
Arithmetic Circuit Complexity 
Prof. Nitin Saxena 

Department of Computer Science and Engineering 
Indian Institute of Technology-Kanpur 

 
Lecture-12 

Width-2ABP Chasm 
 

(Refer Slide Time: 00:17) 

 

Ok, so last time we proved this theorem by Ben-Or Cleve which we actually showed one type                 

which reduced formulas to be width-2 ABP, right. We have shown this direction that if you are                 

given a formula of sizes. Then you can whatever that polynomial suppose the formula computes               

polynomial f, then f can as well be written as a matrix products, where is the matrices are only                   

where entries are very simple, they are just variables or constants and the number of 3 × 3                 

matrices only poly s. 

(Refer Slide Time: 01:12) 



 

So this we did by using some matrix identities matrix identities and guiding principle was          3 × 3        

this interpretation via registers that there are 3 registers and they store polynomials and we work                

with them. So we apply some simple transformation on one of the registers and then maybe add                 

it to the first register. So those kinds of transformations ultimately give you the full polynomial f                 

in the first register. 

(Refer Slide Time: 01:55) 

 

So the other part is much easier, so the converse is, you want to show that width 3 ABP can be                     

converted into a formula, how will you do that? So this is just divide in conquer, so you have let                    



us say s matrices, in fact for this argument even 3 would not be important. So you have   3 × 3                 

some constant dimensional matrices, s of them, you want to multiply them. So you actually               

multiply the first half, the second half and then merge right. 

 

So it is just like merge sort but it is not as fast as merge sort, so it is basically this divide and                       

conquer argument. So instead of doing the multiplication one by one from left to right you just                 

do it for each of the halves and then the two results you multiply. So let the matrix product be                    

be a matrix product. So suppose we have the left product which isAA1 2 · · ·As     3 × 3             

 and the right product which is .AA1 2 · · ·As/2 As/2+1 · · ·As  

 

So you have these two halves already recursively solved and you have L R, each requiring                

formula size it is so recursively . So we are defining this size function to multiply s      (s/2)T             3 × 3  

matrices it the formula sizes, let us say , so for you have . But now what you        (s)T    /2s    (s/2)T      

have to be careful about is, how will you multiply L and R right, so . But how will                LA =  · R     

you do this multiplication because you have these 9 things here and 9 things here for each of                  

them so there are 18 polynomials. 

 

And for each of these polynomials, you have a matrix product, in fact for the L matrix you have                   

a matrix product. So which also gives you these 9 polynomials and analogues for R. So if you do                   

this multiplication in the naive way, so say you multiply the whole row with the first column.                 

But then that row you have to also multiply with the second column and then also the third                  

column. 

 

So in particular this first entry this entry, right this you have to use 3 times. So you have                   

computed that entry but to get an A you actually have to use a fan out of 3 right that is not                      

allowed. So how do you save this, I mean how do you make a fan out 1 exactly you have to                     

make copies of this, so that will be a slight blow up. So to avoid or directly speaking to get fan                     

out 1 to keep fan out 1 we make 3 copies of L respectively R. 

 



So although L we have computed as a single matrix product, we will make copies of it. We will                   

have the first copy of L, second copy of L, third copy of L. And whenever I want, let us say this                      

first entry of L, I will use it first time from the first copy, second time from the second copy and                     

third time from the third copy. So that the fan out everywhere is 1, it is not being reused. So                    

essentially every time it is being the computation is being redone. 

 

We are not using computation, we are actually repeating it, but it is only 3 times, so you have 6                    

of these, so this claims there following recurrence right. So is at most, so how many times          (s)T         

, 6 times and how much of size are you investing right now, assuming that L and R are(s/2)T                    

given in the copies have been made. So how much extra gates are you adding in your formula to                   

compute these row column inner products, constant it is just a function of 3 right. 

 

So what is the solution of this recurrence, so it is worse than merge sort, it is not it is?. So                  s log s     

this is which is certainly sub cubic, but that is not very important. So we have  (s )O log 6              (s)T    

gotten to be , sized formula for A. So the formula you get is just by divide and   oly(s)p  (s)T                

conquer and do it with some care, so that the fan out remains 1. So the circuit was direct but                    

formula needs this trick of copying. 

 

And where are you using the fact that it is constant width, so the copying is the only place where                    

you need constant width, that is the important point. So because of copying we get formula size,                 

in general you will get, when you are using matrices, then this will give you .          w × w        )O(slog w2  

So up to constant width this is fine but when the width is non constant then it gives you a quasi                     

polynomial sized formula right. 

 

So this at the same time we have shown that the ABP model introduces or has a quasi poly                   

formula okay that is one thing we have shown the other thing we have shown is that the model                   

formula and constant width. So formula whatever a formula can compute constant width ABP              

also can compute. It is exactly these that are exactly equivalent up to poly size blow up. 

 



So this is an interesting fact because this ABP model and formula model where defined in a very                  

different way. In fact they had no relationship whatsoever, in ABP inherently you are reusing               

computation a lot and in every level actually you the fan out is equal to width and then the length                    

can be arbitrary. So the reuse is happening in an arbitrary way, but still you can get a formula out                    

of this. And what is the relationship between formulas and circuits, so formula seems to be well                 

it is in fact no well. 

 

If you look at low degree polynomials, then it is not clear whether formulas and circuits are                 

different. But intuitively they will seem much weaker than circuits, low degree circuits but we do                

not know whether they are separate. So just circuits is strictly more than formula because well                

the degree can go to exponential. But if you restrict to low degree circuits like VP, then we do                   

not have a good understanding of VP compared with VS, how smaller or whether they are equal. 

 

And one type of circuits are actually subsumed by formulas which are constant depth circuits. So                

constant depth circuits are actually subsumed by formulas. Why is that? So just look at depth 3                 

for example, right, depth 3 is a powerful module depth 3 circuits. But it is also a formula because                   

nowhere do you need fan out more than 1, I mean these product gates and you can just make                   

copies of everything. 

 

So you do not really need fan out more than 1. So depth 3 circuit is naturally a formula, I mean                     

also when you write it down on paper, you are actually writing it in a single line. So nowhere are                    

you using previous things multiple times previous computation. So it is, so in the same spirit                

constant depth is also you can implement it as a formula. But whether you can implement                

formulas in constant depth, that is obviously too much to ask for. 

 

We only know that formulas can be reduced to log depth, we do not know sub log. But it should                    

be easy to rule that out just by degree, just look at the degree no but the fan out then, the fan in                       

can be more than 2. So a product gate can increase degree by taking lots of inputs, so this is also                     

an open question. So these are all open, their strictness is an open question right. 



 

So now we have studied several modules and correspondingly we have several complexity             

classes and we have some highly non trivial relationships okay. It needs a lot of algebraic and                 

algorithmic ideas. So that was width 3, then we will move to width 2. 

(Refer Slide Time: 15:53) 

 

What is width 2 good for? So that is also a chasm okay just like depth 3 circuits width 3 circuits                     

width 2 is also a chasm. So although the width has been minimized still the module remains quite                  

potent okay, you can do powerful things in this module. So we will now show that even                 

triangular matrices give a strong ABP. By the way, where did that reduction use width 3,  2 × 2                 

why was  matrices important, can you do it by just  matrices. 3 × 3  2 × 2  

 

So sum actually will work, sum is only using this much of the matrix, this part of the matrix. So                    

sum works just like this but the product is more complicated . In fact, there is a result by                   

Allender and Wang that this model is incomplete. So even existentially in this model you cannot                

compute certain polynomials, no matter how long it gives ABP. So there is a result by Allender                 

and Wang, width 2 is an incomplete model. 

 

So for example, so can you think of a polynomial that is a good candidate, impossible to                 

compute here. So since addition can be done, so somewhere you have to also multiply things to                 



make it difficult to make it hard. So the degree actually so it will be quadratic, there is a                   

quadratic polynomial that this cannot compute. So like is what you can try first but        x xx1 2 + x3 4         

this probably has a width 2 ABP. 

 

So keep going, go up to 16 variables and then you get Allender Wang’s proof. So these it is a 16                     

variate and 8 monomials, they are all disjoint monomials and width 2 model is just cannot                

compute this it is impossible. I mean, guessing a counter example is not so hard. But you have to                   

prove that this does not have a width 2 ABP with unlimited resources, unlimited length. 

 

I do not think it is that hard actually, you just have to go this model go modulo , modulo                  x1   x2  

and so on, because in a width 2 ABP your matrices have just linear polynomials right. So                 

actually you can go model those linear polynomials, so that your matrix becomes            2 × 2    

triangular and then show that this polynomial on the left hand side this polynomial              

under the modulus you get some contradiction, because this is alsox xf = x1 2 + · · · + x15 16             

absolutely irreducible right. 

 

This polynomial is clearly irreducible and try to use some modulus operations to get that               

contradiction. So this I will not do, I will see how difficult it is and then it can become an                    

assignment. I do not think it is that difficult. So let me get back to well so width 2 by itself is in I                        

mean generally speaking it is incomplete, but that does not mean that it cannot compute hard                

polynomials. 

 

So maybe it can still compute some hard polynomials and that is what we will show now. There                  

is a result by Saha, Saptharishi and me which shows that in a way you can convert depth 3                   

circuits to width 2 ABP, let f be a polynomial n variate. So let us also add that here n + 1 is         ΠΣΣ                

the bottom fan, k is the top fan in and d is the formal degree of your circuit right, so  Σ                 ΠΣΣ     

then there is a size not much, much bigger than this. 

 



So just size width 2 ABP that computes, well can we say that it computes f? We cannot   dk )( 2                 

say that because is a complete model. And just the previous counter example you cannot I   ΠΣΣ               

mean it has a polynomial circuit but it cannot have a width 2 ABP. So what we will say is,    ΠΣΣ                  

some multiple of f is computable, is computable, where L is not too difficult. So where L is       f · L              

just a product of non zero linear polynomials and even these linear polynomials will not be                

magical. 

 

They will just be these linear polynomials that you see in the representation. The            ΠΣΣ    ΠΣΣ  

representation is basically a sum of products of linear polynomials. So the set of these linear                

polynomials you take a suitable product of them, that is L. So is something that has a very             f · L        

small width 2 ABP. Although f may not have a width 2 ABP, in fact these matrices will                 2 × 2    

also be upper triangular. 

 

So it will be a very simple representation, the simplest possible that you can think of, you cannot                  

go below width 2. Because below width 2 you are just multiplying linear polynomials even in                

width 2 we are only using triangular matrices. There are 4 places we are only using 3 which                  

means that this is the minimum kind of the minimum matrix product, where you have non                

commutativity. If you just use the diagonal entries, then it would be a commutative product. 

 

So this is the first place, where you actually have a non commutative product that is enough to                  

compute kind of depth 3. So let us prove this, so let where is a product of linear            f = ∑
k

i=1
P i   P i       

polynomials d many, so I mean unsurprisingly this will be an inductive proof. And surprisingly it                

will also be a divide and conquer proof, so we will somehow use divide and conquer here to be                   

precise, we will use it on these additions. 

 

There are k product gates, so we will compute the first as width 2 and the second as           /2k        /2k   

width 2 and combine . So base cases, , how do I express as a product of matrices.        P i      P i       2 × 2   

So for I will do this kind of the obvious thing that your . So in the top left entry  P i             li1 · · · lid−1        



you have computed almost the product . But in the end I will add something different which      P i             

is okay. 

 

So what is this product, so I get some where . So I have located         `, P , ,P i  i 0 1   ` /lP i = P i id      P i  

here, I mean we could have taken also the same way as we have taken and we would       lid         lid−1     

have gotten the product , but that representation will not help you in doing addition. Because    P i             

remember you have to add with using matrix products, so for that you have to do     P 1   P 2            

something more complicated. 

 

So let us see, how will this representation help, we now need to express as a matrix              P 1 + P 2     

product. So what do you do, so well we will not really express , but we will get some             P 1 + P 2       

multiple of as a product of matrices, assuming that we have a representation for  P 1 + P 2      2 × 2          

product of  and representation for product of or multiple of .P 1 P 2  

(Refer Slide Time: 28:56) 

 

So let us go to the next suppose we have iterated matrix multiplication expression for multiples                

of 2 polynomials g and h. These are some arbitrary polynomials and the representation we have                

is suppose this okay. So the multiple is by here and by here okay, so instead of         L2     M 2       



computing g and h exactly we have completed them up to these multiples, and              , , ,L1 L3 M 1 M 3  

are garbage polynomials we do not care about them. 

 

So now using these 2 matrices can you get by doing matrix product, can you get multiple of g +                    

h, so try getting g + h as follows right. So what are the things that you can do well, you can only                       

multiply matrices, so you have these 2 matrices. Let us write them and maybe you can introduce                 

a third matrix in the middle which is yet to be fixed. So let us say this . So basically you have                      

 and you have , a useful combination of this would be .gL2 hM 2 L g M hM 2 2 + L2 2  

 

Because from that will come out , so that is exactly what you want to do, so for that you   ML2 2                   

have to scale these matrices simultaneously the scaling should happen So for that I have               

introduced A and B, which is yet to be fixed. So let us look at this product, what is this product,                     

so let me directly write, it is just gets multiplied with scaling the 0 remains, well because        ML1 1          

you are only multiplying kind of upper triangular 3 matrices. 

 

So you will get an upper triangular product in get scaled, so this is the garbage part, the         ML3 3           

interesting part is what you get here. So that will give you an idea for A and B, so what should                     

you pick A and B as making these equal, if you make them equal then it is a multiple of g + h. 

 

[student] ​This middle matrix will have elements only in the diagonal, like before even              

proceeding what was the intuition behind multiplying into the matrix with just diagonal entries. 

[Professor] B is scaling scaled by B. And simultaneously A is scaling and you want    gL2          hM 2     

things to be as simple as possible. So we actually take a scalar matrix, it is a scalar. So this                    

suggests that take and and that will give you this. So we are only   MA = L2 3   MB = L1 2           

interested in top right part but we also have to see whether for this middle matrix, we have a                   

matrix product right. 

 

So why do we have that for this A B matrix, do you have this width 2 representation. So, answer                    

will be very simple, so the answer for this will be very simple actually, this will all be just               MLi i      



products of linear polynomials. So this middle scalar matrix is actually just naturally it factors.               

You do not need to design a width 2 ABP it is a scalar matrix and it will completely factor into                     

matrices with which will also be scalar of course, and they will have linear entries. 

 

So essentially it finishes the proof. We just have to calculate the blow ups that the blow ups are                   

under control that will happen by divide in conquer. So now at this point you should observe that                  

to compute g + h. So adding 2 things will be kind of doubling the size because you are                   

multiplying so many things . So in fact, kind of 4 times there is a blow up of up to    , , ,L1 L2 M 2 M 3                 

4 times and so you cannot afford this blow up more than log many times. 

 

But which is fine because you can add things always, this 2 at a time. So when you have to                   P 1   

you add recursively the first things the next things and then add these 2. So you willP k       /2k     /2k           

again get a recurrence with the halving, so all the things will be fine. So the size is of IMM.                    

Sorry, no the exact expression we will see what is your general question? No, no these recursive                 

steps will only be log k many times. 

 

First  next  and then merge,/2k /2k   

[student] ​So that is the case , for adding, but if you have that      T (s/2) (1)2 + O  (1)O        T (s/2)2   

means 2 to the log many times, that is like s but you want log s right?  

[Professor] ​No, no the T is the size, if your size if your size is coming out to be poly then you                      

are fine.  

By a multiple of 4. So max increases is 4 times in one step of this. So we apply this recursively                     

to log k many times. So in log k additions you can get to k additions it will not log k ∑
k

i=1
P i                      

additions. So in log k steps you can get you can add k things or log k is the depth of your                      

recursion tree right. 

 

We get an IMM of length? So initially we had multiplied d things to compute . So that is               P 1     

length d already consumed and after that you are doing it a blow up every time of 4 maybe up to                     



. So this gives you that is the length, so you have many matriceslog k + 1      (dk )O 2         (dk )O 2     2 × 2

. Each matrix has linear entries and it is upper triangular. 

 

This IMM looks like , where L is a product of some number many linear    `, ``, f ,L L L 0            

polynomials that is an invariant. So how many linear polynomials do you multiply in the end in                 

L, I want to say , , so maybe is too less many. Because we have     kd  kd 2     kd     (dk )O 2    ML2 2    

blown up, I mean  we have blown up 4 times kind of, so fine.L2  

 

So is certainly an upper bound, so that many linear polynomials we have multiplied that kd 2                

forms this co-factor L and L times f is what you can now compute as a width 2 ABP. And what                     

are these linear polynomials. So that you can see in the recursive in the induction step, or                 

recursion step, so these are the I mean if you look at P 1 + P 2 computation. So P 1 has these so P                         

what is P i prime right. 

 

So has these linear factors which appear in the and are these linear factors which `P i          `P i   P i       

appear in the representation. So these are the things which you are multiplying them in a   ΠΣΣ               

systematic way, so that gives you the multiple right. So that is, so this is the that is the full proof,                     

yes any questions? It is not log k additions it is a recursive algorithm with log k recursion depth,                   

not addition, it is done recursively and if you look at the recursion tree, the depth is log k. 

 

So what if a tree has depth l then it has leaves and these leaves are to . So it is if you           2l       P 1   P k       

have then we will add and and then we will add these 2 things. , , ,P 1 P 2 P 3 P 4      ,P 1 P 2   ,P 3 P 4          

And as you can see this can be done beautifully in 2 these are the levels, I am calling it 2 times                      

but it is not obviously 2 additions. The additions are more, so you are adding               , PP 1 + P 2  3 + P 4  

and those 2 things actually  k - 1, any other question. 

 

Since I do not want to start a completely different concept or I mean which will be actually lower                   

bound. So the next topic will be lower bounds, lower bound results this is structural results we                 

have done, I think almost, whatever there is to do. So the next thing will be the next family of                    



results are either lower bound proofs. So you take a model and you show that a natural                 

polynomial will require a very large size, those kinds of theorems. 

 

The other interesting results in recent years are these circuit related algorithms. So some of the                

things which we may cover here are PIT algorithms. So identity testing algorithms that will               

probably see towards the end of the course. But I do not want to start it now, so I will just                     

continue with a recent result of width 2. But the model will be slightly different then what we                  

have been doing till now in the course okay, so it will be an approximative computation. 

(Refer Slide Time: 44:41) 

 

So approximative Computation and as an example case we will prove a result about width 2 ABP                 

in the approximative sense and that is written by drawing a bar. So in fact, I can also do the same                     

for formulas, so formula bar, so this bar will actually denote some kind of a closure of your                  

model. But the closure is, I mean at least the analytic intuition is quite complex. So instead of                  

giving that intuition, I will just give the explicit definition. 

 

So what is meant by approximative, as the word suggests you do not want to compute the                 

polynomial exactly. You want some kind of an approximation of it, so what should be the correct                 

notion of approximation? What do you suggest is the limit of what? 

 



But if you are working in let us say finite field with size 2 elements, what is the meaning of                    

limit? So there is definitely this analytic intuition, which is being referred to but since I want to                  

not depend on the field, I want the notion to be independent of the field. In fact even the ring                    

base ring, so let me just give that definition directly, so in approximative models of computation,                

what we want is to compute polynomials. 

 

So compute will now be in quotes because we will actually not compute polynomial f, we will                 

compute something else related to f. So we will quote and quote compute f by computing                

something else which will be in one more variable. So we just add another variable which is                 ε  

and if you have taken basic math courses, has a special character right. It always is something        ε           

very close to 0, so that we want to keep that allegiance with .ε  

 

So here also somehow denotes something very, very small. But formally speaking it is just a    ε              

new variable and what is the meaning of this bracket. So this is the function field, so it is                   

basically a ratio of 2 polynomials in . So you have now or you have , so you       ε      /ε1     ε )/(ε )( + 1 + 2    

have those expressions okay rational functions are there in and then the relationship with the         ε        

variables x variables is the same as before. 

 

Basically constants, these are the new constants, are now more complicated. And how should g               

behave, how will g know f. So g should be equal to , what is So we are actually            (ε)f + O    (ε)?O      

abusing this notation to an element in it is a polynomial in and all the variables.   (ε)O           ε     

Moreover, it should be a multiple of epsilon, so in algebraic terms is just an element in the            (ε)O        

ideal generated by .ε  

 

So basically g = f modulo order of the ideal epsilon, but we will continue with this notation                  

because it kind of means it carries itself the intuition that there are these lower(ε)g = f + O                 

order terms. So g = f, but there are also these lower order terms which are kind of bounded by                    

epsilon. So if you make too small I mean analytically or real analytically if you make it very     ε               

small like 0 then g is f. 



 

So this is the meaning of approximative computation or approximative model. So you can take               

any model let us say you take a circuit you have written down a circuit that is computing g right                    

which is equal to f up to higher or whatever lower order terms in epsilon. So why does not that                    

mean that you also have a circuit for f, why do not you just set epsilon to 0 and get a circuit for f                        

free of epsilon? 

 

So the only obstruction is or only obstacle is that your circuit will be using constants. And               /ε1    

then those things will become undefined, the circuit will become undefined. So that is the only                

catch here, everything else is a triviality. So this definition allows us to use constants like in                /ε1   

the model, yet we can set in the end. So in the intermediate computation, we are using a      ε = 0              

./ε1  

 

So you cannot set into 0 because those things will become undefined, but in the end you get    ε                

and there you can set a into 0 and recover f. But that does not give you an actual(ε)f + O        ε               

circuit, because intermediate things are all undefined.  

[Student] ​So this is the polynomial for which unless you use  the circuit size will blow up to/ε1   

[Professor] ​Right. So whatever interesting question you will ask, we will call it an open               

question. 

[Student] There are some I think elementary symmetric polynomials or something that are good              

candidates right?  

[Professor] So is circuit closure equal to circuit? Or formula closure equal to formula? With the                

appropriate meaning of equality. We mean that if you have an approximative circuit then there is                

also a small circuit exact circuit. 

 

If you have an approximative formula then there is also an exact formula of size up to a poly                   

blow up right. So are these things different or are they equal, so these are all open questions, you                   

had some solution to solve this okay. Elementary symmetric polynomials have a depth 3 circuit               

very simple. No, no it is there is a small  circuit by interpolation.ΠΣΣ  



 

You just look at the auxiliary polynomial interpolate, so you have to , so it is not clear. I mean                    

there is another ABP is also there that everything is open whether it is equal to a ABP           ABP         

although these general questions are open, but this approximative, this concept of approximation             

has been used to design newer and newer matrix multiplication algorithms. So the fast matrix               

multiplication algorithms in the last 3 decades are all based on this approximative idea. 

 

So algorithmically they have been used, but it does not tell you anything about these fundamental                

questions. Because I mean matrix multiplication is theoretically a trivial problem, it is solvable in               

cubic time. So to improve it to quadratic, approximative ideas have been used, but it does not tell                  

you anything about the fundamental nature of approximation. So can circuit bar compute             

something that is much, much harder than circuits that we have no intuition. 

 

So this is a different dimension to algebraic computation and in this there is a recent theorem, so                  

Bringmann, Ikenmeyer and Zuiddam around 2 years old so it says that formulas. So the               

complexity class right, so formula approximative formulas can be written as width 2 ABP.  V F              

So any polynomial for which you have an approximative formula you also have an              

approximative width 2 ABP with one mild assumption that you want the characteristic of the               

field to be not 2 okay. 

 

So characteristic odd are 0 is fine over GF(2) this question is still open okay, but I have no idea                    

why it should I mean why should it not be true? It should be true for all fields irrespective of the                     

characteristic. But the proof which they have given fails for characteristic 2 which is the               

statement clear, how will you even start to prove such a thing. So you have to convert the                  

formula to well so by induction ultimately it will boil down to converting a product gate into                 

width 2,  matrix multiplication. 2 × 2  

 

So that seems to be the only thing we have to express using approximation. So I mean what is the                    

benefit of approximation? It is that you can divide by epsilon. So we will actually use matrices,                 



where entries are dividing by . But that is our definition this is the     varepsilon∖        (ε)f + O    

definition. 

 

So somebody gives you. So here is the basic question somebody gives you can you get             (ε)f + O     

from this . Though this is the only thing which will be solve. No, no it is a width 2  (ε)f 2 + O                   

ABP. So somebody gives you a matrix product computing from that can you get a         (ε)f + O        

matrix product that gives you . So this is the only thing which will be solved here and it     (ε)f 2 + O               

will imply the theorem okay. 

 

We will just show squaring, as you should know multiplication reduces to squaring right, why is                

that. No, no ​I am talking about polynomials there is no matrix. So if you 2 polynomials f and g                    

then the product can be written as . So unless you are   gf      g − f /2) − ) f /2 )f = ( 2 + ( g2 + ( + g 2      

unfortunate and characteristic is 2, this identity is holds. So to product actually reduces to sum of                 

squares and sum nobody here doubts that sum can be expressed as width 2 ABP. So assuming                 

that sum is easy, all we have to do is learn how to square right, so that is all where we will use                       

./ε1  

(Refer Slide Time: 1:00:57) 

 

So let us for proof sketch, so use the matrix Q(f). So when we think of the polynomial f the                    

matrix version will be this matrix, it is not really a triangular matrix, but still it has only 3 entries                    



okay this there is 1 0 present. So this is the matrix that will store f which is a polynomial in all                      

the variables. So , so if we have width 2 I mean IMM so iterated matrix   [ε, ]F xn          2 × 2    2 × 2    

multiplication expression for you have it for  and .(ε)f + O (ε)g + O  

 

In fact it may be even arbitrary precision , it just means that the remaining part is divisible by        εk            

and not just epsilon. So some precision if you have these 2 expressions then we have IMMεk         εk            

to add. So we can add f and g up to the same precision. This is easy to guess you will kind of just                        

multiply the 2 expressions. Sorry I should call it Q(f), now we are into matrices not polynomials. 

 

So I mean Q(f) is a matrix + some matrix which is a multiple of , every entry there is a               εk       

multiple of . So you have a representation IMM for Q(f) matrix with this error and for Q(g)  εk                 

matrix with this error you have these 2 products. So if you multiply these 2 products then you                  

expect to get f + g up to that precision right. So that is all with some calculation you have to                     

show this, so there is a Q(0) sitting in between okay. 

 

So this is just check that in the right hand side you look at Q(f) which is f, 1,1,0, Q(0) is 0,1,1,0,                      

Q(g) plus the error term and what is the part of these 3 matrices it is f + g, 1,1,0. So that is the                        

proof of this identity, so the 2 representations you essentially multiply with something sticking in               

between this 0,1,1,0 matrix. And that will give you the sum, so that was not very unexpected,                 

what will be more shocking is , how do you get .f 2 (f )Q 2  

 

So what trickier identity shows that if we have IMM for Q(f) with precision , I mean the error              ε3      

terms are, they are divisible by . If we have an IMM with this much precision for f, then we      ε               

have an IMM for in fact . So the precision reduces the error term is now    (f )Q 2    (− ) (ε)Q f 2 + O           

nearly a multiple of and not and it is a product of lots of matrices, where a lot of division is    ε    ε3                 

happening, ./ε1  

 

So that expression I will just pull out of thin air right, so you have to bear with me. Sso you want                      

to compute out of this expression . So we will be multiplying these 2, but we  f 1      (f ) (ε )Q 2 + O 3           



have to use 3 other matrices which are some entries they will multiply by and some entries              ε     

will scale down by . So the scaling up and scaling down with the appropriate in the    /ε1              

appropriate places will lead to  with error .(− )Q f 2 ε  

 

So this can again be checked you just have to multiply the first matrix with Q f, then the third                    

matrix with Q f and then the fifth matrix. So just look at this matrix product, this will give you Q                     

of - f square and the remaining things are error terms, you can check there it is they are all                    

multiple of epsilon not epsilon square and not epsilon cube okay. So this precision kind of                

reduces, so you have to start with a higher precision expression of f. 

 

And by this, I mean that you have to do it because you are going to divide by . So if you started                  ε      

with the only precision when you divide by you get a whole lot of garbage which you    ε      ε           

cannot deal with. So, you have to start with and then it will kind of get divided by because         ε3           ε2   

you have these two . So although there is this width 2, IMM expression, this does not    /ε1         2 × 2       

exist for .ε = 0  

 

So that is and you know that provably does not exist because there is a polynomial which cannot                  

be written as a width 2 ABP which is a simple formula, but it cannot be expressed as width 2                    

ABP . On the other hand, it has an expression approximatively, this expression. So do induction                

on this and so induction will now convert any formula to width 2 ABP approximatively, so that                 

is it. 

 

So what you now know is to reiterate , though formula is not , so if        formula = width  ABP− 2         

this makes you happy, here is an example where approximative computation is more powerful.              

Although it does not make me happy because it is a very weak model, this width 2 ABP is a very                     

weak model it was actually to begin with it was incomplete, so approximative on top of this just                  

makes it complete. 

 



But it does not really tell you whether at the level of circuits or formulas, there are exponential                  

gaps. So can you do much more with approximative computation than you could do with normal                

algebraic computation. 


