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Last time we were showing permanent in VNP, any questions? 
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There were some questions after the class and there is a small mistake. So recall this                

definition of g, right which is basically a product of the row sums. These are the row                 

sums. You are multiplying n of these row sums. And so in the claim when we are                 

showing that some of these products is permanent,  is permanent.Σ ∏
 

 
 

 

What we should correct here is suppose the monomial we are looking at is              

say r is the number of distinct subscripts. So letx ......xx1,i1 2,i2 n,in            =r : # {i , ........i }1 i2 n

okay and then after this the calculation here will not be ,​but in terms of .           2r−1      n − r  

we will just change it to this  and this is over .2n−r n − r  

 

And then as long as the this sign will be 0. This will come out to be 0 as       nr <                

. And if then it means that are distinct. In the distinct case you nr <      nr =       .....ii1 n        

will get the monomials corresponding to permutations and they will come with sign 1.              



So that is exactly then computing permanent, With this correction let us proceed.             

Now let us write down a conjecture which was made by Valiant. So it is called                

Valiant’s hypothesis. 
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It is his hypothesis which means, which is still unproved. So it is a conjecture, Valiant’s 

conjecture. This says that VP≠VNP. Again VP is the set of those polynomials that can be 

computed by small arithmetic circuits and VNP is the set of polynomials that can be 

written as a big sum of small arithmetic circuit and Valiant’s hypothesis claims that these 

two are different . 

 

So obviously VP VNP. So the conjecture is saying that there is a polynomial   ⊆             

which you can write as a big sum of small circuits, which cannot be written as a small                  

circuit, overall. And we will not be doing that prove, but permanent is essentially              

VNP complete. This alternately you can see  per​n​∉VP 

 

“Professor - student conversation starts” Here in completeness how do you define            

the reduction? ​Professor: ​The reduction will just be is there a polynomial in which if               

you set some variables, you get your favorite polynomial projections. By projections            

and yeah the bigger polynomial should have a small arithmetic circuit. So is there a               

small arithmetic circuit which on fixing some variables gives you your polynomial. 



 

“Professor - student conversation ends”.  

 

Permanent is not in VP. This is an alternative formulation of Valiant’s hypothesis.             

These questions are the central questions in algebraic complexity theory and even in             

complexity theory because of the following connection. If you look at permanent of a              

Boolean matrix,( 0/1 )matrix suppose this (0/1) matrix is the it is the adjacency matrix               

of some bipartite graph. 

 

That represents a bipartite graph. let us draw a small example. Say you have three                

vertices on each side. So 123 here and 123. This is left side is U right side is V. How                    

do you represent it as a Boolean matrix? It will be a 3 by 3 matrix where 1, 2 so 1, 1                      

will be 0. 1, 2 will be 1. 1, 3 will be 0. 2, 1 is 0. 2, 2 is 0. 2, 3 is 1 and so on. So this is                               

the matrix that represents this bipartite graph. 

 

U V and the edges are in the middle E. So this matrix M , if you look at the                      

permanent of this matrix, what does it represent? You can show that permanent of M               

is in this graph G, the number of matchings in G, perfect matchings. So this is easy to                  

see because when you look at the permanent of the matrix you will by definition it is                 

the sum of monomials, . 

 

Every monomial basically corresponds to picking ones in those places, if they are              

present otherwise this monomial this product will not contribute. You can pick these             

ones only when there are these disjoint edges to pick . So that every monomial               

product corresponds to a perfect matching. And then you are taking the sum without              

sign.  This gives you the exact count. 

 

Permanent of a Boolean matrix actually gives you the count of perfect matchings.              

This is simply the number of perfect matchings. In practice given a graph, can you               

compute the number of matchings? Can you check whether there is a perfect             

matching? So checking whether there is a matching this has a practical algorithm,             

which is a very famous algorithm given in the 60s or 70s. 



 

But to count them is considered to be very hard, it is harder than NP hard problems.                 

Okay. So permanent on even this (0/1) matrix is actually hard to compute in practice.               

This is actually equivalent to, this is equivalent to the functional problem of # SAT. ,                

#SAT is the problem of it is the counting version of SAT, formula satisfiability,              

Boolean formula satisfiability. 

 

Given a Boolean formula, how many satisfying assignments are there? For n             

variables it can be a number between 0 to 2​n​, . Even testing whether it is positive this                  

is the NP complete problem and here you are asking to actually count it. Clearly this                

is this you would expect to be harder much harder than just SAT. So there is no hope                  

of solving this in practice. 

 

So this also is due to Valiant. So this is called the Valiant’s # P completeness of                 

permanent which is Boolean permanent. So Valiant showed that permanent, the           

Boolean permanent or computing the permanent of a Boolean matrix which           

corresponds to a graph. This is equivalent to a #SAT. And #SAT defines as a class                

which is called #P. 

 

I would not go into the definition or the proof of this because this we cover usually in                   

competition complexity course. This is to do with the Boolean world. Here in the              

arithmetic world, now we want to study permanent as a polynomial okay. So can you               

compute permanent as a polynomial and obviously, this should remain a hard            

question, because intuitively if you can write the permanent polynomial as a small             

arithmetic circuit, then there is in all likelihood, you will also be able to solve               

permanent in practice. 

 

But that would mean that you are solving not only SAT but #SAT, . You are solving                 

all these hard optimization problems if you solve this. So that is not generally              

believed. This motivation then suggests that the conjecture, Valiant’s conjecture this           

is like the conjecture of #SAT not in polynomial time, functional polynomial time, . 

 



It is not formally correct, but when Valiant conjectures that VNP ≠VP which is               

VP it is like saying that if you wanted to count the number of satisfyinger ∈p n /                

assignments that you cannot do in polynomial time . Arithmetic circuit size            

corresponds to Boolean time or time in practice and so you could think of the Valiant,                

think of Valiant hypothesis as this and both these things we would expect to be true,                

okay. But there is no proof. These are open questions. 

 

This we call the arithmetic analog of the P ≠ NP question. So P ≠ NP is the classical                    

question in the Boolean world or in the real world. And the algebra or the arithmetic                

analog of it is the VP ≠VNP. Is there a formal connection between them? Formally               

there is no direct connection known, but there is a result due to Burgisser which I will                 

state. 

 

It is not hard. So you can even do this as an exercise. It says that if VP =VNP then                    

what happens? S P and NP are the same  /poly. So ,  P / poly = NP /poly.  

 

I will not go into the details of this implication. There is some little assumption based                 

on what field you are working in. But if you are working in a finite field, then this                  

implication is exactly true. 

 

Burgisser showed that VP =VNP would imply that P /poly = NP / poly, which is                 

much stronger than saying P=NP. Well, I mean technically it is incomparable but, I              

mean from this you cannot really deduce whether P is equal to NP or P is different for                  

NP. Because, when you talk about the P and NP classes, you are talking about Turing                

machine. 

 

You are not talking about Boolean circuits. So, P / poly is actually the problems that                

you can solve using Boolean circuits and NP/ poly is also defined in a similar way                

using Boolean circuits. The meaning of efficiency in Boolean circuits and the            

meaning of non-determinism in Boolean circuits, these two things are the same. This             

is what the equality is saying. 

 



Equality is saying that non-determinism and efficiency are the same. Intuitively we             

do not believe this. Intuitively we believe that non-determinism is far stronger than             

efficiency. But, this is talking about the Boolean circuits and original P ≟NP question              

is for Turing machines. On the left hand side you have an arithmetic circuit statement               

and on the right hand side you have RHS you have a statement about Boolean circuits. 

 

This is pretty satisfactory although not completely satisfactory. But it suggests that if             

you want to show P different from NP then you should first show VP different from                

VNP, okay. You cannot just, most probably you cannot skip this step. In fact, it shows                

something far stronger. So you may or may not know the definition of this class, but                

Burgisser also shows his proof also shows that this is an NC​3   ​/poly. 

 

Do you know what is NC​3 or what is NC? These are Boolean circuits where the depth                 

is only okay. So this is again, this exactly models very fast parallel algorithms.  ogl 3              

On an input size of n the parallel time complexity is only . It is exponentially            ogl 3     

faster than what you would expect. 

 

So if you show VP = VNP then Burgisser’s proof actually tells you that NP / poly is                  

not just equal to P / poly, it is even equal to NC​3​. So non-determinism is the same as                   

efficient parallel algorithms. You can solve in a way it is saying that you can solve                

SAT in parallel, fast parallel time okay. So everything on the RHS is actually              

unbelievable and hence LHS is also unbelievable. 

 

That is the import of this implication. When you are working over characteristic zero              

then Burgisser’s proof requires the assumption of GRH, generalized human          

hypothesis. This is why I put an exclamation mark but that is not very important. I                

think everybody in this class believes GRH, so you do not have to worry about those                

specifics. Right, so let us now move to easier problems than VNP. 

 

The easier problem we will move to is determinant. So where is that? It is in VP.                  

What is the proof of that? 
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Let us now place determinant in VP, okay. This we will do using some classical                

identities from 1800s which are called Newton's identities. This is an old proof. Once              

we have done this we will also give you a we will also see a modern proof which will                   

be far more efficient and cleaner. But the first proof of determinant in VNP was this.                

That I will now present using Newton's identities. 

 

 What do you want to compute? You have a fully symbolic matrix entries, 

. So we want determinant as a small arithmetic circuit. And the onlyx )X = ( i,j i,j ∈ [n]               

thing currently, the only thing shown in this class is the definition of determinant              

which requires monomials. And now we want sized arithmetic circuits,  !n       oly(n)p     

right. So what is the plan? 

 

The plan is to write determinant in some other way, which is not too big and then                 

implemented as okay and so this arithmetic circuit will be computing determinant as a              

whole. It will not be evaluating values of the determinant. It will be actually              

computing determinant polynomial which is very different to what you do when            

somebody asks you to compute the determinant of a matrix say of entries 1, 2, 3, 4 . 

 

There you do Gaussian elimination and you get a number, but that is not the same as                  

saying that you have computed determinant polynomial as a whole. We will now             

achieve that through identities. Let me, anyways, write that down. Gaussian           



elimination uses, the problem is that it uses division and many other things. Uses              

division, permutation, if-then-else etc. 

 

That we cannot naively write as a polynomial. It is using non arithmetic operations,              

okay. So that does not apply to our current problem. So here I will present Sankey’s                

idea. Sankey’s algorithm it is an algorithm. The idea here is what is the relationship               

of determinant with the eigenvalues.   , eigenvalues of .et(X) λd =  ∏
n

i=1
 i

 
X  

 

Now we would not worry too much about where these eigenvalues live because they              

live in a complicated place. Your matrix has just formal variables as entry. So if       X          

you try to compute eigenvalues they will not be complex numbers they will be              

actually complicated functions in these variables and technically they are in the            

algebraic closure of the function field. 

 

We should not worry about its representation And that will be an amazing thing that               

without worrying about the specifics of still we will get they will help you in      λi           

getting an identity. That will be very explicit okay. So let us just start with this, this is                  

the first identity. And what is the plan after this? So the plan is to express it as a                   

polynomial in the power sums. 

 

Power sums means, well let us say , or or and so on. These are the        λΣ i   ∑
 

 
λi

2   ∑
 

 
λi

3        

power sums. So as a function of the power sums you want to write the product. You                 

must have seen this. 

 

​“Professor - student conversation starts” Sorry, what do you mean, characteristic            

polynomial. Right. Symmetric polynomial you can write it as a power sum.            

Professor: Yeah, so it has nothing to do with the characteristic polynomial, it is just               

any, product of anything you can express as, as a function of the power sums.               

“Professor - student conversation ends”.  

 



And in general as Abhibhav is saying that any symmetric function in lambda is, well               

lambda is really arbitrary. We will not use their eigenvalue property and is elementary              

symmetric function or actually any symmetric function you can write as a function of,              

in fact as a polynomial of power sums. 

 

So this follows from Newton identities. This you must have seen or even computed in               

school. We want to prove that in full generality, Power sums are the kth power sum is                 

basically the sum of kth powers.  That is 

                                                     :=   , for pk ∑
n

i=1
λi

k  k ≥ 0  

Why can you write as a polynomial n, ‘s where k goes up to n. So let me also     ∏
 

 
λi      pk            

add that. 

 

You will not need to go beyond n. So just from 1 to n, this to will be enough               p1   pn      

to produce, . This is very mysterious. It is even hard to conjecture unless you have                

some experience. But anyways, this is the plan. We will implement this plan and let               

us answer the question, the next question why is it helpful? If you prove such a thing,                 

can you write p​k​ as something, some small circuit. 

 

What is the relationship of p​k ​with ? In fact, what is the relationship of p​1 with ?       X           X  

p​1 ​= right. It is the trace of right exactly. That is the beauty. Note that λΣ i        X          

. So now this has a small circuit because raised to so say case 2. Sor(X )pk = t k          X         X2  

you can compute just by multiplying and adding the entries. 

 

There is a trivial arithmetic circuit that can compute all the entries of , in         X2      X2   

particular the diagonal entries of and then there is the addition gate that adds up      X2           

those diagonal entries and you get trace of , okay. You just have to compute the        Xk         

diagonal entries of to compute trace and any entry of ​can be computed via a   Xk         Xk       

circuit. 

 



Now as k grows to n what you can do is something like repeated squaring you can just                  

compute , then you can compute . If you have completed so these are you X2      X2      X2      

have n​2 outputs defining the matrix or describing the matrix . you can then      X2      X2     

square it and the same.  You can actually do this in just login steps, this process. 

 

Even and it will ultimately turn out that the even the depth of the circuit will not be                  

too much. , That is the point. It will be a really nice circuit not only the size is small,                    

even the depth is small. That is the advantage of working with p​k​. To begin with, it                 

was not really clear, how will or will be useful at all because is something      λi   λ1        λ1    

very complicated in terms of X. 

 

But the thing is that it is not just you are actually looking at the product, and the         λi           

product gets related to traces. And the traces are simple for arithmetic circuits to              

compute. Thus the above expression would give us O( )-depth, -size        og nl 2  oly(n)p  

arithmetic circuit for the determinant. The important not only is the size there which              

is actually all we wanted. So everything else is bonus. 

 

We just wanted poly(n) size. That it surely will be. This you can immediately see               

because of the computation. The depth you will have to analyze carefully. I leave   Xk             

it as an exercise. But you will be able to show that the depth is also very small. It is                    

only . In fact, this was the reason why people studied this in the 70s because og nl 2                

people wanted a very fast parallel algorithm for determinant okay. 

 

The motivation was actually practical. Determinant is a very practical problem. In             

fact, all these amir companies, the only computation they do is either they multiply              

matrices or they solve a linear system. If you are solving a linear system, you have to                 

invert, invert a matrix. You have to compute determinant. If you can do it in parallel,                

you can buy many computers and you implement determinant in parallel. 

 

This is saying that for a huge n if you make that kind of, if you buy many processors                    

then after this one time investment you can actually solve determinant on various             



instances in only - time once you have set up the parallel architecture. which  log n 2            

can be very important if you work if you want real time solutions. 

 

This depth is actually the motivation why people studied it, but we currently only care               

about the size. This is enough to show the determinant is in VP. I leave the details in                  

as an exercise. Let us do the main thing which is connection with power sums. How                

is that done? How is that proved?  We will prove the general thing. 

(Refer Slide Time: 31:59) 

 

Let us study elementary symmetric polynomials versus power sums. What is this             

identity? Whose existence is not clear? I mean, this is just some claim that I am                

making, but if you think about it, it is not clear why this connection should even exist.                 

The elementary symmetric polynomial e​k ( is defined as so this would be     , ., )λ1 . λk         

what? . 

 

So k times, you pick k things, multiply them and then do this in all possible ways. It                  

is about subsets, k subsets of [n]. You pick an S, and then you multiply these . That                λi   

is it. So e​1 for example, is just the sum and then e​2 is product of , , for distinct i, j.                 λi λj      

This thing we may sometimes write as . Okay, so it is just   .λS   ∏
 

iεS
λi  

 



Okay, so example is , e​2 = and e​n has only one    e1 =  ∑
 

 
λi    , ., e ···  ∑

 

i=j/

λi · λj .  n = λ1 · λn      

monomial which is the full product. So these are the n elementary symmetric             

polynomials. Now the problem does not happen in the ends, the problem happens in              

the middle because there you are looking at subsets and they are exponentially        /2n       

many. So that is a large sum right. 

 

Computing those things is complicated, also in practice. How do you make it              

efficient. This is what we call in the course Newton's identity, this is a recurrence to                

simplify our life. So for k, n  1 it writes≥   

                                      = . (λ)k · ek    (− ) .e (λ) ∑
k

i=1
1 i−1

k−1 pi λ)(  

 

It is just this convolution type of product of e’s and p’s okay. This is a this is a                    

recurrence which means that if you know the expression for e​k ​up to if you know             e. k−1     

the relationship with power sums then this immediately gives you the relationship of e              

k with the power sums and you only need power sums up to p​k​. For e​k you only need                   

power sums up to p​k​ . You do not need anything else okay. 

 

This is exemplified as so unsurprisingly. So which is then      e1 = p1    p2e2 = e1 1 − p2     

. And which you can again right using the previousp1
2 − p2   e p p3 3 = e2 1 − e1 2 + p3         

things. ​“Professor - student conversation starts” Apriori it is not even clear that the              

power sum representation of is like it will be a polynomial in the . ​“Professor -    pn          pn    

student conversation ends”. 

 

That is a good point, but remember that you have to write down in arithmetic circuit.                 

So assuming that even to e​k-1 you know the arithmetic circuits. On top of this you can                 

produce e​k​. Yes, that is important. Yeah and maybe you will appreciate the fact that               

you actually this actually produces a circuit not a formula as far as small size is                

concerned, it because in formula you will be not you will not be able to reuse the                 

output. 

 



And if you have to implement this recurrence you have to keep reusing it. Otherwise,               

things will start blowing up. So you really use the power of a circuit and so more than                  

a formula and then you can write e​k ​as a function of ultimately the circuit in terms of                  

to . Okay, so let us do the proof details, finally. How do you think you willλ1   λn                 

prove this? It is impossible to guess this. 

 

But once I have given you this, how will you prove it? But even induction does not                 

look easy. Because what is induction telling you. It is saying that e​k-1 is a function of                 

lower p’s. But then who will dare substitute that expression. So we will actually give               

a cute proof using generating functions. Let us consider right a generating function in              

a formal power series where as a formal power series, okay. 

 

The mathematical tool being used is actually formal power series. So it is an infinite                

sum that we will look at. So what is the generating function for e​k​? So you should                 

look at . So this is the generating function. There is no reason to stop at n.  (− )∑
n

k=0
ek t k                

But, if you look at e​n+1​ it is already zero. 

 

This is why we are truncating at n but this you can think of as an infinite sum goes                    

beyond t​n and so this is this is the generating function of the e’s. There is another way                  

to write this. You can factorize this to get what? Exactly. So you know that the roots                 

of this polynomial by fixing t or right or 1 over kind of. you can actually       λ      λ       

factorize it as .1 t)( − λi  

 

So just you can check this. This just follows from polynomial multiplication. You just              

look at the RHS and the way you multiply polynomials you will actually get              

elementary symmetric polynomials, all these e​k​’s and yeah so now this is a good              

identity to start with to get a recurrence for e​k​. So do you remember the high school                 

method of getting recurrences? Yeah you have to differentiate. 

 



You differentiate and then you will be done. Basically apply the operator again for               

notational convenience we will apply , okay. So we differentiate and scale up     t · ∂t         

differentiate and scale. Now what is the result? 
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This will on the LHS this will give you . And on the RHS you will get,         e (− )∑
n

k=0
k k t k         

so on the RHS you had a product. When you differentiate it using you can use the                 

Leibniz identity which is you differentiate one factor at a time, take the sum. That               

will give you we are only differentiating the ith factor . That is   (− ) (1 t)t ∑
n

i=1
λi ∏

 

j=i/

− λi            

the sum, . 

 

Any questions about this? We have differentiated and then multiplied by t, just two               

write a better expression. And once you do this it will be better to actually re-express                

the RHS as a sum of fractions. Let us bring out the full product and be left with  

 - ./(1 t)λi − λi  

(  That is what we are left with and there is this full product. Now what? 

 

Now you observe that , its inverse exists in the power series, in the power    1 t)( − λi            

series ring, so you expand that out. So will expand as, let me delete that. Let        1 t)( − λi          



me absorb the t first. It is just this double sum, right. And there was a hanging, there                  

will be a hanging minus sign  basically you get, in the inverse you get 

  + ( ……..                                                          (1 t) + λi t)λi
2  

 

And there is a already sitting outside. So take it inside. So your series starts with    t λi              

the and then its square cube and you are summing it up. And then for various i’s t λi                  

you take the sum. So it becomes a double sum. This technically is actually happening               

in the power series ring. So this power series ring is you can take over rationals. This                 

is this ring. 

 

If you want to be technical, about where does this computation happen, it is              

happening in the power series ring. In this power series ring basically the elements of               

this ring are an infinite sum of t monomials but taken in this increasing order. The                

bigger the power of t is, the smaller that term is considered. This is the algebraic                

version of analytic power series. This is called a formal power series, okay. 

 

In this power series we have these two expressions LHS and RHS and then we should                

compare t monomials, . So let us we will do that but let us first bring it in a form that                     

we want. So this part right this which we have to swap the . Let us first       (λ t)∑
 

j≥1
i

j        Σ     

swap that. 

 

Let us have this thing as, okay let me just write the expression before giving the                

explanation. That is the expression.This double , you can swap the sigma and then      Σ         

you are looking at for all these i’s. That is p​j​. So the coefficient of t​j is just p​j​.    (λ t)∑
 

j≥1
i

j                

That gives you this term. And next you look at the product of which before             1 t)( − λj    

just this. 

 

Look at the coefficient of there and that is just the elementary symmetric sum with     ti            

the appropriate sign. So you have now these two polynomials, well first one is infinite               



but will only go up to because there is no point going beyond. you have now these     tn             

two polynomials and their product is equal to LHS. So now you should just simply               

compare the  ​coefficients.tk  

 

And when you compare you will get to this. Let us just write it in terms of . So                 tk   

minus if you look at the coefficient of ​what you will see is this, This part is the        − )( t k            

coefficient above. To get you have to look at Because you have − )( t k     tk        .j + i = k     

this term  ​ and  ​here.tj ti  

 

You need to look at those j and i’s such that . Let us so that will be and           j + i = k        j   

. So j will give you and the (k-j) will give you e​k-j with the sign, that is thek − j        pj               

sum. Now when you compare the coefficients of both sides, you get Newton        − )( t k       

identity as claimed. Now finally, compare ​coefficient, both sides. That is the      − )( t k        

proof. 

 

Any questions? That should already convince you that determinant is in VP. Because             

we have related the determinant which is product of s to a polynomial in the power         λi        

sums. And this is a very simple expression as the recurrence is very simple. It is easily                 

implementable as a circuit, poly size. And the final point is that the power sums are                

trees of matrix powers and matrix powers fully can be computed again as small              

circuits,  size circuits.poly(n)  

 

So with poly and size part should be clear. We have shown the determinant is in VP.                 

This finishes the proof of determinant in VP. That must we have already done. Any               

questions about this statement? But this does not stop here. This is actually giving you               

a lot more. This analysis actually gives you a practical implementation for            

determinant that is extremely fast in the parallel sense. 

 

A parallel algorithm is obtained. I will not go into all the details. Maybe I will put it                  

in the assignment. But, one observation is that the recurrence that you have got right               

it is you can think of it as, you are interested in elementary symmetric polynomials.               



You are interested in finding them and the recurrence is actually giving you    , ,e1 e2 e3           

a linear system to find them where the entries are, so e​1​ is the same as p​1​. 

 

You have p 1 here and let us say you just put here and so on. So e​1 is p​1            , ,p1 p2 p3         

which is that gives you the first row from the recurrence, I mean using the recurrence.                

Then the next recurrence for k = 2 tells you that p​2 is, so e​1 p​1 - 2e​2 and then zero.                     

Then the third recurrence for k = 3 gives you p​3​ is equal to e​1​ p​2 ​-  + 3 e​3​ .pe2 1  

 

If you look at this just a 3 by 3 part what do you see? This is the matrix. Why is it                      

special? Well is a lower triangular matrix, right. You have a linear system where the               

e’s are the unknowns. This is what you want to find. These are the unknowns. And to                 

solve this linear system you have to invert the triangular matrix, right. A tree boils               

down to the inversion of the triangular matrix and you want to make this              

implementation faster. 

 

There is a very nice way to invert triangular matrices. You write your triangular              

matrix as a diagonal matrix + nilpotent matrix and you want to compute this. D is                

diagonal. And N is nilpotent. Nilpotent because if you raise it to, let us say the                

dimension of the matrix, it vanishes. how do you compute  in a fast way?D )( + N −1  

 

And usually inversion of a matrix is pretty complicated because you have to at least               

compute the determinant which will put us in a vicious cycle because our goal was to                

compute the determinant and now so inverse also will, so somehow you have to break               

the cycle. So you have to find a different way to compute this inverse which will be                 

yeah. The amazing thing is that this also can be done using power series. 

The same power series. So think of this as  and that is equal to1 )( − n −1  

and after a point it vanishes. So this actually is a, this is n  n  n ...1 +  +  2 +  3 +                

essentially sum of powers of n, something like this. So you just have to compute the                

powers and then sum them, okay. This is the idea. This is why solving the linear                

system actually does not use, does not need determinant. 

 



It can be done just by powering an addition. And when you formalize this, when you                

do this implementation now actually it is after this point it is quite straightforward.              

Once you do this you will see that even the depth of the circuit is very limited . And                   

that gives you a very fast parallel algorithm to compute determinant. So we, so as you                

saw here we started with this abstract looking model and we prove the statement that               

determinant is in VP. 

 

But the proof of it is actually giving you even a new way to compute determinant in                 

practice, which is extremely fast and which you cannot guess. You cannot guess it at               

all from looking at the definition of determinant, okay. So this implementation details             

I leave for the assignment. 

(Refer Slide Time: 58:46) 

 

Schönhage idea implements this to get a fast parallel computation of determinant and             

no big constants are used. Although VP allows the use of arbitrarily large constants.              

But in this proof you are using very small constants. The theorem that you will get is                 

that the depth is only log​2​n, the size is only poly for determinant n. Let us just state it                   

as a theorem that det​n VP that is actually depth log​2 n and another qualification is     ε             

that as you vary n can you describe the circuits? 

 

Because in the definition of VP that is left totally arbitrary. There may not be any                

connection between the circuit for n and the circuit for n +1, that is the built in                 



non-uniformity in VP. But that is not what this proof is giving you. So here the proof                 

is actually giving you an explicit fast way to compute the circuits, describe the circuits               

as well. It is P-uniform . 

 

And another point here is that this depth is actually with the fanin and fanout 2. So the                  

fanin and fanout is also very small, okay. So it is constant. Depth is just log​2​. Every                 

circuit for every for a given n, the circuit can be computed by a Turing machine in                 

polynomial time. I mean this gives you everything except maybe some you might             

expect some more improvements, but other than that asymptotically it is giving you or              

functionally it is giving you the best possible results for determinant. 

 

You may ask whether log​2 can be reduced to log. You can ask whether the size is if it                   

is n​5 can it be reduced to n​2​. So those questions you can still ask but yeah even this is                    

quite a strong thing for a polynomial like determinant, .The proof is as we have               

already sketched. So we leave the size and depth analysis as an exercise. And key               

ideas are to compute n powers. 

 

And the second idea is to solve a triangular matrix equation, triangular linear system              

in lowest depth, which is also in parallel time. The parallel time complexity should be               

very fast. Fine. So this is yeah so we showed determinant in VP and more. 

 

​“Professor - student conversation starts” Sir, what should be P non-uniform if we              

know for n and we cannot explain. ​Professor: We, there is no fast algorithm as in the                 

sense of Turing machines that can produce the circuit in poly n time. So it may need                 

exponential in n time. ​“Professor - student conversation ends”.  

 

I mean within exponential in n time I think you that is a lot of time. That kind of                   

uniformity I think you always have but the thing is whether there is a polynomial time                

algorithm which when given n or to be formal 1 raised to n when given n in unary                  

then it outputs the nth circuit. 

 



The circuit building should not be left to the user. Because that could be again that is                 

extremely hard. How do you come up with a circuit for a given n. If n is 1 million                   

how do you come up with the circuit that is running on 1 million inputs. So that also                  

somebody has to provide it. So is there a Turing machine that can do it in a fast way?                   

But in the for the definition of VP that was left free, that was left unfixed. 

 

In the case of determinant, we are actually getting this additional property, which is              

why all these things are good in practice. But now we will actually go through a                

different route and prove something even better for determinants,. we will actually            

define a complexity class based on determinant. Any polynomial that you compute in             

that class, you can reduce it to determinant. 

 

And you can also compute determinant in that class. We will actually make this really               

optimal. We will come up with a class that is determinant hard and complete. Do you                

know the name of this class? This is called arithmetic branching programs.            

Determinant is closely related to an important polynomial representation which will           

be different from circuits, formulas and so on. 

 

It is a completely different representation defined in a different way. It is called              

arithmetic branching programs, ABP. You might have heard the term branching           

program. There are also Boolean branching programs. This will be obviously inspired            

from that. It will be an arithmetic version of the Boolean branching programs, but it               

will have a lot more structure. 

(Refer Slide Time: 1:07:40) 



 

This is basically a layered graph. You can think of it from, going from left to right, so                  

the computation moves from left to right. In every step, there are layers. It is a                

layered, directed graph. So an ABP is a layered directed graph with source and sink.               

Source vertex is called s and sink you can call t. Now edges from layer to layer +1                i   i  

are labeled by a linear polynomial. 

 

The linear polynomial you can assume is in n variables field F, . You have these edges                 

going from the source to the sink and when you are at layer to layer +1, you will              i   i    

draw edges. The edges will have labels or weights which is a polynomial say              xx1 +  2  

could be one weight or just  or maybe 0 or 1, . Can also be field constant.x1  

 

Once you have this picture, what do you think is the polynomial that this computes?               

How should you define the final polynomial that you get at the sink? In a path from                 

source to sink whatever you whatever linear polynomials there are, you take the             

product and then for every path from source to sink you add these products. That is                

the polynomial. 

 

The polynomial computed at sink is: 

                              f  t(γ) = product of  edge weights in γ =  ∑
 

path γ: s ↝t
w :   



So that is it. ABP is source, sink. You have layers. You have linear polynomials as                

labels and finally the polynomial computed is just this f. Yes. 

 

I do not want to see it as a circuit yet, but this expression for f is the sum of product of                      

linear polynomial. It is sigma pi sigma. These are the three operators you are using in                

this order. And then what are the parameters or resource parameters for this. That              

when will you say that the ABP is small? Well, obviously when the graph is small,                

only then should you say that the ABP is small. 

 

If the graph is large, then it is a large representation. So that is one thing. Size of the                   

graph is one parameter. Size of ABP that is one thing. The second thing you can look                 

at is in every in the ith layer, how many vertices do you see? So maximize over i. So                   

that is called the width, width of ABP. So max number of vertices in a layer. And                 

finally depth. how long is the ABP? 

 

So depth is the longest path from source to sink, right. So first you want to optimize                 

the size, or optimize as in, say for n variate polynomial you want an ABP of size                 

. That would be the ideal goal. Once you have that, then you can talk aboutoly(n)p                 

other things like can I make the width small? Can I make, I mean width small as in                  

can I make width, let us say three? Obviously it is , but can I make it even           oly(n)p        

smaller? 

 

Can I make it 3? Can I make it 10? And then depth here. But that, so depth is usually                    

correlated with the size. We do not do much with the depth. But we talk about size                 

and width most of the time. So we will see an example and do it, I mean study this                   

next time. Any questions? Okay. 

  

 


