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So last time we discussed how hsg implies hardness. So, if you have an hsg and look at the                   

annihilator, the annihilator polynomial will be explicit and it will be hard for that family of                

circuits for which you had a hsg. So, in particular, if you solve blackbox PIT for circuits, then                  

you get these 3 properties. So, you get a multi linear E computable polynomial q​m that is                 2m  

hard. So, constructing this q​m​ currently is an open question. 

 

So it is open whether q​m exists. Existence of this family of q​m is not known, this is implied by                    

blackbox PIT. Now, we ask the converse question which is if there is hardness if there is such                  

a q​m does it give blackbox PIT? Our theorem is due to Kabanets Impagliazzo. And then a                 

version by Agarwal Vinay, so we will assume that there is a q​m​.  

 

So let q​m be a multi linear polynomial family E computable which is condition number 2                

above that is not computable by sub exponential sized circuits. Obviously this polynomial is              

hard you cannot compute it even by cannot compute it basically sub exponential in m here                



means to be precise, it will require you cannot do it in for example, there is 2o(m)        2Ω(m)       2mε
     

no algebraic circuit of that size.  

 

But when you look at the coefficients and the bits there they are computable in in the               2m    

circuit size is also expected. We are assuming the circuit size also that is required is then,                2m   

what we will show or what the theorem concludes is that there is an efficient map that will                  

take a circuit with n variables and reduce the n variables to largest variables without changing                

the non zeroness of the circuit. There is a variable reduction or a dimension reduction, so that                 

is what the theorem says. 

 

Then there exists an efficient variable reduction for VP circuits reducing n to log n variables                

preserving non zeroness. Up to PIT this is a very useful polynomial time variable reduction               

because it will reduce the number of variables from n to log n. So, how is this related to PIT?                    

If you have a circuit where the size is s and the number of variables is log s how fast can you                      

solve PIT deterministically, in this polynomial the number of monomials will be s to the log                

s. 

 

So, you expect just by opening up the circuit you expect it to be doable it time. It is a                slog s      

quasi-polynomial time algorithm, so this basically implies a quasi polynomial time blackbox            

PIT. But this is much stronger. It is a much stronger statement because it is actually giving                 

you a variable reduction is the statement here so we will prove this.  
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It implies an time blackbox PIT algorithm which also means hitting set generator, size   slog s             

of the hitting set and the time in which will be computable is which nearly solves the             slog s      

blackbox PIT result but still it is not a polynomial time. It does not tell you anything about                  

the structure of the circuit. The circuit is still blackbox seems to be only a PIT result, because                  

this variable deduction was what is it preserving? It is preserving only one thing that is non                 

zeroness.  

 

So it is only a PIT, the application seems to be only PIT, I do not see any other application.                    

So assume this q​m exists. Assume q​m as in the hypothesis and suppose somebody gives you a                 

circuit C of sizes s computing a polynomial of degree less than or equal to s. This we can                   

always assume because we are only looking at circuits kind of in VP. So, whatever is the size                  

we can assume is also the number of variables.  

 

And we can assume it is also the degree because everything is polynomially related, we can                

just take an upper bound s. So, now using q​m how do you reduce the number of variables in                   

C? That is what we want to do. How do we reduce its variables to order log s? Potentially it                    

has s variables and how do you reduce it to log s? So this by itself is a completely non trivial                     

question. I mean, why should there be a map that is efficient and reduces the number of                 

variables? But there is an interesting way to use q​m​ for this. 

 



So, we will use q​m for very small m very small means, around log s, it is log s variate. So, for                      

s variate circuit C we will actually use around log s variate q​m​, m = log s but q​m is just one                      

polynomial, I mean we can feed q​m in C but that is only we are just feeding it in x​1 what do                      

you do with x​2​, x​3 and x​s​? How do you feed q​m in the second variable x​2​, for example, if you                     

keep changing the arguments in q​m​, then you keep increasing a variable n’s.  

 

So then there is no variable reduction. So you have to start with a small set of variables, log s                    

variables and compute q​m​, for example, at different subsets of this, so that is the only thing                 

you can do at this point. So we will use q​m to feed into C for different arguments chosen from                    

a small set of variables, how do you design these subsets? See the number of variables you                 

have fixed is and then you want to evaluate q​m on various subsets each of size say   00 1 log s                

log s. 

 

How many subsets are there of size log s of a superset , definitely more than s. You            001 log s       

will get enough subsets. You will get enough evaluations of q​m which you can then just feed                 

into respectively. The question is what are these subsets, what are the good , ,x1 x2 · · · , xs              

subsets? Well, you can see if we take all the subsets but then the problem is ultimately you                  

have to prove that C will not vanish at these values at these evaluation points, we have to do                   

this carefully. 

 

What we will try to simulate is nearly disjoint subsets. Suppose in the ideal case if all the                  

subsets are disjoint and you evaluate q​m on these disjoint subsets then is it easy to see that C                   

at this will not vanish. But then that we cannot afford, because there are so many variables in                  

C so, we cannot afford so many disjoint subsets because you are evaluating q​m at disjoint                

subsets, it is like one is x​1 the other is x​2​, the other is x​3​. There is no overlap and it was                      

nonzero. 

 

So when you evaluate it at algebraically independent things, it will remain nonzero because              

x​1 to x​s is exactly that it is, they are only special because they are algebraically independent.                 

Idea is evaluate q​m at where these , from this big set of     ,S1 · · · , Sn    x , , }Si ⊆ { 1 x2 · · · , xO(log )s       

variables we will pick subsets let me be precise with the notation. 



 

So, this will be . These subsets are not too large    , , ; S 1, (log )}xS1
xS2

· · · , xSn  i ⊆ { 2 · · · ,O s        

because the universe is only log s big, but there are many, these subsets are n many, you can                   

think of n and s as the same. That will not hurt and n is also some multiple of log s. So q​m has                        

m many q​m​ is m variate and the size of s​1​ is also m. So, size of s​i​ is m. 

 

So, it is well defined, these evaluations are well defined . Now, if s​1 to s​n were all          ( x )qm Si
        

disjoint then C will not evaluate to 0 at this. If you want to basically achieve this that C at                    

these values of q​m should remain nonzero that is what we want to achieve. This is definitely                 

true when s​1 to s​n are disjoint because then the variables you are using are really different                 

algebraically independent.  

 

Evaluations of q​m are also independent and so C will remain nonzero. Is that clear? But we                 

cannot afford that because that will be too many variables, we cannot achieve that with log s                 

without the base thing that so, what we will try to achieve is nearly disjoint. So, this is a                   

rough idea, but implementation will be complicated. First we will define what is the meaning               

of nearly I mean nearly cannot mean truly disjoint because you need so many subsets from a                 

small base set. Obviously they will overlap. 

 

How can you really minimise the overlap and to what extent it first we will define that,                 

second part would be to actually show that although there is an overlap the circuit does not                 

vanish at these q​m​’s and that will need some algebraic results. Let us try to go through the                  

details. Any questions about the PIT? So let us say C has n variables, z​1 to z​n​. These are the n                     

variables. It is n variate.  

 

Let I be the family of subsets s​1 to s​n​. What we want in combinatorics is called                 

Nisan-Wigderson design so Nisan-Wigderson design some people   c , d , 10 )( log n  log n  log n      

have heard about this. Because this is also used in Boolean complexity which we have seen                

CS640. So, let me define it. Basically, before definition I should say that this the first                

parameter here refers to the size of the base set. 

 



So there are variables overall, refers to what is the size of the subset you   c log n    d log n            

want. That is the base or universe. This is the size of the subset. Obviously, , these are               d < c    

absolute constants. And finally, refers to the intersection size, so bound is    01 log n        01 log n    

the overlap, we want a lot of as much as possible as many as possible sized subsets of               d log n     

 universe with intersection bounded by , this is what design is.c log n 01 log n  

 

Now let us now formally write the definition. Let , are natural numbers. A          l > n > d ∈ N      

collection where m is something else, some other parameter. So a collection  I , }I = { 1 · · · , Im             

I of n size subsets of the universe 1 to l is called (l, n, d)-design if .                 I | ; ∀j =| j ⋂ Ik ≤ d  / k  

- design is just a family of subsets of a universe 1 of the universe 1 to l such that thel, n, d)(                        

subsets all of them of equal size n and intersection are bounded by d.  

 

When you look at this general object (l, n, d)-design, what would you think of l if d was 0 if                     

you want d to be 0, which means disjoint subsets, l has to be nm. You cannot work with l                    

smaller than nm. So if d was 0 and similar arguments you can make if these are constant. If                   

you want the intersection to be very small, then your l will blow up. And we do not want that                    

because our m is actually large in the application, if you see m, if you see it is exponentially                   

bigger than l, n, d.  

 

We actually want l to be exponentially smaller than m something like log n. For that, we have                  

to actually increase d also to log n. And then there is a theorem that such designs exist, if l, n,                     

d are comparable then designs exist. That has many proofs. We will skip all of them. You can                  

see that in some other place.  
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Let me just state the lemma by Nisan Wigderson 94. In fact it is a constructive proof, there                  

exists an algorithm that on input l, n, d assuming obviously but also l sufficiently           nl >  > d      

large. So . If this 3 tuple is given to you the algorithm will output a design. Design  0n /dl > 1 2                 

I having a lot of subsets, so having m greater than equal to .2d/10  

 

So exponential in d subsets in time, which will be quite reasonable to just be That which is               2l     

the number of subsets of your base set or the universe set. So, essentially in the algorithm you                  

are allowed to go over all the subsets of your universe and out of these subsets, it will                  

actually identify m subsets, which are (l, n, d)-design in these subsets are of size n all of                  

them. 

 

So can you guess the algorithm? Here you can also just use a greedy algorithm. You just start                  

with an n size subset and then try to grow this as much as you can and you will there is a                      

probabilistic argument saying that your greedy algorithm will continue to grow till you reach              

m many subsets it will not stop. It is an explicit algorithm. It is completely explicit, you can                  

go home and implement and see if you want structural details that they are absent. 

 

It does not tell you any structure of or how is this working. A greedy algorithm or approach                  

works. It is an interesting exercise and there are algebraic constructions. Yes, they are              

beautiful algebraic constructions, which have, in some sense, better parameters. But what this             



greedy approach will give you will also be optimal in a way and I can mention there is also                   

polynomial based construction over finite fields. 

 

There are at least 2 proofs, maybe more which will give you such designs. The remaining                

details I skipped, because this is really a combinatorial thing, it’s a detour on what we are                 

doing. Now going back to our hard polynomial q​m​. For that we need these, this design where                 

the subsets are nearly disjoint and many and using a very small base set let . We continue               φ    

where we left our m becomes n I think.  

 

So, there is some confusion between the lemma and the application, but s​1 to s​n​. We want n                  

subsets which is a c log n, d log n, 10 log n design Nisan Wigderson design for constants,                   

suitable constants . And you also wanted that property this l greater than .  0c > d > 1            0n /d1 2  

What does that give you? .0d /10c > 1 2  

 

Which is satisfied trivially so, that isn’t a condition, extra condition. Just pick constant              

and apply the above level and there is a design. By the lemma I can be0c > d > 1                  

constructed in how much time so , so poly(n) time. So the construction is free. You had      2log n            

n variables or size s circuit for that in poly(s) time you can construct the design. 

 

There is an algorithm and you were already given by someone q​m​. So just evaluate q​m on the                  

design and claim that this is the map, variable deduction map so the construction is over.                

Now we map z​1 to z​n variables to very few variables, x​1 to x​c log n it is called this as, so that I                    x      

will be mapped to? So, this variable reduction map is I will call it . So, where does z​i go to              φ        

directly, so evaluate .( x )qd log n Si
  

 

This is for all i​1 to i​n​. s​i is of size d log n, so this is actually a d log n tuple. You can                xSi           

happily evaluate at this tuple and feed this into z​i and do this for all the variables that  qd log n                  

z​1 to z​n​. This says reducing n variables to exponentially few variables just , c is             , xx1 · · · ,  c log n    

a constant, now the surprising claim. So, even after reducing the variables exponentially             

fewer, we are claiming that the things in C cannot cancel out. 

 



So, . That is the claim. So, let me introduce some notation. Let us call this p​i and then (φ z )C                   

this is polynomials. When we evaluate C at these n polynomials, log n  (p , p )C 1 p2, · · · ,  n             

variate we do not get 0. Do you see a proof of this? So what happens if this is 0? The only                      

thing you can contradict with is that q is hard. You have to basically deduce from the                 

zeroness of the circuit that q was easy. So, how is that possible? That is a really new                  

phenomena. Suppose not.  
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Suppose vanishes. So then since and when you substitute p​1 to p​n it(p , )C 1 · · · pn      ( z ) =C / 0          

vanishes. We deduce that there is a j says that just fix the first j          (p , , , )C 1 · · · , pj zj+1 · · · zn       

places that vanish. But if you fix 1 less, it does not vanish. That this is obvious because you                   

know that if you do not fix anything then it is nonzero. So, you will from the left you will                    

start fixing the variables and at some point nonzero will become 0. So, that is the point j, j - 1                     

to j transition is the place where non zero becoming 0.  

 

This tells you what if in a polynomial you substitute something and it vanishes, then it means                 

you found the root. So, this means that is a linear factor of ,        z )( j − pj       (p , , , )C 1 · · · , pj zj+1 · · · zn  

which is nonzero. There is this nonzero polynomial whose root we have identified as p​j​. Now                

C has a small circuit, and p​j is the root of that. What does it mean? p​j by itself is also a                      

polynomial. It is a polynomial root of a small circuit. So, intuitively p​j should also have a                 

small circuit.  

 



And if p​j has a small circuit, then q​m also has a small circuit, which contradicts our cardinal                  

assumption that q​m is exponentially, hard that is the line of argument, but you have to look at                  

the parameters, let us actually check that. So, just wondering how to motivate why a lot of                 

calculation would be necessary. Why is this; what I just said is not a proof. One thing is that                   

you have to compare exactly what is the bound on circuit size of p​j that you are getting. And                   

because for q​m​ what did you assume.  

 

The assumption long time back was this that for q​m there is no circuit. Now, m we have             2o(m)       

taken to be d log n, d is a constant. This is . So to get a contradiction, we have to            no(1)          

actually show that this root that we go identified, the root has a circuit of size . Say                no(1)   n0.9  

no not 0.9. I mean it should be a small function . So, I cannot put a constant there.(1)o  

 

Something like maybe . It is a function that tends to 0 in the exponent. You have to   n1/ log log n                

show that strong upper bound on the root. But that is not possible because C, already your                 

circuit C is small, but it is not that small it is not n to the inverse polynomial. It is only                     

polynomial sized. It is size s and you have plugged in these p​j​’s. So it has an even bigger size.  

 

So from that you cannot really hope to deduce that p​j has a very small size. So we have to                    

work on this. This is not done yet. Let me just go through this. C we assumed has size s here                     

and m we taken to be log s. It is s versus log s. So n and s you can assume to be the same                         

thing. And m is log s. Your Nisan-Wigderson design was for parameters around log s. Maybe                

we write it down. This is size s and this p​j​’s are around log s variate.  

 

And the question we are asking that for p​j is the size smaller than that is the question.              so(1)      

Let us now do some tricks here and there to get to some sort of a contradiction, we will                   

actually not get this will not get this , but we will still be able to contradict the hardness        so(1)            

of q​m​. That is why we will do a lot more calculations. What we will do is first we will fix the                      

variables. Let us fix z​j+1​ to z​n​ and variables x​i​’s that do not occur in p​j​. 

 

So, remember p​j is is given by this s​j​’s subset. Since we are only interested in the    xsj               

complexity of p​j let us fix all the other variables, all the other x's and all the z which you are                     



seeing here except z​j​. Because they are really unnecessary and a disturbance, we fixed them               

to random values from the base field. I mean, if you fix the variables, extra variables to                 

random values, then your circuit non zeroness and divisibility conditions would not change.  

 

A nonzero circuit cannot vanish at a random fixing; this is again a consequence of               

Schwartz-Zippel lemma. And obviously, when you do this the divisibility condition will not             

get violated. We are really not changing anything, we are just making our life simpler by                

removing the extra variables. So where does this get us? This reduces us to the case z​j - p​j is                    

unchanged and it is still a factor of some circuits          

. So, p​1​ corresponds to the subset s​1​.` = 0  C p` ( x ), p` ( x ) , ` ( x )( 1 s ⋂s1 j
 2 s ⋂s2 j

· · · , p j−1 s ⋂sj−1 j )  /    

 

Now, in you might have fixed some of the variables and which are these? These are the  xs1
               

ones other than s​j​. So, when you fix them what remains? Only the variables which are in s​j​,                  

they remain. Even has arguments then has and so on. And z​j survives and   `p 1    xs ⋂s1 j
  `p 2   x2⋂sj

        

this is still nonzero. Now we have this. Basically, on the RHS these which we have there,             `p i      

variable set is the intersection with s​j​ and what do you know about the intersection?  

 

It is only 10 log n; actually there was another point why we did this variable restriction. If                  

you look at this identity, here we do not have a good bound for p​1 and p​2 because these are                    

coming from our hard polynomial, so the bounds for this is actually bad. That is another                

reason why we do not immediately get something for p​j​. But now, once you have restricted                

some of the variables, you see that now the variables are only  which is very small.s1 ⋂ sj   

 

So, now p 1 prime is a polynomial on very few variables instead of original d log n, it is now                     

only 10 log n so, there is a shrinkage in the variables set. So, what is the trivial size bound                    

you get for p 1 prime? So, note that s k intersection s j is less than equal to 10 log n for k less                         

than equal to j. So, this means that p 1 prime at whatever variables it has size, in fact, less                    

than the number of its monomials. 

 

And what is the number of monomials? We started with a multilinear q m. So this is just 2                   

raised to 10 log n. So let us continue with this notation. So this is n to the 10. So the overlap                      



size basically gives you a complexity upper bound on these p i prime the trivial one, just                 

counting the number of monomials that it has. So that is n to the 10. So, now for the whole                    

thing, the C prime with these hard polynomials now restricted being fed in overall size is                

what?  

 

For this now the overall size is the size of C which was certainly not more than that.            s + n11       

That is the overall size of this RHS. If we had done the same calculation before, then we                  

would have gotten d in the exponent instead of 11. So that I do not want. Now we have                   

and there is a very fundamental result saying that for small circuits, the factors ares + n11                 

also small circuits. So this we do in another course CS681. It also has an explicit algorithmic                 

version as well. 

 

This is the computational number theory in algebra, Kaltofen. This is so we do the strongest                

version of this which is an explicit algorithm for finding these factors, that is harder. Well,                

the circuit size or circuit complexity proof is much easier. That algorithm is more              

complicated, so a non constructive proof is easier. It is implied by whatever tools we               

developed much simpler. So, again I cannot we cannot afford to go into that. 

(Refer Slide Time: 50:10) 

 

So, let us just state it so Kaltofen 1989. So, this result is, factors of small VP circuits are also                    

small VP circuits. In words it says that and quantitatively says that if you have a size s degree                   

s circuit and you look at a factor then the factor also has size s​3 and degree obviously at most                    



s because there is a size blow up of fully cube not much more than that which is highly non                    

trivial.  

 

I mean the connection between circuit and its factors. It is not immediately clear that there                

should be a connection on the size complexity because we are talking about multivariate              

circuits. Multivariate circuits have exponentially many monomials, factors also have          

exponentially many monomials but why should there be a small circuit computing this. This              

is a highly non trivial fact. But it is true and there is an algorithm also.  

 

It has an algorithmic version as well, that is blackbox. Which is why it is even more                 

fundamental because it not only shows the existence but even when you give it when you are                 

given a blackbox circuit then Kaltofen’s algorithm will output all the blackboxes for the              

respective factors which is an amazing thing. So, it works completely at the level of               

blackboxes.  

 

So, when you apply this what you will get is that p​j has a circuit of size, this was the                  s )( + n11    

circuit size, which it was of which it is a root or z​j – p​j is a factor of that circuit. And so by                        

Kaltofen there is an absolute constant e so , which bounds the size of p​j​. So where e        s )( + n11 e           

has nothing to do with independent of is independent of c and d, e is just this constant which                   

appears and it is around 3.  

 

So, the exponent is around 3 and c and d we have not even fixed in the Nisan Wigderson                   

design. Let us now; so s and n were comparable. Let me just simplify it, let me remove                  n11  

from here just can replace it by s. So is some polynomial in s and we just absorb it         s )( + n11            

in e. So I say that p​j has a circuit of size , where e is an absolute constant totally            se         

independent of c and d. For example, e may be 33 or 35. It is some fixed constant, c and d are                      

unfixed right now, yet to be fixed. 

 

So, since p​j which we started with is has complexity. What is the complexity        ( x )qd log n sj        

that we assumed? Has complexity , we assume and m in this case is d log n.     2Ω(d )log n    2Ω(m)           



So, p​j has complexity and d is still unfixed. We can keep using d log n as a    2Ω(d )log n                

variable, now these 2 expressions. Let me make it .sΩ(d)   

 

One side you are saying that p​j has complexity , on the other side, you are saying that p​j         se           

has complexity more than with hiding some absolute constants, but it definitely    sΩ(d )log n   Ω         

suggests that you can pick d to be much bigger than e to get a contradiction. So that is the                    

source of a contradiction that this e that you get from Kaltofen and this that you get              (d)Ω     

from your premise they will contradict because d is free so you pick d suitably and then use                  

that Nisan Wigderson design.  

 

That is the proof so, we pick to be sufficiently bigger than e. This exponent which is       (d)Ω            

sitting depending on d we pick big enough to get a contradiction. What does the contradiction                

mean? That it could not be a factor, so which means that it cannot be 0. So that is the proof of                      

the claim which is assuming some fundamental things. I have left Nissan Wigderson design              

construction as an exercise and also the whole area of blackbox factoring as an exercise.  

 

So that is a plug for the next courses sure. Existential is easier; it does not mean it is trivial.                    

Well, you have to look at the Newton iteration. So what is the consequence of this? So the                  

consequences of all this for PIT is that you have in deterministic polynomial time you have                

reduced the variables from s to log s. So, and it has c log n variables and the         ( p ) = 0C /            

degree is what is the degree so, initially the; if you assume the degree to be s, no d is the                     

smaller one; the base set is c log n. 

 

Yes, that is a good point it seems that we are working with d log n, but the base that is bigger                      

that is the range where you are mapping and the degree originally or C was s, but when you                   

plug in p you may grow it slightly because p​1 has degree around log n, degree is not too big s                     

log n. That is one consequence. The second consequence is which follows from this. So how                

many monomials are there? 

 

Well, degree s polynomial on log n variables, so it is . Maybe in the nodes I should           slog n        

merge n and s. It is unnecessarily hanging around. There is no need for this so, you get                  slog s  



monomials and we have not done it, maybe we can do it in the next class as a final example                    

of a PIT algorithm, that if your number of monomials is small then you can do blackbox PIT.                  

This actually implies time or let us hsg for algebraic circuits. If obviously if q​m exists;   slog s               

not just hard q​m​, but with all those conditions that it should be explicit E explicit and                 

multilinear.  

 

Hence if there is hardness then there is a hsg, highly non trivial hsg. This in this implication                  

we are actually using the hsg for sparse polynomials or polynomials, so I will show you          ΠΣ        

at some point what is this hsg designed for depth-2, so just a sum of monomials. If somebody                  

gives you a sum of monomials in blackbox there is a hitting set designed for that, in                 

polynomial time. 

 

Here you can do better. There is a very simple hitting set because even the number of                 

variables is so small. Secondly, what you can do is if you take the degree to be d or                   Δ + 1  

many field elements and take cartesian products into a number of variables. That is a hitting                

set. So, if you call this degree and if you call the number of variables then hitting set is       Δ          `n      

something like . That is a simple observation.0, ][ · · · , Δ n`   

 

So just many field elements and try out all these possibilities for all the variables. This  Δ + 1                

is the sized hsg. Here it is actually even easier. You do not need to invoke sparse PIT but  Δn`                   

that also is true that will need more work. Then we will do a similar calculation for depth 4                   

PIT. We will show that if you can design hsg for depth 4 then you can design the same hsg                    

for general circuits. We will do that result and we will maybe, if we have time, we will do                   

this sparse polynomial hsg. 

 


