
Arithmetic Circuit Complexity
Prof. Nitin Saxena

Department of Computer Science and Engineering
Indian Institute of Technology-Kanpur

Lecture - 3

Last time we were showing permanent in VNP, any questions?

(Refer Slide Time: 00:18)

There were some questions after the class and there is a small mistake. So recall this

definition of g, right which is basically a product of the row sums. These are the row

sums. You are multiplying n of these row sums. And so in the claim when we are

showing that some of these products is permanent, is permanent.Σ ∏

What we should correct here is suppose the monomial we are looking at is

say r is the number of distinct subscripts. So letxxx1,i1 2,i2 n,in =r : # {i ,i }1 i2 n

okay and then after this the calculation here will not be ,​but in terms of . 2r−1 n − r

we will just change it to this and this is over .2n−r n − r

And then as long as the this sign will be 0. This will come out to be 0 as nr <

. And if then it means that are distinct. In the distinct case you nr < nr = ii1 n

will get the monomials corresponding to permutations and they will come with sign 1.

So that is exactly then computing permanent, With this correction let us proceed.

Now let us write down a conjecture which was made by Valiant. So it is called

Valiant’s hypothesis.

(Refer Slide Time: 02:43)

It is his hypothesis which means, which is still unproved. So it is a conjecture, Valiant’s

conjecture. This says that VP≠VNP. Again VP is the set of those polynomials that can be

computed by small arithmetic circuits and VNP is the set of polynomials that can be

written as a big sum of small arithmetic circuit and Valiant’s hypothesis claims that these

two are different .

So obviously VP VNP. So the conjecture is saying that there is a polynomial ⊆

which you can write as a big sum of small circuits, which cannot be written as a small

circuit, overall. And we will not be doing that prove, but permanent is essentially

VNP complete. This alternately you can see per​n​∉VP

“Professor - student conversation starts” Here in completeness how do you define

the reduction? ​Professor: ​The reduction will just be is there a polynomial in which if

you set some variables, you get your favorite polynomial projections. By projections

and yeah the bigger polynomial should have a small arithmetic circuit. So is there a

small arithmetic circuit which on fixing some variables gives you your polynomial.

“Professor - student conversation ends”.

Permanent is not in VP. This is an alternative formulation of Valiant’s hypothesis.

These questions are the central questions in algebraic complexity theory and even in

complexity theory because of the following connection. If you look at permanent of a

Boolean matrix,(0/1)matrix suppose this (0/1) matrix is the it is the adjacency matrix

of some bipartite graph.

That represents a bipartite graph. let us draw a small example. Say you have three

vertices on each side. So 123 here and 123. This is left side is U right side is V. How

do you represent it as a Boolean matrix? It will be a 3 by 3 matrix where 1, 2 so 1, 1

will be 0. 1, 2 will be 1. 1, 3 will be 0. 2, 1 is 0. 2, 2 is 0. 2, 3 is 1 and so on. So this is

the matrix that represents this bipartite graph.

U V and the edges are in the middle E. So this matrix M , if you look at the

permanent of this matrix, what does it represent? You can show that permanent of M

is in this graph G, the number of matchings in G, perfect matchings. So this is easy to

see because when you look at the permanent of the matrix you will by definition it is

the sum of monomials, .

Every monomial basically corresponds to picking ones in those places, if they are

present otherwise this monomial this product will not contribute. You can pick these

ones only when there are these disjoint edges to pick . So that every monomial

product corresponds to a perfect matching. And then you are taking the sum without

sign. This gives you the exact count.

Permanent of a Boolean matrix actually gives you the count of perfect matchings.

This is simply the number of perfect matchings. In practice given a graph, can you

compute the number of matchings? Can you check whether there is a perfect

matching? So checking whether there is a matching this has a practical algorithm,

which is a very famous algorithm given in the 60s or 70s.

But to count them is considered to be very hard, it is harder than NP hard problems.

Okay. So permanent on even this (0/1) matrix is actually hard to compute in practice.

This is actually equivalent to, this is equivalent to the functional problem of # SAT. ,

#SAT is the problem of it is the counting version of SAT, formula satisfiability,

Boolean formula satisfiability.

Given a Boolean formula, how many satisfying assignments are there? For n

variables it can be a number between 0 to 2​n​, . Even testing whether it is positive this

is the NP complete problem and here you are asking to actually count it. Clearly this

is this you would expect to be harder much harder than just SAT. So there is no hope

of solving this in practice.

So this also is due to Valiant. So this is called the Valiant’s # P completeness of

permanent which is Boolean permanent. So Valiant showed that permanent, the

Boolean permanent or computing the permanent of a Boolean matrix which

corresponds to a graph. This is equivalent to a #SAT. And #SAT defines as a class

which is called #P.

I would not go into the definition or the proof of this because this we cover usually in

competition complexity course. This is to do with the Boolean world. Here in the

arithmetic world, now we want to study permanent as a polynomial okay. So can you

compute permanent as a polynomial and obviously, this should remain a hard

question, because intuitively if you can write the permanent polynomial as a small

arithmetic circuit, then there is in all likelihood, you will also be able to solve

permanent in practice.

But that would mean that you are solving not only SAT but #SAT, . You are solving

all these hard optimization problems if you solve this. So that is not generally

believed. This motivation then suggests that the conjecture, Valiant’s conjecture this

is like the conjecture of #SAT not in polynomial time, functional polynomial time, .

It is not formally correct, but when Valiant conjectures that VNP ≠VP which is

VP it is like saying that if you wanted to count the number of satisfyinger ∈p n /

assignments that you cannot do in polynomial time . Arithmetic circuit size

corresponds to Boolean time or time in practice and so you could think of the Valiant,

think of Valiant hypothesis as this and both these things we would expect to be true,

okay. But there is no proof. These are open questions.

This we call the arithmetic analog of the P ≠ NP question. So P ≠ NP is the classical

question in the Boolean world or in the real world. And the algebra or the arithmetic

analog of it is the VP ≠VNP. Is there a formal connection between them? Formally

there is no direct connection known, but there is a result due to Burgisser which I will

state.

It is not hard. So you can even do this as an exercise. It says that if VP =VNP then

what happens? S P and NP are the same /poly. So , P / poly = NP /poly.

I will not go into the details of this implication. There is some little assumption based

on what field you are working in. But if you are working in a finite field, then this

implication is exactly true.

Burgisser showed that VP =VNP would imply that P /poly = NP / poly, which is

much stronger than saying P=NP. Well, I mean technically it is incomparable but, I

mean from this you cannot really deduce whether P is equal to NP or P is different for

NP. Because, when you talk about the P and NP classes, you are talking about Turing

machine.

You are not talking about Boolean circuits. So, P / poly is actually the problems that

you can solve using Boolean circuits and NP/ poly is also defined in a similar way

using Boolean circuits. The meaning of efficiency in Boolean circuits and the

meaning of non-determinism in Boolean circuits, these two things are the same. This

is what the equality is saying.

Equality is saying that non-determinism and efficiency are the same. Intuitively we

do not believe this. Intuitively we believe that non-determinism is far stronger than

efficiency. But, this is talking about the Boolean circuits and original P ≟NP question

is for Turing machines. On the left hand side you have an arithmetic circuit statement

and on the right hand side you have RHS you have a statement about Boolean circuits.

This is pretty satisfactory although not completely satisfactory. But it suggests that if

you want to show P different from NP then you should first show VP different from

VNP, okay. You cannot just, most probably you cannot skip this step. In fact, it shows

something far stronger. So you may or may not know the definition of this class, but

Burgisser also shows his proof also shows that this is an NC​3 ​/poly.

Do you know what is NC​3 or what is NC? These are Boolean circuits where the depth

is only okay. So this is again, this exactly models very fast parallel algorithms. ogl 3

On an input size of n the parallel time complexity is only . It is exponentially ogl 3

faster than what you would expect.

So if you show VP = VNP then Burgisser’s proof actually tells you that NP / poly is

not just equal to P / poly, it is even equal to NC​3​. So non-determinism is the same as

efficient parallel algorithms. You can solve in a way it is saying that you can solve

SAT in parallel, fast parallel time okay. So everything on the RHS is actually

unbelievable and hence LHS is also unbelievable.

That is the import of this implication. When you are working over characteristic zero

then Burgisser’s proof requires the assumption of GRH, generalized human

hypothesis. This is why I put an exclamation mark but that is not very important. I

think everybody in this class believes GRH, so you do not have to worry about those

specifics. Right, so let us now move to easier problems than VNP.

The easier problem we will move to is determinant. So where is that? It is in VP.

What is the proof of that?

(Refer Slide Time: 18:29)

Let us now place determinant in VP, okay. This we will do using some classical

identities from 1800s which are called Newton's identities. This is an old proof. Once

we have done this we will also give you a we will also see a modern proof which will

be far more efficient and cleaner. But the first proof of determinant in VNP was this.

That I will now present using Newton's identities.

 What do you want to compute? You have a fully symbolic matrix entries,

. So we want determinant as a small arithmetic circuit. And the onlyx)X = (i,j i,j ∈ [n]

thing currently, the only thing shown in this class is the definition of determinant

which requires monomials. And now we want sized arithmetic circuits, !n oly(n)p

right. So what is the plan?

The plan is to write determinant in some other way, which is not too big and then

implemented as okay and so this arithmetic circuit will be computing determinant as a

whole. It will not be evaluating values of the determinant. It will be actually

computing determinant polynomial which is very different to what you do when

somebody asks you to compute the determinant of a matrix say of entries 1, 2, 3, 4 .

There you do Gaussian elimination and you get a number, but that is not the same as

saying that you have computed determinant polynomial as a whole. We will now

achieve that through identities. Let me, anyways, write that down. Gaussian

elimination uses, the problem is that it uses division and many other things. Uses

division, permutation, if-then-else etc.

That we cannot naively write as a polynomial. It is using non arithmetic operations,

okay. So that does not apply to our current problem. So here I will present Sankey’s

idea. Sankey’s algorithm it is an algorithm. The idea here is what is the relationship

of determinant with the eigenvalues. , eigenvalues of .et(X) λd = ∏
n

i=1
 i

X

Now we would not worry too much about where these eigenvalues live because they

live in a complicated place. Your matrix has just formal variables as entry. So if X

you try to compute eigenvalues they will not be complex numbers they will be

actually complicated functions in these variables and technically they are in the

algebraic closure of the function field.

We should not worry about its representation And that will be an amazing thing that

without worrying about the specifics of still we will get they will help you in λi

getting an identity. That will be very explicit okay. So let us just start with this, this is

the first identity. And what is the plan after this? So the plan is to express it as a

polynomial in the power sums.

Power sums means, well let us say , or or and so on. These are the λΣ i ∑

λi

2 ∑

λi

3

power sums. So as a function of the power sums you want to write the product. You

must have seen this.

​“Professor - student conversation starts” Sorry, what do you mean, characteristic

polynomial. Right. Symmetric polynomial you can write it as a power sum.

Professor: Yeah, so it has nothing to do with the characteristic polynomial, it is just

any, product of anything you can express as, as a function of the power sums.

“Professor - student conversation ends”.

And in general as Abhibhav is saying that any symmetric function in lambda is, well

lambda is really arbitrary. We will not use their eigenvalue property and is elementary

symmetric function or actually any symmetric function you can write as a function of,

in fact as a polynomial of power sums.

So this follows from Newton identities. This you must have seen or even computed in

school. We want to prove that in full generality, Power sums are the kth power sum is

basically the sum of kth powers. That is

 := , for pk ∑
n

i=1
λi

k k ≥ 0

Why can you write as a polynomial n, ‘s where k goes up to n. So let me also ∏

λi pk

add that.

You will not need to go beyond n. So just from 1 to n, this to will be enough p1 pn

to produce, . This is very mysterious. It is even hard to conjecture unless you have

some experience. But anyways, this is the plan. We will implement this plan and let

us answer the question, the next question why is it helpful? If you prove such a thing,

can you write p​k​ as something, some small circuit.

What is the relationship of p​k ​with ? In fact, what is the relationship of p​1 with ? X X

p​1 ​= right. It is the trace of right exactly. That is the beauty. Note that λΣ i X

. So now this has a small circuit because raised to so say case 2. Sor(X)pk = t k X X2

you can compute just by multiplying and adding the entries.

There is a trivial arithmetic circuit that can compute all the entries of , in X2 X2

particular the diagonal entries of and then there is the addition gate that adds up X2

those diagonal entries and you get trace of , okay. You just have to compute the Xk

diagonal entries of to compute trace and any entry of ​can be computed via a Xk Xk

circuit.

Now as k grows to n what you can do is something like repeated squaring you can just

compute , then you can compute . If you have completed so these are you X2 X2 X2

have n​2 outputs defining the matrix or describing the matrix . you can then X2 X2

square it and the same. You can actually do this in just login steps, this process.

Even and it will ultimately turn out that the even the depth of the circuit will not be

too much. , That is the point. It will be a really nice circuit not only the size is small,

even the depth is small. That is the advantage of working with p​k​. To begin with, it

was not really clear, how will or will be useful at all because is something λi λ1 λ1

very complicated in terms of X.

But the thing is that it is not just you are actually looking at the product, and the λi

product gets related to traces. And the traces are simple for arithmetic circuits to

compute. Thus the above expression would give us O()-depth, -size og nl 2 oly(n)p

arithmetic circuit for the determinant. The important not only is the size there which

is actually all we wanted. So everything else is bonus.

We just wanted poly(n) size. That it surely will be. This you can immediately see

because of the computation. The depth you will have to analyze carefully. I leave Xk

it as an exercise. But you will be able to show that the depth is also very small. It is

only . In fact, this was the reason why people studied this in the 70s because og nl 2

people wanted a very fast parallel algorithm for determinant okay.

The motivation was actually practical. Determinant is a very practical problem. In

fact, all these amir companies, the only computation they do is either they multiply

matrices or they solve a linear system. If you are solving a linear system, you have to

invert, invert a matrix. You have to compute determinant. If you can do it in parallel,

you can buy many computers and you implement determinant in parallel.

This is saying that for a huge n if you make that kind of, if you buy many processors

then after this one time investment you can actually solve determinant on various

instances in only - time once you have set up the parallel architecture. which log n 2

can be very important if you work if you want real time solutions.

This depth is actually the motivation why people studied it, but we currently only care

about the size. This is enough to show the determinant is in VP. I leave the details in

as an exercise. Let us do the main thing which is connection with power sums. How

is that done? How is that proved? We will prove the general thing.

(Refer Slide Time: 31:59)

Let us study elementary symmetric polynomials versus power sums. What is this

identity? Whose existence is not clear? I mean, this is just some claim that I am

making, but if you think about it, it is not clear why this connection should even exist.

The elementary symmetric polynomial e​k (is defined as so this would be , .,)λ1 . λk

what? .

So k times, you pick k things, multiply them and then do this in all possible ways. It

is about subsets, k subsets of [n]. You pick an S, and then you multiply these . That λi

is it. So e​1 for example, is just the sum and then e​2 is product of , , for distinct i, j. λi λj

This thing we may sometimes write as . Okay, so it is just .λS ∏

iεS
λi

Okay, so example is , e​2 = and e​n has only one e1 = ∑

λi , ., e ··· ∑

i=j/

λi · λj . n = λ1 · λn

monomial which is the full product. So these are the n elementary symmetric

polynomials. Now the problem does not happen in the ends, the problem happens in

the middle because there you are looking at subsets and they are exponentially /2n

many. So that is a large sum right.

Computing those things is complicated, also in practice. How do you make it

efficient. This is what we call in the course Newton's identity, this is a recurrence to

simplify our life. So for k, n 1 it writes≥

 = . (λ)k · ek (−) .e (λ) ∑
k

i=1
1 i−1

k−1 pi λ)(

It is just this convolution type of product of e’s and p’s okay. This is a this is a

recurrence which means that if you know the expression for e​k ​up to if you know e. k−1

the relationship with power sums then this immediately gives you the relationship of e

k with the power sums and you only need power sums up to p​k​. For e​k you only need

power sums up to p​k​ . You do not need anything else okay.

This is exemplified as so unsurprisingly. So which is then e1 = p1 p2e2 = e1 1 − p2

. And which you can again right using the previousp1
2 − p2 e p p3 3 = e2 1 − e1 2 + p3

things. ​“Professor - student conversation starts” Apriori it is not even clear that the

power sum representation of is like it will be a polynomial in the . ​“Professor - pn pn

student conversation ends”.

That is a good point, but remember that you have to write down in arithmetic circuit.

So assuming that even to e​k-1 you know the arithmetic circuits. On top of this you can

produce e​k​. Yes, that is important. Yeah and maybe you will appreciate the fact that

you actually this actually produces a circuit not a formula as far as small size is

concerned, it because in formula you will be not you will not be able to reuse the

output.

And if you have to implement this recurrence you have to keep reusing it. Otherwise,

things will start blowing up. So you really use the power of a circuit and so more than

a formula and then you can write e​k ​as a function of ultimately the circuit in terms of

to . Okay, so let us do the proof details, finally. How do you think you willλ1 λn

prove this? It is impossible to guess this.

But once I have given you this, how will you prove it? But even induction does not

look easy. Because what is induction telling you. It is saying that e​k-1 is a function of

lower p’s. But then who will dare substitute that expression. So we will actually give

a cute proof using generating functions. Let us consider right a generating function in

a formal power series where as a formal power series, okay.

The mathematical tool being used is actually formal power series. So it is an infinite

sum that we will look at. So what is the generating function for e​k​? So you should

look at . So this is the generating function. There is no reason to stop at n. (−)∑
n

k=0
ek t k

But, if you look at e​n+1​ it is already zero.

This is why we are truncating at n but this you can think of as an infinite sum goes

beyond t​n and so this is this is the generating function of the e’s. There is another way

to write this. You can factorize this to get what? Exactly. So you know that the roots

of this polynomial by fixing t or right or 1 over kind of. you can actually λ λ

factorize it as .1 t)(− λi

So just you can check this. This just follows from polynomial multiplication. You just

look at the RHS and the way you multiply polynomials you will actually get

elementary symmetric polynomials, all these e​k​’s and yeah so now this is a good

identity to start with to get a recurrence for e​k​. So do you remember the high school

method of getting recurrences? Yeah you have to differentiate.

You differentiate and then you will be done. Basically apply the operator again for

notational convenience we will apply , okay. So we differentiate and scale up t · ∂t

differentiate and scale. Now what is the result?

(Refer Slide Time: 42:37)

This will on the LHS this will give you . And on the RHS you will get, e (−)∑
n

k=0
k k t k

so on the RHS you had a product. When you differentiate it using you can use the

Leibniz identity which is you differentiate one factor at a time, take the sum. That

will give you we are only differentiating the ith factor . That is (−) (1 t)t ∑
n

i=1
λi ∏

j=i/

− λi

the sum, .

Any questions about this? We have differentiated and then multiplied by t, just two

write a better expression. And once you do this it will be better to actually re-express

the RHS as a sum of fractions. Let us bring out the full product and be left with

 - ./(1 t)λi − λi

(That is what we are left with and there is this full product. Now what?

Now you observe that , its inverse exists in the power series, in the power 1 t)(− λi

series ring, so you expand that out. So will expand as, let me delete that. Let 1 t)(− λi

me absorb the t first. It is just this double sum, right. And there was a hanging, there

will be a hanging minus sign basically you get, in the inverse you get

 + (…….. (1 t) + λi t)λi
2

And there is a already sitting outside. So take it inside. So your series starts with t λi

the and then its square cube and you are summing it up. And then for various i’s t λi

you take the sum. So it becomes a double sum. This technically is actually happening

in the power series ring. So this power series ring is you can take over rationals. This

is this ring.

If you want to be technical, about where does this computation happen, it is

happening in the power series ring. In this power series ring basically the elements of

this ring are an infinite sum of t monomials but taken in this increasing order. The

bigger the power of t is, the smaller that term is considered. This is the algebraic

version of analytic power series. This is called a formal power series, okay.

In this power series we have these two expressions LHS and RHS and then we should

compare t monomials, . So let us we will do that but let us first bring it in a form that

we want. So this part right this which we have to swap the . Let us first (λ t)∑

j≥1
i

j Σ

swap that.

Let us have this thing as, okay let me just write the expression before giving the

explanation. That is the expression.This double , you can swap the sigma and then Σ

you are looking at for all these i’s. That is p​j​. So the coefficient of t​j is just p​j​. (λ t)∑

j≥1
i

j

That gives you this term. And next you look at the product of which before 1 t)(− λj

just this.

Look at the coefficient of there and that is just the elementary symmetric sum with ti

the appropriate sign. So you have now these two polynomials, well first one is infinite

but will only go up to because there is no point going beyond. you have now these tn

two polynomials and their product is equal to LHS. So now you should just simply

compare the ​coefficients.tk

And when you compare you will get to this. Let us just write it in terms of . So tk

minus if you look at the coefficient of ​what you will see is this, This part is the −)(t k

coefficient above. To get you have to look at Because you have −)(t k tk .j + i = k

this term ​ and ​here.tj ti

You need to look at those j and i’s such that . Let us so that will be and j + i = k j

. So j will give you and the (k-j) will give you e​k-j with the sign, that is thek − j pj

sum. Now when you compare the coefficients of both sides, you get Newton −)(t k

identity as claimed. Now finally, compare ​coefficient, both sides. That is the −)(t k

proof.

Any questions? That should already convince you that determinant is in VP. Because

we have related the determinant which is product of s to a polynomial in the power λi

sums. And this is a very simple expression as the recurrence is very simple. It is easily

implementable as a circuit, poly size. And the final point is that the power sums are

trees of matrix powers and matrix powers fully can be computed again as small

circuits, size circuits.poly(n)

So with poly and size part should be clear. We have shown the determinant is in VP.

This finishes the proof of determinant in VP. That must we have already done. Any

questions about this statement? But this does not stop here. This is actually giving you

a lot more. This analysis actually gives you a practical implementation for

determinant that is extremely fast in the parallel sense.

A parallel algorithm is obtained. I will not go into all the details. Maybe I will put it

in the assignment. But, one observation is that the recurrence that you have got right

it is you can think of it as, you are interested in elementary symmetric polynomials.

You are interested in finding them and the recurrence is actually giving you , ,e1 e2 e3

a linear system to find them where the entries are, so e​1​ is the same as p​1​.

You have p 1 here and let us say you just put here and so on. So e​1 is p​1 , ,p1 p2 p3

which is that gives you the first row from the recurrence, I mean using the recurrence.

Then the next recurrence for k = 2 tells you that p​2 is, so e​1 p​1 - 2e​2 and then zero.

Then the third recurrence for k = 3 gives you p​3​ is equal to e​1​ p​2 ​- + 3 e​3​ .pe2 1

If you look at this just a 3 by 3 part what do you see? This is the matrix. Why is it

special? Well is a lower triangular matrix, right. You have a linear system where the

e’s are the unknowns. This is what you want to find. These are the unknowns. And to

solve this linear system you have to invert the triangular matrix, right. A tree boils

down to the inversion of the triangular matrix and you want to make this

implementation faster.

There is a very nice way to invert triangular matrices. You write your triangular

matrix as a diagonal matrix + nilpotent matrix and you want to compute this. D is

diagonal. And N is nilpotent. Nilpotent because if you raise it to, let us say the

dimension of the matrix, it vanishes. how do you compute in a fast way?D)(+ N −1

And usually inversion of a matrix is pretty complicated because you have to at least

compute the determinant which will put us in a vicious cycle because our goal was to

compute the determinant and now so inverse also will, so somehow you have to break

the cycle. So you have to find a different way to compute this inverse which will be

yeah. The amazing thing is that this also can be done using power series.

The same power series. So think of this as and that is equal to1)(− n −1

and after a point it vanishes. So this actually is a, this is n n n ...1 + + 2 + 3 +

essentially sum of powers of n, something like this. So you just have to compute the

powers and then sum them, okay. This is the idea. This is why solving the linear

system actually does not use, does not need determinant.

It can be done just by powering an addition. And when you formalize this, when you

do this implementation now actually it is after this point it is quite straightforward.

Once you do this you will see that even the depth of the circuit is very limited . And

that gives you a very fast parallel algorithm to compute determinant. So we, so as you

saw here we started with this abstract looking model and we prove the statement that

determinant is in VP.

But the proof of it is actually giving you even a new way to compute determinant in

practice, which is extremely fast and which you cannot guess. You cannot guess it at

all from looking at the definition of determinant, okay. So this implementation details

I leave for the assignment.

(Refer Slide Time: 58:46)

Schönhage idea implements this to get a fast parallel computation of determinant and

no big constants are used. Although VP allows the use of arbitrarily large constants.

But in this proof you are using very small constants. The theorem that you will get is

that the depth is only log​2​n, the size is only poly for determinant n. Let us just state it

as a theorem that det​n VP that is actually depth log​2 n and another qualification is ε

that as you vary n can you describe the circuits?

Because in the definition of VP that is left totally arbitrary. There may not be any

connection between the circuit for n and the circuit for n +1, that is the built in

non-uniformity in VP. But that is not what this proof is giving you. So here the proof

is actually giving you an explicit fast way to compute the circuits, describe the circuits

as well. It is P-uniform .

And another point here is that this depth is actually with the fanin and fanout 2. So the

fanin and fanout is also very small, okay. So it is constant. Depth is just log​2​. Every

circuit for every for a given n, the circuit can be computed by a Turing machine in

polynomial time. I mean this gives you everything except maybe some you might

expect some more improvements, but other than that asymptotically it is giving you or

functionally it is giving you the best possible results for determinant.

You may ask whether log​2 can be reduced to log. You can ask whether the size is if it

is n​5 can it be reduced to n​2​. So those questions you can still ask but yeah even this is

quite a strong thing for a polynomial like determinant, .The proof is as we have

already sketched. So we leave the size and depth analysis as an exercise. And key

ideas are to compute n powers.

And the second idea is to solve a triangular matrix equation, triangular linear system

in lowest depth, which is also in parallel time. The parallel time complexity should be

very fast. Fine. So this is yeah so we showed determinant in VP and more.

​“Professor - student conversation starts” Sir, what should be P non-uniform if we

know for n and we cannot explain. ​Professor: We, there is no fast algorithm as in the

sense of Turing machines that can produce the circuit in poly n time. So it may need

exponential in n time. ​“Professor - student conversation ends”.

I mean within exponential in n time I think you that is a lot of time. That kind of

uniformity I think you always have but the thing is whether there is a polynomial time

algorithm which when given n or to be formal 1 raised to n when given n in unary

then it outputs the nth circuit.

The circuit building should not be left to the user. Because that could be again that is

extremely hard. How do you come up with a circuit for a given n. If n is 1 million

how do you come up with the circuit that is running on 1 million inputs. So that also

somebody has to provide it. So is there a Turing machine that can do it in a fast way?

But in the for the definition of VP that was left free, that was left unfixed.

In the case of determinant, we are actually getting this additional property, which is

why all these things are good in practice. But now we will actually go through a

different route and prove something even better for determinants,. we will actually

define a complexity class based on determinant. Any polynomial that you compute in

that class, you can reduce it to determinant.

And you can also compute determinant in that class. We will actually make this really

optimal. We will come up with a class that is determinant hard and complete. Do you

know the name of this class? This is called arithmetic branching programs.

Determinant is closely related to an important polynomial representation which will

be different from circuits, formulas and so on.

It is a completely different representation defined in a different way. It is called

arithmetic branching programs, ABP. You might have heard the term branching

program. There are also Boolean branching programs. This will be obviously inspired

from that. It will be an arithmetic version of the Boolean branching programs, but it

will have a lot more structure.

(Refer Slide Time: 1:07:40)

This is basically a layered graph. You can think of it from, going from left to right, so

the computation moves from left to right. In every step, there are layers. It is a

layered, directed graph. So an ABP is a layered directed graph with source and sink.

Source vertex is called s and sink you can call t. Now edges from layer to layer +1 i i

are labeled by a linear polynomial.

The linear polynomial you can assume is in n variables field F, . You have these edges

going from the source to the sink and when you are at layer to layer +1, you will i i

draw edges. The edges will have labels or weights which is a polynomial say xx1 + 2

could be one weight or just or maybe 0 or 1, . Can also be field constant.x1

Once you have this picture, what do you think is the polynomial that this computes?

How should you define the final polynomial that you get at the sink? In a path from

source to sink whatever you whatever linear polynomials there are, you take the

product and then for every path from source to sink you add these products. That is

the polynomial.

The polynomial computed at sink is:

 f t(γ) = product of edge weights in γ = ∑

path γ: s ↝t
w :

So that is it. ABP is source, sink. You have layers. You have linear polynomials as

labels and finally the polynomial computed is just this f. Yes.

I do not want to see it as a circuit yet, but this expression for f is the sum of product of

linear polynomial. It is sigma pi sigma. These are the three operators you are using in

this order. And then what are the parameters or resource parameters for this. That

when will you say that the ABP is small? Well, obviously when the graph is small,

only then should you say that the ABP is small.

If the graph is large, then it is a large representation. So that is one thing. Size of the

graph is one parameter. Size of ABP that is one thing. The second thing you can look

at is in every in the ith layer, how many vertices do you see? So maximize over i. So

that is called the width, width of ABP. So max number of vertices in a layer. And

finally depth. how long is the ABP?

So depth is the longest path from source to sink, right. So first you want to optimize

the size, or optimize as in, say for n variate polynomial you want an ABP of size

. That would be the ideal goal. Once you have that, then you can talk aboutoly(n)p

other things like can I make the width small? Can I make, I mean width small as in

can I make width, let us say three? Obviously it is , but can I make it even oly(n)p

smaller?

Can I make it 3? Can I make it 10? And then depth here. But that, so depth is usually

correlated with the size. We do not do much with the depth. But we talk about size

and width most of the time. So we will see an example and do it, I mean study this

next time. Any questions? Okay.

