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Okay, so we have defined arithmetic circuits. 
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It is a DAG with internal vertices and leaves. So leaves are the formal variables to               x1  

. Then there are edges and the wires with the constants and internal vertices arexn                

gates. They can add or multiply polynomials. So, we will say that an arithmetic circuit               

solves a problem or computes a polynomial in the following sense.  

 

We define that in terms of family of polynomials and family of circuits. Given a               

family of polynomials and given a family of circuits, we will say that those              

polynomials are being computed by the circuits if . So this is the meaning of        C i = f i        

solving a problem. We basically mean that an infinite family of circuits is computing              

an infinite family of polynomials.  

 

Okay, so in this sense now we can talk about the resources. In this case, we can say                  

that the set of polynomials can be solved in size bounded by . For n variate     f         ize(C )s n     



polynomial in your family , that can be computed by a circuit of size . That is the    f          Cn     

upper bound on size of circuit. And depth is bounded by .)depth(Cn  

 

The you should see it as a function of n and also you should see ize(C )s n            epth(C )d n      

as a function of n and these two functions basically tell you the circuit complexity of                

the set of polynomials .f  
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To compare with Turing machines, very vaguely speaking, depth can be seen as or              

can be thought of as time, because if you think of a set of microprocessors each being                 

a gate addition or multiplication gate, then the time taken to compute a value of the                

polynomial is basically the maximum length of gates which you have to traverse. 

 

Depth can be thought of as time in parallel, in parallel algorithms. And size              

corresponds to the other parameter which is space, in parallel algorithms. Well, if you              

try to implement a circuit on a Turing machine, then the size of the circuit will                

basically mean we will give you the space complexity of the Turing machine. 

 

So vaguely speaking, you can think of depth versus size as time versus space. Okay,               

but formerly we have defined these things. So we will just work. ​“Professor -              

student conversation starts” Maximum number of gates in one layer. I mean, over             

all layers. ​[Professor] No space will be the overall size of the circuit. If you               



implement this circuit in a Turing machine, in the Turing machine model then the              

bigger the size is, the more will be space requirement because all that, all those gates                

you have to actually take care of them in the tape. ​[Student] For Circuits, like               

variables may be reused somewhere in later layers. For formula like once it is used we                

can reuse that layer. For example, input layer, if you read the variables once we do not                 

need that space anymore. ​[Professor] ​I am not sure whether you can reuse at the level                

of the cells in the tape. But anyways, for circuits it is this. For special models we have                  

to think. ​“Professor - student conversation ends”. 

 

So this gives us a new way to measure the complexity of problems. And problems               

now would mean polynomials. So now we can systematically measure the complexity            

of polynomials. And these are our new problems. So the study of this is called               

Arithmetic Circuit Complexity. 

 

Okay, so arithmetic circuit complexity theory or algebraic complexity theory is the            

study of polynomials with respect to the size, basically size of arithmetic circuits that              

can compute them, okay. So arithmetic complexity classes, so based on, so once you              

have these measures formally defined you can now talk about complexity classes. So             

now you can characterize many problems in the same class depending on how easy or               

how hard they are in the arithmetic circuit model. 

 

So such classes were first defined by Valiant. Arithmetic complexity classes were first             

defined by Valiant around in the 70s. What will be the most interesting complexity              

class that you would want to define? Just like P is the most interesting complexity               

class in the Boolean world, here the most interesting complexity class will be an              

analogue of polynomial time. 

 

And once you have defined that, then the next important thing would be or interesting               

thing would be analog of NP. So those were formalized by Valiant. So in particular,               

the arithmetic analogs of P and NP. But we have to do it in an algebraic or in this                   

arithmetic sense. So let us do that. 
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So the arithmetic version of P is called VP, okay V stands for Valiant, so this is                 

Valiant’s P. So how do you want to define VP? So in P we said polynomial time,                 

right? Here should we say polynomial depth? No so a better thing would be to say                

polynomial size. So we will define VP or Valiant defined VP in terms of families of                

polynomials so VP consists of polynomial families say .f }{ n n  

 

So every element of VP is actually an infinite sequence. It is this sequence of ’s;               f n  f n  

is a n variate polynomial. And so for this polynomial family the property that you               

want is that it can be solved or computed by circuits, arithmetic circuits of size? So                

what do you want the size to be bounded by? Polynomial in n, right n is the only                  

parameter here. So by size .oly(n)p  

 

So is just n to some absolute constant over all the constant right. Every oly(n)p               

constant is allowed. So it could be n or or or or . All these are         n2  n3   n1000   n106
    

shoved together into this class. So is this enough? No variables are parameters. So              

whatever you are looking at in this family for that the size should be . f n           f n      oly(n)p  

Yeah, so there is an additional thing. 

 

So which may not be very intuitive at this point. So you want the degree also or                 

Valiant wanted the degree to be not too high. So the size polynomial n is still                

understandable, but why is this condition on the degree also needed? So exactly why              



the degree condition? So this needs some explanation and this is basically what was              

already suggested that you want. So once you have a circuit, which is small, small               

means , you also wanted it to be practically implementable, right. So practical oly(n)p             

implementation means that every aspect of the computation you would ideally want to             

be efficiently implementable on a Turing machine or on a normal computer. So one              

necessary condition for that is the degree should not blow up too much. 

 

Because in size n you have seen in the last class the degree could grow up to more                  

than . Now if then this basically means that the degree could become 2n    00n = 1           

. So that kind of conflicts with time and space, poly time and space. So a good2100                  

way to control that is to control the degree. So degree is restricted to .oly(n)p  

 

So now in every gate in your circuit for polynomials in VP first of all, there are few                  

gates. So poly n many gates. Moreover at every gate a polynomial of degree only poly                

n is being computed. So when you want to evaluate your circuit at a point let us say                  

point then in no intermediate node could you get in the evaluation. So the x = 2          22n       

number computation will be small. 

 

So we do not want the circuit at a point to become too large, say over rationals. But                  

this still is not enough for efficiency because we are not saying anything about what               

kind of constants are used on the wires. So constant on the wires could themselves be                

too large right. But that I think is fair because if your circuit already has constants                

which are too big then obviously if you try to evaluate it at a point, values could also                  

be too big okay. So that is not an implementable circuit. 

 

But as long as the constants are small, the circuit evaluation at small points this is the                 

definition of VP. So this is something external to our model, to our algebraic model,               

this degree condition is external. But this is how VP is defined. 

“Professor - student conversation starts” So if you wanted efficient implementation           

you said in earlier class that sometimes you do include constant’s sizes, right?  

 



Why was that not included in this definition itself?  

[Professor] Right. So that also could be included. So you can think of algebraic size               

as looking only at the size of the graph. And you can think of the arithmetic size as                  

including everything, also including the bit size of the constants. So somehow            

algebraic size is the first thing you would want to study. If you start looking at                

constants, it becomes a harder problem to study. So it is an intermediate thing which               

already has a nice algebraic structure. So you want to study that first. But yeah, if you                 

want to implement everything practically then also the bit sizes should be small of the               

constants. That also has to be, but what happens is when you show that a problem in a                  

polynomial is in VP polynomial family is in VP usually the constants are not too big                

okay. So till now this definition has been able to achieve whatever we want to               

achieve.  

[Student]​ Seeing that is constant what does it mean?  

[Professor] No constant only means that it is in the base field. It does not mean that it                  

is , its bit size is constant. That's because for every n there is a circuit, you are looking                   

at a circuit right so the constants will depend on n. They are actually, they grow like a                  

function of n. They may grow, they may not be absolute constants.  

 

[Student] Sir, why was the depth parameter restriction there in the definition of the              

VP?  

[Professor] ​Right, yeah. So that will have a deep answer later in the course. Yes, so                

that Valiant did not know. But ultimately he was proven right. So the depth condition               

is not needed. It can be deduced from the definition of VP with a complicated proof,                

we will see that proof. 

 

[Student]​ As of now depth is already followed by size. 

[Professor] Yeah so right now trivially the depth is just you can only see it as poly n                  

but it will be far smaller. So we will see a theorem later in the course where we will                   

show that the depth you do not need depth more than log n, okay. So the depth will                  

turn out to be far smaller than what you see apriori in the definition of VP. 

 



So that also shows that VP’s definition is the most natural one and it gels very well                 

with the idea of parallel algorithms instead of sequential algorithms which is what             

Turing machines simulate.  ​“Professor - student conversation ends”.  

 

So this is done to be able to implement such circuits efficiently if one wants. That is                 

the remark about the definition. You do not need to read the remark. But if you are                 

curious why the degree condition then this is kind of a vague explanation. Yeah, any               

other question?  

[Student]​ Yes, so  is not in VP?x2n  

[Professor] So let’s take that as an example. The family and let us look at this         }{x2n
n        

sequence of polynomials where effectively the variable is only one for the nth, the nth               

polynomial is just it has only one variable. But the degree is actually growing with n.                

This family is in VP or not? By definition it is not in VP, right? Because if you just                   

match with the definition . And, so you can actually draw a circuit of size    f n = x2n            

only order n. But it will not have the property that degree at every node is ,                oly(n)p  

right. The degree ultimately becomes . So this is an example that looks like an easy     2n            

example but it is not in VP. And the reason why you would not want it to be in VP is                     

because if you evaluate it at , then it is giving you the number which is too      x = 2         22n     

big. This is not considered an efficiently storable number. So we want to exclude such               

computations. So though it is computable by size circuits, right. But the degree       (n)O        

is too high. The degree is not .oly(n)p  

 

The other point is the class VP will depend on a field. So we have some implicitly we                  

have some field in mind. We keep some field in mind, we keep some field F in mind                  

while defining VP, okay. So, for every field there will be a different VP. So ideally                

we should call it VP​F​. Okay, but usually we will know what the field is, so will not                  

use VP F. But this is really a definition for VP​F​. 

 

“Professor - student conversation starts” Field constant cannot be dependent on n            

right?  



[Professor] ​No the field, elements in the field, whatever elements are available. So if              

you are looking at the field of rationals or the field of complex, then you can use 2​n​, a                   

constant. Why not? You can actually even use . You can use arbitrarily large        222n

      

constants, because they do not contribute to size or degree. So constants do not              

contribute. That is another thing to take care of or to take note of. So constants do not                  

contribute, do not count in size. Sorry?  

[Student]​ . The constant does not grow exponentially.x )( + 1 n   

[Professor] ​Right, yes which is fine here. No, so , the constant grows         x )( + 1 n     

implicitly. In the circuit you do not use big constants but you are also allowed to use                 

big constants. Arbitrarily big constants can be used because as I have written the              

definition, there is no mention of constants being counted in the size or any other               

resource like degree.  ​“Professor - student conversation ends”. 

 

Okay, so this is why it is a purely algebraic model, there is no, the constants are being                  

ignored. And this is only because we want to create a good theory. So we do not want                  

to, if we start counting also the constants and their bit sizes then we will be basically                 

doing what people do in Boolean circuits or in Turing machines, okay. That will              

become more, I mean harder to analyze algebraically. 

 

So for now we want to see what we can do algebraically. So the conjectures we make                 

here in a way is stronger, because we are saying that when we say that a circuit does                  

not exist, we actually are saying that a circuit using whatever constants you like, does               

not exist. So these nonexistence theorems are stronger in this model. Any questions? 

 

So yeah, so you saw a polynomial that is not in VP just because of its, so the proof is                    

formal proof is via degree argument. Final degree is so large that it can never be                

computed by VP.  
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Can you think of an interesting polynomial that is in VP, a very complicated              

polynomial in the definition, but still it is in VP? That is a rookie question. So an                 

interesting polynomial family. So we will skip the word family but always it will be               

an infinite family. So an interesting polynomial in VP is the Determinant, right. So              

what is determinant? 

 

Determinant is this polynomial, we will call it Det​n​. It takes an matrix let us             n × n     

say . So (i,j)​th entry of this matrix is . So there are variables in this matrix and X         xij     n2       

it is just this polynomial is a sum of some very special monomials right, which go                

over all the permutations on n. Look at the sign of the permutation and the monomial                

is just this, okay. 

 

et (X ) ign(π) D n n ×n =  ∑
 

π∈Sym(n)
s ∏

n

i=1
xiπ(i)  

 

So the monomial is just of degree n. You are picking those n variables where the                

second coordinate is a permutation of the first coordinate of 1 to n, okay. So if you                 

think of the matrix then you are essentially picking variables in the matrix which do               

not have the same row or the same column, right. So how many such choices are                

there? , right.!n  

 



It is a such monomials. So . As n grows the number of monomials in this   !n     ! n ≈ nn/2           

sum grows rapidly. It is more than . There are a lot of monomials and we are       2n           

summing them but with signs, right. So the constants are only plus minus one or zero,                

okay. So that is the definition of determinant as a polynomial and right. So this, you                

already know. 

 

So given a point, given a specialized matrix, we can compute determinant in? So how               

fast can you compute a determinant given a matrix? At least in deterministic             

polynomial time. You can actually compute it even in smaller than n cube time, sub               

cubic. So there are sub cubic algorithms or nearly quadratic algorithms. But that is not               

very important. 

 

What I want to point out here is that it is in polynomial time. So , despite the               oly(n)p    

definition using many monomials. So which is surprising. So clearly the algorithm  nn            

polynomial time algorithm does something very special. It just, it is not using the              

definition directly. It is using the properties that the definition entails right. So what is               

this algorithm? Right. So this is using Gaussian elimination. 

 

So use Gaussian elimination. So over a field you can use Gaussian elimination to              

bring the matrix X basically in triangular form and then once you have a triangular               

matrix you know that the determinant is just a product of the diagonal entries. That is                

the algorithm. Yeah, so this is basically an incremental algorithm. Or if you want, it is                

a recursive algorithm, but you always, usually you implement it in an iterative way. 

 

But does that mean determinant is in VP? So this shows that determinant evaluation              

can be done in P. Right? But does this also mean that the determinant polynomial is in                 

VP? The Infinite family? So Gaussian elimination actually requires division. And we            

cannot do division at least, by definition we cannot do it. We can only add or                

multiply, right. 

 



So this does not mean; this does not give the determinant polynomial in VP. So here                

again I am abusing it, I should actually use the set notation because when I say                

determinant, I do not mean a single determinant, I mean all the determinants for every               

n. So this infinite family we do not deduce that it is in VP because we have used                  

division above, because the algorithm uses division. So is that the only problem? 

 

Well, the algorithm will use not just division but it will also use if-then-else, right? It                

will check whether an entry is zero or nonzero. It will also permute the rows and                

columns. So all that how will you do by addition multiplication gates? So almost              

anything that this algorithm is doing, we cannot directly implement in arithmetic            

circuits, right? So division, if-then-else, permutation etc. 

 

It may be confusing at first sight but later on it will become natural. The reason why                 

this algorithm does not mean; does not give you an arithmetic circuit is because to run                

this algorithm you need a specific matrix. You need a matrix of constants. You cannot               

run this algorithm on just a symbolic matrix. You cannot assume  formal variables.n2  

 

So if you think about the C program that will implement this, that C program will                

actually assume that you are given field constants and then it will do arithmetic in that                

field of constants. Not with formal variables. With formal variables yeah it will             

become too expensive just because of repeated division and blow ups. Yes, if you              

just, right; if you just do it trivially then you will be incurring a cost of .!n  

 

There will be no advantage, right. But if you try to translate this algorithm step by                

step, then the problems are, well how do you translate division? How do you translate               

if-then-else? How do you translate the permutation? So it is not, these things are not               

really clear. So the translation is not very smooth between algorithms and circuits. So              

yeah, this will actually need a full scale investigation whether determinant is in VP or               

not. Right, this will be an additional property of determinant if true. It is not trivial. So                 

this is; so value computation versus function computation. That is basically the            

difference. Okay, so when you look at a C program that is computing determinant that               



is actually computing the value of a determinant at a fixed point while an arithmetic               

circuit computes the whole function at once. So it gives you the function as a circuit. 

 

And then you can do whatever values you want, whatever points you want to fix. So                

this is much stronger than just the Gaussian elimination algorithm that we are asking              

for. Okay, so yeah, some of you already know that determinant or you can guess the                

determinant will be in VP, but we have not shown it yet. Okay, so we will prove that                  

in the future. Let us move on to the next complexity class. 

“Professor - student conversation starts” 

[Student] ​The circuit size is itself polynomial, the evaluation will also be            

polynomial? 

[Professor] ​Well, just by the definition of VP that is not implied because what if you                

are using crazy constants. Such large constants that so if you are using a constant that                

has let us say bits. So that arithmetic circuit you may not be able to just code as a    2n                 

C program, because you will need that much of space to store bits. But that is not            2n       

how life works. So whenever we will show some problem in VP we will always get                

good constants and a good uniform circuit okay. So it will also be a practical               

algorithm.  

“Professor - student conversation ends” 

 

So we have defined VP and we have shown what is there and what is not there. So let                   

us now move to NP. 
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What is the analog of NP? And in general what is the analog of non-determinism,               

right? What is the answer? ​“Professor - student conversation starts”  

[Student] Projection, kind of. Because in NDTM each path is like a deterministic.             

Right. ​“Professor - student conversation ends”. So instead of projection I will            

simply say sum, right. So non-determinism is basically, I mean in the Boolean world              

it was whether there exists a certificate. 

 

So over all certificates you want only one. So you are kind of taking OR over                

exponentially many things. So here in the arithmetic or algebraic world you will just              

take a sum. Sso do a large sum. Okay that is vaguely speaking that will be the analog,                  

arithmetic analog of NP. So how is this implemented? So again Valiant gave this              

definition. So a polynomial family, so again  is n variate for all n.f n  

 

This is in VNP if you can write , let us say it has variables x, if you can write it as a        f n                

large sum over some other polynomial g. 

( x ) ( x , w )f n =  ∑
 

w ∈{0,1}ˉ t(n)
gn+t ˉ  ˉ  

So the sum is over the whole space. This is an exponentially large space; is some              tn    

polynomial in n. So is not much bigger than n. So g is g has how many variables?    tn                

g has n of this x and  of the . So g has n + t variables.tn  w  



And we want VP and . Well so arity of g   g }  { n n ∈   (n) poly(n)t =    (n) poly(n)t =       

will be poly n. That is again obvious. Right. So this, well, so why this definition is                 

natural may not be obvious. You have to look at it for a while. 

 

But, to compare it with NP, let us give these things names. So let us call to be a                 w̄     

witness or certificate okay. So is a witness string and let us call g the verifier. So      w̄              

we will see that a polynomial family is in VNP if can be written as a sum over       f n      f n         

witnesses with the verifier evaluated okay. 

 

So if you replace this sigma by OR then you can recover the definition of NP. Right in                  

the Boolean case, because g you can think of g as the verifier algorithm, which will be                 

polynomial time, polynomial time algorithm and it is just going over all the possible              

certificates and for one of them. ​“Professor - student conversation starts” If we just              

look at, at some certificate it is Boolean one. 

 

Yeah, so or of this will be happening in the Boolean world. G will be an efficient                 

verifier. ​“Professor - student conversation ends”. So syntactically that is the           

motivation for this definition. Every summand? The summand is a polynomial, which            

is in VNP. It is a complicated thing. It can be any, it can be determinant for example. 

 

“Professor - student conversation starts”  

[Student] Sir, polynomial is self-reducible right. It is kind of because you can write it               

as a projection of, no but has to be in detail ​“Professor - student conversation               

ends”. So yeah if we replace sigma by OR in the Boolean world, we get the                

definition of NP. So that is the motivation for this definition. 

 

Yeah more than this there is not much to say that why we are using this. So we are                   

using this solely because of this definition of NP and so now how do VP and VNP                 

compare? What can you say immediately? Right, so is it true that VP is contained in                

VNP? Why is that? So if you have a VP family g n right then you can just in the                    

definition just ignore the witness string. 



 

So then and if VP, it is also in VNP. So this is, this is trivial  gf n =  n    gn ∈              

containment. Right? But are there candidates of, are there candidate polynomials that            

you can see immediately in VNP? But you do not believe them in VP? Actually,               

currently you do not even know whether determinant is in VP. But that later on, you                

will see it is in VP. So determinant is out. 

 

So what is the next candidate? So a standard problem in VNP is what is called                

permanent. Permanent is very close in definition to determinant, but very different in             

reality. So permanent polynomial, again evaluates on an matrix and it is again         n × n       

a sum over those monomials as you saw before but what is the change? That there is                 

no sign. 

 

er (X ) p n n ×n =  ∑
 

π∈Sym(n)
∏
n

i=1
xi,π(i)  

 

So it is again a sum over all the elements of the permutation group on n elements. So                  

again you have monomials but there is no sign. So all these monomials appear   !n             

equally, right. ​“Professor - student conversation starts” So why would Gaussian           

elimination fail on this?  We do not have the property. What is for the negative. 

 

If you take those three properties which allow you to do Gaussian elimination you get               

the determinant that kind of is unique. Right. ​“Professor - student conversation            

ends”. Yeah that is a stronger thing, but this just this one simple step of adding two                 

rows or adding two columns that does not change determinant, right? But permanent             

you do not know or in general it will change. It will mess up the permanent okay. 

 

So you cannot just add two rows and this was critical in Gaussian elimination. This is                

how the rows were reduced and you ultimately got row echelon or column echelon              

forms or ultimately a triangular matrix. So because that property is gone well, which              



is actually the equivalent to saying that if two rows are the same, then determinant               

vanishes, but permanent does not, okay. 

 

So since that property is not there we do not know, we cannot use Gaussian               

elimination and then other than Gaussian elimination we have no other algorithms, no             

ideas. Okay. So this problem is still in all the practical ways, this is the hardest                

problem. Okay, this is even harder than SAT in a way. Okay, so now is this problem                 

in VNP? 

 

So we do not expect it to be in VP because practically it is a hard problem. If it is in                     

VP then I mean something unnatural would happen. We do not expect it to be in VP,                 

but is it in VNP? So let us show that. 
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That permanent is in VNP. Right, so look at the definition again. So this is one                

monomial. Now is this monomial function computable in VP? It is obviously            

computable in VP right because this is a single multiplication gate. So this is in VP,                

but so you can use this potentially as a verifier the definition in the definition you had                 

a g, so you can use this as a verifier. 

 

But the problem is that as you look at different summands for different permutations              

from the permutation, your verifier has to compute this, this monomial, right which is              



not clear how to do. So if you want to put this inside this g, the g that you had in the                      

definition and g is a polynomial, g has to be a VP polynomial. So can you think of a g                    

that can compute this? Can you connect these two? 

 

So that is not clear because in the definition of VNP is just a string. So you will       w              

have to encode your permutation as a string, but then from that string just using     π            

polynomial arithmetic, it is not clear how to get to this .xi,π(i)   

[Student] We can look g as some combination of extra monomials, if they cancel out               

somehow. 

[Professor]​ Right. So well so first of all the first observation is that it is not direct. 

 

It does not follow from the definition and second is well, so maybe we should look at                 

a more complicated g instead of just this monomial we have to think of something               

more complicated and that is what we will do in the proof, okay. So let us use the                  

following. So let g be the function, or be the polynomial that takes this n by n matrix,                  

symbolic matrix and a vector and computes a product. 

 

( X ,  ) (2b )  gn +n2 b̄ =  x(∏
n

i=1
 ∑
n

j=1
bj i,j)∏

n

i=1
i − 1   

So the product will actually be of linear polynomials, okay. So how many variables              

does g have? g has variables, right? This is the arity of the polynomial g. It is     n2 + n              

clearly a polynomial. Well if you look at these linear polynomials it is basically doing               

a inner product of vector b with the i​th row, right? So you for a given b what it is doing                     

it is just taking in a product with every row. So there are n inner products and it is                   

taking a product of those inner products. 

 

So that is what g is. Well I will also need for technical reasons this constant product.                 

So this is the sign part. This is just giving you so is either -1 or +1, right. So            b2 i − 1         

this is just a sign of, of what? Depending on how many ones there are in the , the                 b̄   

weight of  this will be a sign.b̄  

 



So this sign times this is the, the other is the main part inner products, right. And now,                  

so this is our g and on top of this we will do a big sum on all the b bars. So what do                        

you expect to get out of this, when you do the big sum? So the claim is that when you                    

do a big sum, right, on all the vectors you will exactly get the permanent.  

(X ,  ) per (X)∑
 

b ∈{0,1}ˉ n
g b̄ =  n  

Okay, so this is also called Ryser’s formula. So what is the proof of this? 

 

Or do you already consider this obvious? Yeah, so the proof will be actually looking               

at these monomial products. So every, so this red part here, this part is producing               

these monomials in . And what you can show is that the monomials that are where I    x̄               

mean which are not coming from a permutation, those monomials cancel out because             

of the sign. 

 

Well, so there might have been some linear algebra or some physics motivation. I do               

not know the exact details. But one rule of thumb here is if you look at this, this                  

formula that the claim identity in the claim if you go modulo 2, right so modulo 2                 

determinant and permanent are the same, right. This is the only place where you can               

compute permanent because permanent is the same as determinant and the           

determinant even compute. 

 

So modulo 2 there are the no signs and then the sum, big sum is giving you                 

determinant and maybe that is another reason to look at the sum. It is able to cancel                 

out all these monomials which are which do not correspond to permutations, okay. So              

once you do that then you might try to generalize it to other characteristics. It will be                 

Det​n​. Modulo 2 permanent n is the same as Det​n​. 

 

Okay, so let us quickly go through this proof. So we can rewrite left hand side as right                  

so since b bar is a 01 vector, let us go in terms of subsets okay. So let us write it as                      

subsets of 1 to n and the product is over , j in t and i is in 1 to n and with a sign. So          xi,j                 

the sign you can see is -1  to the n minus the size of the subset.  



( ) − )∑
 

T  ⊆[n]
∏
n

i=1
∑
 

j ∈T
xi,j · ( 1 n−|T |  

Is this believable? Right, this is just translating inner product of a 01 vector with a                

row, with the ith row. 

 

So when you do the inner product, you are just selecting some elements of the row                

and adding them. So that is this main part . And then you are going over all         ∑
 

j ∈T
xi,j         

the rows. So that is the product, i equal to 1 to n and with a sign and then you are                     

taking the big sum over all the subsets right. So now in this, now since this is                 

straddling over all the n rows, so it is basically multiplying the variables that appear in                

distinct rows. Right? 

 

So it is supported on monomials like . So from the first row you pick       x1,i1
· · · xn,in         i1

th  

variable, second row variable dot dot nth row variable and then you   i2
th       inth      

multiply them, right. That is, these are the kinds of monomials this product will              

produce. So here say this repeats r times. So the point is we want to analyze the     i1              

situation when this monomial does not correspond to a permutation which means that             

 to  they are not distinct.i1 in  

 

There is some overlap happening. So suppose is repeating two or more times.       i1        

Right, so when repeats, we want to show that this particular monomial will get   i1             

ultimately cancelled in the big sum. Okay, so why is that? So in how many t’s will                 

this monomial be produced? Well , right. So since it is repeating r times the     2r−1    i1         

number of t’s which can contribute, which will contribute this is exactly , the            2r−1   

number of subsets. 

 

So the monomial, let us call it m. So the monomial m associates or can be associated                 

to many subsets T, okay. So well so whenever this monomial is contributed 2r−1              

there is a sign attached. So let us look at the sum of the signs. So with sign what is                    

that? Well, it is basically over all the subsets of r -     (− )  (− )∑
 

S ⊆[r−1]
1 n − |S| =  ∑

 

S ⊆[r−1]
1 |S|         



1 minus one to the n minus size of s or even simpler size of s. Is this clear? So why                     

are you getting r - 1? 

 

Well so r – 1 appears because you have to pick at least something, right. ​“Professor -                 

student conversation starts” So I mean you have to, when you pick those you have               

to pick r time. So 1, i . So the g is varying, so you have to pick r times.  i1                  i1    

“Professor - student conversation ends”. No so let us say appears and then in          x1,i1
    

the remaining there are r -1 one ’s, okay.i1  

 

“Professor - student conversation starts” But then at least three n minus I mean              

once you if you from like a 1 to n you want to create a subset that has r s. You have                   i1    

to, you have r s and then you have the rest free right. It is like n – r,    i1                2n−r  

“Professor - student conversation ends”. Well so this monomial in how many ways             

is it being produced? This is what you are looking at. 

 

So the number of ways it is being produced is and the sign is exactly this. And          2r−1         

what is the sum of this? What is this sum? Well, this is it is basically just the product                   

of 1 – 1s. So this is 0. Okay. Basically you can factorize this sum as a product of 1 –                     

1s. Right, so monomials so the thing we assumed is that r is at least 2, okay. 

 

If r is 1 then this argument will not give you anything. So the only monomials that                 

survive are those where nothing is repeating. So to is actually distinct. So those        i1   in       

so at least the support is correct as we wanted. Next thing you can see is so what                  

about those other monomials? So this finishes our proof. Well not really finishes, but              

you have to make another observation. 

 

So for permutations product of survives in LHS. And it survives with the sign     xi,π(i)          

here why is it +1? Well it is +1 because all these all the 's are 1, right. So it survives              bi        

in LHS with the sign 1, okay. So the sum of these monomials is all that remains and                  

that by definition is called permanent. Okay, so that finishes the proof, right. So this is                

called Ryser’s formula. 



 

It is important because if you try to compute permanent at some matrix, how much               

time will you will it take matrix. More than n factorial, right. So something like       n × n           

n to the n. On the other hand if you use Ryser’s formula, so in Ryser’s formula you                  

are just multiplying simple things just linear combinations is what you are            

multiplying. And how many times? .2n  

 

So this will give you a algorithm, right? So in practical applications where you      2n          

care for this difference you would use this because this is . The other thing the           2n      

original thing is , okay which for some for large n could be significant, significant   nn             

difference. So this is the best algorithm known to compute permanent in generality. 

 

Okay, so for general permanent, this is the best algorithm and it is quite non-trivial               

because in the definition you had far more monomials. So somehow that has been              

compressed. Now the question that remains, which is open is can you do better? Well,               

anyways, so we are digressing now. So this our goal was to prove that permanent is in                 

VNP. So that also we have achieved because this g is now your verifier. 

 

So once you have proved this claim, you should see g as the verifier circuit. Well,                

why is it in VP because it is just a simple product. You just compute these inner                 

products by addition gates and then you multiply by a single multiplication gate. So it               

is clearly just a depth two arithmetic circuit. So that is your verifier and b bar is your                  

witness. So this identity also shows that permanent is in VNP, okay. 

 

We just need to compute this big sum over VP, right. And it also gives you an                 

algorithm and you can see that here the constants are very small. So this always               

happens when we give a VP circuit or this kind of a VNP expression the constants are                 

never too large okay. So although in the definition we are allowing arbitrary             

constants, in actual proofs they are always small. 

 



So you can also use this as an algorithm. Okay, so I think I can stop. Any questions.                  

So next time we will look at determinants more carefully. Okay once VP, VNP are               

defined and we have this candidate polynomial we will prove more. Okay. 

 


