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So last time we started multilinear models, right. 
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So this is, this will obviously compute a multilinear polynomial, but the condition is              

that every gate in the circuit should be computing a multilinear polynomial. So             

sometimes this is also called a syntactically multilinear circuit. So to study these             

models, the measure that we will look at is partition the variables x into y disjoint                

union z and then draw a matrix where you have rows y monomials columns z               

monomials and entry will be the coefficient; corresponding coefficient in the           

polynomial. 

 

So this by the way does not need any circuit model. So this is really a definition for                  

multilinear polynomials or even general polynomials. You can take any polynomial f            

and you can draw this matrix and then you look at the rank. So that rank is the                  

measure - .Γ  
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So this is the measure, with respect to a partition of f. So we have what we have     Γ              

shown is for two polynomials. Measure is upper bounded by the sum of the measures,               

respective measures. So that is sub additivity. We have shown that for two multilinear              

polynomials on disjoint variables there is exact multiplicative property. So the           

measure of the product is, product of the respective measures. 

 

“Professor - student conversation starts” We have used multilinearity of the           

polynomial but we have not used multilinearity of the gate or something. No, these              

are not circuits. These are just polynomials. Till now the circuit has not been used.               

“Professor - student conversation ends”. So there is sub additivity, there is exact             

multiplicative property. And we showed that if we multiply by; if you multiply f by a                

polynomial that is either y-free or z-free. Then the measure does not change. 

 

Yeah, this also did not need multilinearity. This is just, it is true for any polynomials.                

And finally, we showed that the measure never exceeds where are the         2min(|y|,|z|)
  y|, z|| |    

number of rows and number of columns respectively. So rows and columns, minimum             

of that gives you the upper bound on the rank. And this is tight as we saw in this                   

example. 

 

In this product, you can see that the number of y monomials is and so is the z             2n       

monomials and the rank is also that. So this is a depth - 2 example. That this is                  ΣΠ  



example. If you think in terms of circuits, then the circuit here is just product of sum                 

and sum is just doing, adding two things two variables. Right, so what we now want                

to do is we want to show that although there is this example with measure as high            ΣΠ       

as , maximum possible.2n  

 

Still there is a way to, I mean there is a way to reduce this, okay. There is a trick by                     

which we will use this measure on pi sigma circuits and show that the measure is                

small in some sense. So once we have shown this then we will the opposite of this                 

will be that we take determinant and show that the similar trick gives a high measure,                

okay. So what is the trick? So the trick is that you do not partition in this way. 

 

So the partition that we chose was actually the worst possible. So it gave you the                

maximum possible value of the measure. What if you change the partition? So do not               

follow these y​i​, z​i​’s partitions, but let us say randomly pick a partition. So if you do                 

that, then you will see that the measure actually falls. That is what made this useful                

for proving lower bounds. 
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So Ran Raz showed that the measure for circuits can be significantly reduced if        ΣΠ        

we consider a random partition of the variable set. Remember that this matrix that we               

draw depends on how we partition the variables. There are exponentially many ways             

to partition the variables. So even if there is a single partition that reduces the measure                



it can be good. In fact, we will show that most of the partitions will be of this type.                   

The measure will be quite small, it will not be sub exponentially small, but it will be                 

much smaller than .2n  

 

So that is the theorem - Upper Bound. So consider polynomial or circuit. So it is          ΣΠ        

a product of linear polynomials, d many, on n variables and importantly they should              

have disjoint support, so that f is multilinear. Let f be an n-variate multilinear              

polynomial. For a random partition, and let us say these are equal parts, we have with                

high probability. The measure will be smaller than .2n/2 − n/32  

 

So the exponent falls just by a constant multiple. It is not a big fall, right. But since it                   

is happening in the exponent, I mean overall it can be useful because you just have to                 

now show that for some other polynomial like determinant, the measure is greater             

than this. So now you have some gap that you can utilize. With you had no gap.             2n/2      

So now, this creates a gap that we can try to exploit later. 

 

Once we have shown for product for also we have this similar upper bound      ΣΠ   ΠΣΣ         

because of sub additivity right. So this upper bound is really for multilinear depth - 3                

circuits, right. This measure is that powerful. It can actually analyze properties of             

multilinear depth - 3. So the way we will prove this is it will not be an easy proof. 

 

We will essentially show that if you randomly pick y, this part y then many of the l​i​’s                  

will either be y-free or z-free. If l​1 is y-free, then we know that it will not contribute                  

anything to the rank to the measure. So if we can show that a large number of l​i​’s drop                   

out of the race, that will give you the difference of . So that can be shown           /32n       

probabilistically. 

 

So let us assume first of all that each l​i has greater than equal to two variables in the                   

support. If not, then they anyways do not play a role. So we do not consider univariate                 

l​i​’s. So l​i​’s are at least bivariate or more. That we can assume. So now this implies that                  



the measure for f is bounded by, this anyways I mean, this was always true. This is                 

just because f is a product of d many. The rank of l​1​ is at most 2. 

 

It is a linear polynomial. So rank of each l​i is at most 2. So just product is . This                  2d   

does not need any assumption. This is true anyways. In fact I should say just we have                 

this always since and then multiplicativity. So what this means is if d is too small, if it                  

is smaller than this then anyways we are done. So we are done if, in    /2 n/32n −              

particular d is less than ./3n  

 

Because then you get an upper bound of , which is even smaller than what you        2n/3         

wanted to show. So we will assume that d is bigger than or at least . And            /3n     /3n   

each l​i has at least two variables and l​i​’s have disjoint variables. So this gives you a                 

constraint system. So since l​i​’s are disjoint support and many. So we get by an               

averaging argument that number of l​i​’s with support size 2 or 3. 

 

So basically it is smaller than 4. The number of l​i​’s with support size less than 4 is at                   

least d by 4. Why is that? Else you will get that greater than . So if it is less than              d/43        

3d/4, then more than many l​i​’s have support size 4 or more. Which would imply    d/43             

that the number of variables is greater than which is 3d. But we have        d/43 · 4        

assumed that these at least ./3n  

 

So that is a contradiction. The lightning strikes. So since l​i​’s are many and they are                

disjoint they cannot each have many variables. So in other words, many of them many               

of the l​i​’s have minimum support possible which is 2. So we get for 2 and 3, we get                   

this quantitative estimate of . So we call these l​i​’s small. And we will only care    /4d             

about them in our probabilistic argument. 

 

We know that these are present. So we can assume that the initial have support             /4d    

less than 4. They only have 2 or 3 variables. 

(Refer Slide Time: 16:26) 



 

l​i we have, so what is the probability that when you randomly choose y of size, so y                  

has variables. So that fixes z also. Then this particular l​i is either both all the three /2n                  

variables or all the two variables are in y, they fall in y or they fall in z. So whatever is                     

the probability it is a constant.  

 

So variable x​1 will fall in y or z with equal probability. ​“Professor - student               

conversation starts” Right, but then they would not be independent. Variable x​2 will             

be independent because we have the additional constraint that y has size . So it is            /2n     

not like, it is not the case that for each variable, you are independently picking               

whether it falls in y or z. Because they are only in the expected size of x,y and z is                    

./2n  

 

Maybe there are additional constraints. So you are undergoing independently another,           

amongst all subsets of size you pick one at random. It should be slightly     /2n           

different. No, but I want to write here, so all the three variables falling in y. So that                  

will just be which is 3? Right, so I have to write that expression then. So maybe I   /2n                 

give the exact expression. ​“Professor - student conversation ends”. 

  

So it will be what? For falling in y all three is; here I will the number of ways of                    

choosing y is and if 3 fall in y then is it? But I do not like this. ​“Professor   ( )n
n/2         n − 3           

- student conversation starts” That expression is better, .. No this seems to        /( )( )3
n/2

3
n      



be the only expression. x​1​, x​2​, x​3 you have put in y and then what remains is just                  

./2n − 3  

 

That expression works. Because the total number of triples are y contains. No, but this               

argument has to come from this. So what is this? But this argument is right. The total                 

number of triples that y contain. No, but I do not want to erase this. No, I do not want                    

to erase this now. Forget this. This is the simplest expression. ​“Professor - student              

conversation ends”. 

 

So this denominator is and then we get numerator    (n )(n )n − 1 − 2       

. So this we can see is, is it more than ? Should be. Slightly/2(n/2 )(n/2 )n − 1 − 2            /81     

smaller than half. Let me then not try to not venture into its exact calculation. Just say                 

that this is very close to . So n is asymptotically growing. So as n tends to infinity      /41             

this is just ../41  

 

I mean, I we just wanted some constant probability. That we have got. And so this                

means well, I will kind of need this for the subsequent calculation. So let me        /41         

continue with this . So this gives me the expectation. So when you pick y   /41             

randomly then l​i is either completely in y or completely in z. That probability comes               

out to be around . And so the number of i’s amongst these small l​i​’s./41  

 

So we have shown that the probability of l​i being y-free or z-free for a fixed l​i and                  

small is at least . That gives us the expectation of , which is the probability    /41        /41      

times , which is the number of small l​i​’s that we have seen before, this number. So /4d                 

the expectation of these small l​i​’s that ultimately will not contribute to the rank or the                

measure. This is, the number of these i’s is expected to be d by 16. 

 

So these l i’s stop contributing to gamma y, z f, right. So essentially out of d, are                 /161   

not contributing. So that gives us the gap in the rank. So this implies that               

. For now I have to use a fancier notation. Then this is at most,(f ) Γ ≤ 2d−d/16             2n/2−n/16     



so . This is because we have assumed every l​i has at least two variables and /2d ≤ n                

they are disjoint variables. 

 

And . So that gives us, so that will give us so, let us write down the properties  /3d ≥ n                  

of d.  

/3  /2n ≤ d ≤ n  

So what do we get? We get . Yeah, that is what we should get. So we       (f )Γ ≤ 2n/2−n/48           

have to change the theorem statement accordingly. But then we get, we get this gap of                

./48n  

 

And right so we can write a corollary here that for multilinear depth - 3 circuit f with s                   

product gates. So let us just use , where the top fanin is s. So for this with high       ΠΣΣ             

probability the measure is at most s times this. Right. So multilinear depth - 3 and                

n-variate which has s many gates then you get by sub additivity .s · 2n/2−n/48  

 

So that is the upper bound and now if you pick your s suitably, which will be                 

determinant and show that the measure is large. So that will give you s bigger than                

some bound which we will show it to be exponential. So let us now go to the other                  

part, which is why does determinant have a large measure? 

(Refer Slide Time: 27:08) 

 



So determinant and permanent of matrix have high . So det​n has      n × n     Γ     n2  

variables. Any ideas how to show that the measure is large. Again if you are not                

careful with the partition right so variables yeah if you are not careful then the      n2           

measure can be really small. What do you mean symmetric? The partition is not              

symmetric. You are picking a subset of the variables. 

 

So I mean, you can come up with small examples where when you pick different               

partitions, the measure will change wildly. So we will not go into those nitty gritties.               

We will just continue with our probabilistic argument that probabilistically if you            

choose y, then the measure will be high. I do not think it will be an optimal result. So                   

what we will actually do is we will set a large number of the variables to zero. 

 

And in the remaining variables, we will call the remaining variables x and that is               

where we will do the partitioning. So we will reduce the variables by fixing them               

mainly to zero. So let me not say where we are fixing. So we will reduce the number                  

of variables to a random x, to a random variable set x which will be much smaller. So                  

now this x will be of size 2m, which is around .√n  

 

We will basically set a large number of variables to be zero and we will be left with                  

around variables out of . It is a big fall, and then use a random partition. So this √n     n2               

does not look optimal. Because we have killed many variables. Ideally we should             

have reduced to somewhat n many variables. But for the proof to work we will do we                 

will go to .√n  

 

It probably is related to the birthday paradox. So the probabilistic calculations will             

need . So that is the definition of x m, and y z. That is how we will do it and then √n                      

we will show that the measure with respect to this of evaluated determinant or      Γ          

restricted determinant is high. Determinant we started with variables, we reduced        n2     

them to n to m or 2m. 

 



And if the determinant had a depth - 3 circuit, then they are also the variables will                 

reduce to 2m. So in the previous lemma, we are getting something like a gap of                /48m  

or whatever . And that is what we are up against. So we have to show that the  /24n                 

determinant has measure just more than that to get a lower bound on s. So we will                 

prove this theorem, which will be enough. So this is due to Raz from same paper. 

 

So with probability at least 50% a random restriction of the variables variables         σ     n2   

to x, x of size around yields a large measure not determinant, but this restricted      2 /5√n          

by . So this measure will be exactly . So remember that there are 2m variables. Σ        2m         

So this is like in the exponent you are getting half of that. And so when you compare                  

this with the previous theorem, the difference which you got that is basically giving              

you a lower bound on s. 

 

So it is exponential but since m is , you get that s is at least . So it is not, it        √n         2√n       

does not seem optimal. But still it is kind of exponential, it is an exponential lower                

bound to compute determinant k. Is the statement clear and the connection   n × n           

between the lower bound and the upper bound theorems. 

 

So the way we will prove this is yeah the thing which we always do with determinant                 

is to give a lower bound on the rank we somehow identify triangular or diagonal               

structures. And using that we show a rank lower bound. So that will be done               

essentially by . will fix the variables in such a way that you see a diagonal  σ  σ               

structure, diagonal block structure, which is easy to rank bound. 

 

So the map will fix variables to f values in a certain way. The remaining   σ    mn2 − 2            

variables, we are calling them x. So let us compute the probability that these              

remaining variables, they do not share a row or a column. So if you have variables v​1                 

and v​2​ in x, then we want v​1​ v​2​ to be in different rows and in different columns. 

 



This is again the intuition is to get somewhat diagonal block structure. So let us               

compute the probability that these variables x do not share a row or column. So this is                 

kind of a two dimensional version of birthday paradox.  
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So is random evaluation of that many variables and you want x, the remaining σ              

variables unfixed variables x, they have different rows and columns. So this            

probability exactly is well first so okay we are looking at this process as if picking the                 

variables of x. Not fixing variables, but just picking these free variables. So the first               

free variable is free. You have  favorable choices.n2  

 

But once you have picked it then you have picked a row and a column. So they are                  

gone. So now you are left with possibilities and this then and so on.       n )( − 1 2      n )( − 2 2     

And you want to pick no so in terms of m. So . So that will give you the            n m )( − 2 + 1 2        

2m​th variable. All possibilities are . So this is the same expression you get in     m2           

birthday paradox squared right. 

 

And so you have this intuition that m should be on the lesser side of . If it is on the               √n       

larger side of , then this will be a problem. So that is why we needed m to be   √n                 

. So this is greater than well, this will need a slight calculation/5√m        1( − ∑
2n−1

i=1

i
n)

2

        



which I am skipping. But the intuition is that 1 and then you have a negative term,                 

then you have a positive term and so on. 

 

Yeah, so do that as an exercise. That is the question mark. And so the larger                

contribution comes from the first two terms and the remaining will only increase it.              

So it is the that you have to estimate then, which is for which you know the    ∑
 

 

i
n               

lower bound. So that gives you an upper bound for which you know upper bound. So                

this will give you a lower bound .1 − n
2m(2m−1)  

 

So for the square we take the two inside and then is what we have estimated. And           ∑
 

 
i        

this comes out to be more than . So this is a huge probability. With a very       /251 − 4           

large probability x will have different rows and columns, variables in x. So what is the                

advantage of that? So for, so these are the free variables and the remaining are all                

fixed to constants. So how does your determinant matrix look like? 

 

So for such a the determinant n shares its properties with the following structure.    σ            

So this is only . So this will need some explanation, but I will not go into all    m m2 × 2               

the details. So you started with the matrix. You fixed a lot of variables leaving        n × n          

only 2m variables free. 

 

So assuming that these variables, remaining variables or free variables are organized            

in a diagonal fashion right this is the matrix is the matrix which will give        m m2 × 2         

you which is the kind of the symbolic part. Everything else in the original              n × n  

matrix is fixed to constant. And they are fixed in a random way. So that is because I                  

just want to say that it shares its properties. It is not exactly this. 

 

So the zeros are also random values in general, for general . But look at this matrix.           σ       

So this matrix has determinant? So its determinant is equal to . So if you           (y z )∏
m

i=1
i i − 1     

get to this matrix, then its determinant is something which we understand and that is               



. So let us call it D​m​. So this is really the variable part and for this random(y z )∏
m

i=1
i i − 1                   

sigma what you will get is this multiplied by some constant and plus another constant. 

 

So when you will look at the measure you are really computing the measure of this                

polynomial, this 2m variant polynomial. So to work out the details, you have to              

assume that was fixing the other variables to random points. That will be needed.  σ              

So in general you will have I mean, thing that I have skipped is this. This is a slightly;                   

this is a bigger matrix where here you have constants and here also you have               

constants. 

 

And these are also constants and not zero. But when you will start differentiating this               

the measure that you will get that measure will be lower bounded by the measure of                

D​m​. That is the thing to realize. From now on we will just discuss . This is              (D )Γ m    

and we have identified a sub matrix and the determinant of that and let us look n × n                  

at the measure. 

 

So this really is the reason this picture is the reason why we are doing all this fixing of                   

variables and keeping 2m variables free in the end. So any question about the overall               

idea? The details I leave. This picture should be worth a thousand words. This may be                

the exercise that with high probability for a random , .σ (σ(det )) (D )ΓY ,Z n = ΓY ,Z m  

 

And what is this high probability. So this how much is the error here? I think if you                  

assume the field to be larger than n in size sorry, no for this for this event that                  

is . The probability of this happening is given by the(σ(det))Γ  (D )Γ m           

Schwartz–Zippel lemma. So basically n over the field size is the error. So if you               

assume field size to be bigger than n, 2n then you get probability half or probability                

one-third. 

 

So we can assume here that error probability is less than equal to one-third by a                

Schwartz–Zippel kind of argument. Yeah, so whatever I have said this will happen by              

random fixing with probability at least two-third. So at least two-third probability we             



can reduce the study of to . And then is something that we     (σ(det))Γ   (D )Γ m    (D )Γ m      

can calculate. 

 

So what is ? It is like y​i + z​i calculation that we did. So it is . Remember   (D )Γ m               2m   

that y is the set of y​i​'s and z is the set of z​i​’s. So for this polynomial the partition is the                      

worst possible. It maximizes the measure. So you get . So that is the lower bound         2m        

for determinant, measure lower bound for the determinant. The last thing is we have              

to be sure about the probability that the error probability is not too large. 
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So let us check that.  

.r /2  P σ Γ (σ(det ) (D )[ Y ,Z n ≥ ΓY ,Z m = 2m] > 1 − 4
25 − 3

1 > 1  

To be sure I have put an inequality here. I only care about this. Do not want them to                   

be exactly equal. So probability that the measure of determinant after restriction is at              

least . So that picture holds. So that depends on two things.2m  

 

One is that choice of x variables should be in this diagonal fashion and second is                

fixing of the variables to constant should be good. If you do an unfortunate fixing for                

example, you set everything to zero, right then the rank will just fall, D​m will not help.                 

So those two errors we have to check. So choice of x carefully is error and              /254    

fixing of the remaining variables is error one-third, right. So this is still greater than               

half. 



 

So that is the probability of the lower bound, okay. So there are at least half of the                  

choices of y, give you a large measure. Where by large we mean for variables we              n2    

are just getting lower bound. So this is not really optimal. I would have preferred   2√n              

. But the probabilistic argument goes via birthday paradox and so you get slightly2n               

worse. 

 

You have to study probabilistically right; this the upper bound was a probabilistic             

upper bound. So then lower bound also should be probabilistic. Otherwise, how will             

you match the two? And if you try to do this probabilistically, then you get into the                 

birthday paradox. So I am not sure whether this is optimal. Is there an example         2√n        

somewhere? I do not think this is resolved. 

 

Right, so now we are set for the, you can connect the two. So we deduce an                 

exponential lower bound against multilinear depth - 3. So yeah, so we did only for               

determinants, but you can see that this argument does not really care about the              

difference. So permanent also will, once you have this diagonal block structure            

permanent will behave as well. It will give you just y​i​z​i + 1. So that will not change                  

anything. 

 

So this is really trivially the same, directly the same proof. So determinant or              

permanent require size multilinear depth – 3. So this is what you will get, but I  2Ω( )√n               

do not think we know any such constructions. So we do not have a multilinear depth -                 

3 representation for determinant available. Neither for determinant nor for permanent,           

right over any characteristic field. 

 

So for permanent what you know is multilinear depth – 3 of size . And for             2m    

determinant I cannot even think below , which is . So we do not really have      !n    nn        

such constructions. This most probably is not optimal. But still it is a strong lower               

bound. Now suppose determinant has such a representation, suppose determinant is           

 for multilinear circuit.( x )C ΠΣΣs  



 

So then apply as before as described before a random variable reduction sigma both              

sides, right. So you will get . So this will bring down the variables      (det ) (C( x ))σ n = σ         

from to around , 2m. So this becomes 2m-variate now. And then you apply the n2    √n             

measure, both sides. So on one hand you will see that of determinant in the           Γ     

probabilistic space of choices, this is with high probability .2m  

 

On the other hand . So note that is still . So multilinear    (σ(C( x )))Γ     (C( x ))σ    ΠΣΣs    

depth - 3, this is quite important that multilinear depth - 3 structure has not changed                

by because is either fixing the variables or it is keeping them free so this will not σ  σ                

change. I mean, this can only reduce the product fanin. It cannot increase it and it will                 

not change the  structure.ΠΣΣ  

 

So we can apply the upper bound which with high probability comes out to be               

, since the number of variables is 2m. Note that this is quite precarious,s · 22m/2 − 2m/48               

so the cancels both sides. So whatever is the minus part that is the lower bound on  2m                 

s. So this gives you , which is just s ≥ 2m/24 2Ω( )√n  

 

Did I make a mistake in the representation claim? Yeah, that was wrong. So for               

determinant actually, by depth - 3 reduction, you will get a depth - 3 circuit of size n                  

to the . But it will not be multilinear. Yeah it is not multilinear but if you look at  √n                  

the size bound, then this is close. What? No depth – 3, to come to depth – 3 you     2√n                

have to use a duality trick. 

 

Those things are inherently non multilinear. Otherwise you will keep on hanging at             

depth – 4. So determinant it is complexity is . So this we know over good       ΠΣΣ    nO( )√n        

fields assuming the characteristic large or zero. We know that there is a             ΠΣΣ  

representation but it is not multilinear. So that is open but still it is interesting that the                 

quantitative bound you are getting is , which is kind of matching with n to the .2√n √n  

 



But qualitative difference is that this multilinear restriction is. Sorry? N to the log n?               

What is log n? In the exponent the gap is of log n. Yeah, so it is . Yeah, so if                 O( )√n˜     

you can compare with , then it is the same. But we do not have a multilinear   Õ   Ω              

representation. That seems very unlikely coming to depth - 3 with multilinear. 

 

So anyways, this is the status. So next thing we should do next time, which is                

tomorrow. So tomorrow what we will do is we will generalize this to higher depths. 
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To constant depth multilinear circuits, okay. So the point of doing first was to           ΠΣΣ     

give you a baby introduction to the proof technique, and then the real thing will be                

going to constant depth and then finally going to formulas, multilinear formula. So we              

will show that determinant if you try to express it as a constant depth multilinear               

circuit or like a multilinear formula, then it has to be super polynomially large. 

 

Some more combinatorics will be required for that, basically in the upper bound part.              

The lower bound part is the same. In the upper bound part we have to show that even                  

these constant depth multilinear model or multilinear formula models even they are            

weak in this measure sense. 

 


