ [    

largest such that this clow which so now we go inside this largest clow that is bad.     C i              

Well not largest clow but clow  for the max .C i i  

 

Let us go inside this. So say . Okay this is the clow. Has a       v , , ., , ) C i = ( 1 v2 . vk v1         

vertex that repeats. so either there is a vertex. No, the in this which is not a so           C i         

 to  that is a partial cycle cover.  with  it is not.C i+1 Cr C i Cr   

 

“Professor - student conversation starts” If is not we probably won’t be      C i    C1      

able to write it like this because the clow sequence the heads are increasing. Okay. So                

cannot have . ​Professor: ​Why not? is not 1. is an arbitrary label. isC i  v1     v1     v1     v1   

just a variable. ​“Professor - student conversation ends”.  

 

The vertices are labeled by . can be anything in that set. Why? No. It is     , ..,1 . m  v1            v1

,  is a variable. It is a vertex variable. .v1 (G) [n]v1 ∈ V =   

 

So this in particular tells you that are disjoint cycles, but when you look      (C , .., C )  i+1 .  r        

at that is not. They are not disjoint cycles. This is clear? So why are they C , .., C )( i .  r                 

not, why does including violate the disjointedness of cycles? Well, either because    C i          

is not a cycle or it is a cycle and something here overlaps with some other vertexC i                   

in . There are two ways. So this can happen in two ways., .., CC i+1 .  r  

 

Case 1: . So to are already repeating. So within so  j  j k], v∃ ′ <  ∈ [  j′ = vj   v1   vk        

which means that  is not a cycle. It is not a simple cycle.C i   

Case 2:  occurs in j k], v∃ ∈ [  j , .., CC i+1 .  r  

 

So note that both the I mean these cases are not exclusive. Both the things may be                 

happening. So we can set the convention that first you check case one and if it fails                 

only then you go to case two. So in case two when you come then I mean I do not                    

think it will help. You could have we could have assumed that is a cycle. So all            C i       



these ’s to are cycles, but there is a vertex in that overlap. So they are notC i   Cr          C i        

disjoint. But they are cycle. So that you can think of case two as that. 

 

And actually no. So we, this would not be the convention. So convention will be over                

these cases, pick the least j. We will go with the least. Okay. So look at both the cases                   

and pick the vertex that is the that has the least subscript index, j. Okay, so but still,                  

what could happen is yes. 

 

​“Professor - student conversation starts” ​Student 1: I have a question. We said              

to .. ​Student 2: We can make it a single case. occurs in to .C i+1             vj    C i   Cr  

Professor: Yeah but I do not want to do that. In one case I will do join clows. In                   

other case I will do break clows, break a clow or break into clows. So I will join clows                   

or I will break into clows depending on which case I am in. Well, so you can only                  

guess. At this point, so we have suppose you are in case one which is is not a               C i     

cycle, what do you do? Can you modify this and get another clow sequence? ​Student:               

you take away. ​Professor: Exactly, you break it. So you can already guess that case               

one is friendly with the breaking operation. So you break and get two get a          C i       

different clow where the number of clows has increased. No, so we will only break               

into two, we can fix that. ​Student: And there is only one way to break it even if it                   

occurs multiple times. ​Professor: Yeah, right. ​“Professor - student conversation          

ends”.  

 

And case 2, actually overlaps with say and . So in that case, you are   vj      C i   C i+1        

seeing a connection between and . So this is a good case for joining. So you    C i   C i+1            

join the two with respect to . So you get a get an associated clow sequence. So we      vj             

have set up an association amongst clows, clow sequences that are bad, that are not               

cycle covers. 

 

So this thing you cannot do with cycle covers, but with clow sequences, you can do                

this and we so what remains to be shown is that this is actually, this partitions the bad                  



clow sequences into two parts and sets up a bijection with signs opposite. So you can                

exactly see how things are cancelling out with the sign. So that is what remains. 

 

“Professor - student conversation starts” So how do we show that when we are              

clubbing these two sequences the head.., ​Professor: Yeah so we will see that in the               

now in the analysis. ​“Professor - student conversation ends”.  

 

So now we analyze the break and the join. So let us go to the next page. Just                   

remember these definitions. 
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So in case one, vertices …. are all distinct because they pick the least j. So     vj +1′  vj            

before j nothing repeats. So we assume, let us point that out. So we assume the                vj′  

and to be the same. And since j is the least, between and j, you do not see a vj             j′         

repetition. Okay, so this gives a cycle. 

 

So let us say a subcycle and we can use that this subcycle to define a new clow                  

sequence ( ) by breaking into clow1 = And clow 2 - C ′    C i     v , .., v , ., , v )( 1 . vj ,′ j+1 . vk  1      

Should I say v j prime comma, should I add v j prime also in this? So that is how my                     

notation was. So, clow2 = .v , , ., )( j′ vj +1′ . vj  

 



So clow1 is to with the subcycle removed and clow2 is the subcycle and   v1   v1            

everything else we are not changing. Okay, so what do we gain with this?  , ., CC i+1 .  r              

Well, first we have to check whether this is a clow sequence. So let us check that. Are                  

the heads distinct? So what is the head of clow1? That remains the same because we                

have only removed higher vertices. So  remains the main, it is unique.v1  

 

 

In clow2 what is the main? Is that the main? It should be . We said that . So            j ′       jj′ <    

that is the index. So it should be equal to, so how do you show that there is nothing                   

smaller in the middle? No so I do not think I want to say that is the head here. No,               vj       

no the value, the vertex value should be minimum and non-repeating. Should be             

unique-minimum. 

 

Then it could be anything . So suppose the minimum in clow2 repeats. I think clow 2                 

is just a cycle, it is a simple cycle. That is what it should be. That we have already                   

gotten.They are distinct. So actually this is a simple cycle. So something, the             

minimum would be unique. I do not know what it is, it is something.  

All I want is that the head of clow1 should be less than that of clow 2. 

 

That is true because head(clow1) = head(clow2). No I do not want equal to, it      v1 <            

should be strictly. So is the unique minimum in C. So because of that. So head of    v1               

clow 2 is increasing and well but  there are also the ., .,C i+1 . Cr   

 

“Professor - student conversation starts” But they can be the same. ​Professor:            

They can be the same? ​Student: The head for clow 2 can be in those .               C i+1  

Professor: Yeah, so we have to show that they are at least distinct, even if not                

ordered. So this cycle is disjoint from the rest. That you would need. So clow 2, cycle                 

clow 2 is disjoint from ,..., . Do you believe in this? ​Student : I mean if it     C i+1   Cr             

occurs, it occurs in exactly one of them. ​Professor: What occurs? Student: The head              

of clow 2 occurs in. ​Professor: No, I want to prove something even stronger. That               

clow 2 is actually disjoint from the next. ​Student : ​And also if it does intersect if we                  



try to go the other way, okay it does intersect. Then I mean if poly intersection is only                  

one of them right? ​Professor: No I want to show it does not intersect. How do I                 

deduce that? I think here I have to use then if it does intersect then you will have to go                    

to case 2 probably. I think I have to switch between the cases. Student: What was                

Case 2? ​Professor: Case 2 was exactly this that intersects with something else,         C i      

something next, . There exist a that occurs in, I mean, is something  , .,C i+1 . Cr     vj      vj    

that occurs in and also somewhere else. ​Student: Then we can keep the cases   C i             

separatelyt? I mean case 1, if case 2 does not happen. Professor: Yeah. So we have                 

to switch between the cases Yeah. So that switching will be needed.​“Professor -             

student conversation ends”. 

 

 

So here we can assume that clow 2 is that actually clow 2 is the subcycle is disjoint                  

from the rest. This is logical consistency and it has to be carefully checked. But let me                 

just proceed. So I am basing my deductions on this that clow 2 is disjoint from the                 

rest. And hence, so in the beginning you had  with heads distinct., .,C i . Cr  

 

And when you broke C i then you got vertices that are different from v 1 and they are                   

different from you got a head actually, you got a head of clow 2 that is different from                  

and it is also different from the heads of . So hence the heads arev1           , .,C i+1 . Cr       

disjoint, the heads are distinct and you can order them. Look at that clow sequence. So                

we can order the heads, order the r + 1 heads. 

 

Okay, and what else do I need? So now more important conclusions from this: that               

, that is obvious, because the product would not change when yout (C ) wt (C)w ′ =              

do these, do this break and reordering. What about the sign of ? So I want to make            C ′       

this claim that and . Let us focus on this.gn (C ) (− )s ′ =  1 l + r +1 gn (C) (− )s =  1 l+r  

 

So if you look at the original clow sequence, the parity of the number of even clows                 

matches with the parity of . is the number of all the edges you see, actually it is     l + r  l             



fixed to be the number of clows. Why is that? It is a simple calculation. By    n +               

definition sign of C is and any ideas?− )( 1 #even−clows := e   

 

And let us say odd , so number of odd is then r – e, okay. So if you look at this,  

                               l C | ≡  r   ≡  r    ≡ e =  ∑
r

i=1
| i 2 − e 2 + e ⇒ l + r 2  

That is the proof. 

 

So, was total number of edges plus the number of clows and in the same gn (C)s                

spirit is total number of edges plus the number of clows which has gn (C )s ′              

increased. So the parity changes, it flips. Is that clear? So that is a good process.                

“Professor - student conversation starts” So this clow 1 into clow 2, so does it not                

make the potential case for case 2. The j prime is on clow 2. 

 

Professor: What do you mean? ​Student : So is it not making into clow 1 and clow                 

2? ​Professor: No, so we are done with this process. We are now looking at which               C ′  

has one more with the same amount of edges. ​“Professor - student conversation             

ends”.  

 

So we said the convention here that if both cases are applicable then use case 2, okay.                 

This is just a convention to break the tie. 

 

So since we are breaking the tie we can assume here that the disjointedness because               

otherwise we will be using case 2. So there is some logical stuff you have to check.                 

So that we are not in a vicious cycle but I think it is fine. So let us now quickly do the                      

joint operation in case 2. 
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Case 2 we have this for and this is unique. Why is    v j ∈ C i ⋂ C i′    i  r] i <  ′ ∈ [   i′      

that? No it is not because of that, it is because ... are cycles. They are disjoint           C i+1  Cr       

cycles. Yes. Oh you meant for the . So the way was defined was largest i such       i      i        

that you get a bad clow. So after this you only have good clows which are all cycles                  

and they are also disjoint. 

 

So vertex of reappears, it can reappear only in one place. So that is . So  vj   C i             C i′   

now, since and have this connection, we will just use it to join them. So in this  C i   C i′                

case the number of clows will fall by one with the same effect on the sign. No, do not                   

break. So here we join the clows at the vertex to get clow . So this we have to         vj     C i′       

write as a sequence of vertices. 

 

So let us so we are filling inside . So go up to , to and then you can        C i   C i     vj  v1   vj      

take a detour inside . So follow the map inside the cycle . So that would be    C i′         C i′      

. So break that cycle by removing . Put all those vertices in that orderv }C i′ − { j        vj         

here in this place. And why ? Well because we have removed the first  in .vj+1 vi C i′  

 

So it will come back to and then from that you can proceed to ... . That is      vj        vj+1 , vvk  1    

the description. Sorry. So say it removes from the first because that we have included               

or we can just write yes, that is true. So from after you go to in .     vj−1         vj−1     vj   C i′  



Think of as headed with . So is the first then you will then it will complete C i′     vj   vj            

the cycle come back to  and then move to ..vj vj+1  

 

That is the order. So think of this representation: 

  where  (v , .., , C , v , .., , )                  C i′ =  1 . vj−1  i′  j+1 . vk v1 (v , .., )C i′ =  j . vj  

 

So all the edges are available and you can do this close walk, starts and ends at v 1.                    

Okay, and with this call the new sequence that is the new clow sequence which        C ′         

has now one less clow. We have to now do those checks. Is the head what is the head                   

of ? head . That is because the that we have put inside the that C i′   C ) v( i′ =  1      C i′        C i′   

we have put inside the that these are all higher vertices.C i  

 

So remains the unique minimum. That is good. And the heads are in the same v1                

increasing order. Because we just deleted . So delete and then the head      C i′    C i′      

sequence is the same. So heads are distinct. So this means that it is a valid clow                 

sequence. So that proves that it is we can call it a clow sequence. And then we can                  

talk about weight and sign. 

 

Yeah, so because we have not lost any edge. Neither have we added  t(C ) wt(C)w ′ =              

a new edge. Sign calculation is the same as before. and          gn (C ) (− )s ′ =  1 l + r +1  

. Is this clear? So the sign has flipped weight remains the same.gn (C) (− )s =  1 l+r  

 

So it is now fair to say that the above description gives a map from              τ  

to itself. So this is defined only on non cycle covers.ClowSeq(G)∖CycleCover(G)             

Because otherwise you would not be able to get into case 1 or case 2. And from such                  

a clow, from a bad clow sequence, you are only going to a bad clow sequence. You                 

cannot go to a good, you cannot go to a cycle cover. 

 

So it is a map to itself and additional properties are has no fixed point. Well           τ       

obviously because it is changing the number of clows. So there is no fixed point. It                

does not fix anything in this set. It moves everything. It flips the sign. Flips the signed                 



weight. It only flips it. It does not change it by any other way. And but you need one                   

more thing 

 

You need for bijection, it should be invertible. So why is that? Well, because it is a                 

finite set and we have defined on everything. So with these three properties on the      τ           

map tau is actually partitioning the set into two halves and moving anything from the               

left to something in the right. And when you apply it again you come back to that                 

okay. So these are called involutions. So  is an involution. No, exactly n.τ  

 

So it is an involution and it is moving everything. Or you can just directly show that                 

tau square is identity. So by finiteness, I think it is, it is already there, but also                 

explicitly, you can see that if you apply tau again two times. So basically you, you                

break and then , so then it will be breaking and joining and get to the same thing. So it                    

is actually on every instance it is an involution you can check that. 

 

So no such loophole is there. So this is actually leading to a cancellation, okay. This                

leads to a genuine cancellation term by term. So one term gets canceled with its               

negative. It is the simplest form of cancellation. 

(Refer Slide Time: 1:04:37) 

 

So overall, we get this property that if you look at the signs, weight of cycle covers,                 

oh sorry, clow sequences of a graph then it is the same as all the bad things cancel and                   



you are left with cycle covers the strict subset, proper subset and that is by almost by                 

definition, it is determinant of the A, adjacency matrix of the graph, A. So that               

finishes the proof. Is that clear? That finishes our theorems lemma. 

 

This lemma is shown that determinant is equal to sum over clow sequences and now               

the question arises. So this is a mathematical fact. But how will this be turned into an                 

algorithm. So from one exponential sum, we have moved to a bigger sum. Now how               

can this ever help you in life if you make your sum even bigger? So the term is                  

dynamic programming. 

 

So using dynamic programming, you can actually implement this huge sum on cycle             

cover on clow sequences. So going over permutations is impossible in an efficient             

way. But magically going over the clow sequences because clow sequences are so             

relaxed, that this thing you can actually implement using dynamic programming. I do             

not think we have enough time. This we will do in the next class. It will have a short                   

proof. 

 

Well dynamic programming itself would not have been enough for our purposes. We             

will actually do it systematically in the form of just matrix multiplication or ABP. We               

will just directly write down the ABP which computes, every path of which computes              

a clow sequence. Well let me write down the statement first. So ultimately what you               

will get will be very powerful. So this expression has a nice implementation. 

 

Lemma [MV’97]: So expression 1 has a width- depth- ABP where       n2  n )( + 1    

.= |V (G)| n :    

 

So you can think about this implementation why this thing, why expression one can              

be written as oh sorry. I am pointing to the wrong thing, clow sequence. Yes. So the                 

definition of a clow sequence is so relaxed that you can walk in a nearly memoryless                

way. So all you have to remember is the head. 

 



So you just remember what is the head above which you want, you are allowed to                

visit vertices and just continue to walk on that. At some point you decide that you                

want to close the walk. So you close it and in the next step you move to a bigger head                    

creating a new clow okay. So this is what a path in an ABP will do. So every level                   

will correspond to in every level of the ABP if you think of the levels, there is s vertex                   

there is t vertex. 

 

So and these will be the vertices. So the depth will basically represent these edges               

which you are picking to walk, to walk forward. So that will be, as you go along, pick                  

edges. Pick an edge to walk on. And to implement that in a level, you will need                 

vertices around . So this will basically because you want to remember the head  n2     n2        

and you want to remember the current vertex where you are sitting. 

 

So these two things, it is basically a tuple , head comma current vertex, it is a tuple.                  

So the values that this tuple can take is . So this within a level the number of values         n2           

is . So basically this is what is your memory requirement. and then based on this n2                

we will implement. So the number of edges gives you the depth and the number of                

possibilities of head comma current gives you the width. 

 

So it will be an   ABP, okay. So we will finish this tomorrow.n2 × n  

 

 


