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So we finished the proof of theorem that gave us a depth 4 reduction. 
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So any degree d polynomial with size s circuit with no restrictions. The only              

restriction is that it is a homogenous circuit. Then with that you can bring it down to                 

depth 4 where the two multiplication fanins are the product fanins are very special. So               

the top multiplication fanin is and the bottom multiplication fanin is only t for any     /td            

t. With size only .sO(t+d/t)  

 

So if you take then multiplication fanin could give you a depth 4 circuit of    t = √d     √d          

size instead of trivial . We will not discuss that or maybe we will discuss it s√d     sd             

after the mid sem, some lower bound theorems that will suggest that this reduction is               

kind of optimal. 

 

So in depth 4 you cannot improve, although , but you cannot really improve it.        s√d        

The circuit size may only be s but when you squash it down to depth 4 then the price                   

you have to pay will usually be .s√d   



[student] We know we can’t reduce it, or we know if we reduce it then something                

bad will happen?  

[Professor]​ No, so we will give a, no I think it will be an unconditional result. 

 

So I think we will show that for iterated matrix multiplication for which there is               

obviously a small arithmetic circuit that can do the multiplication. We will show a              

lower bound of for homogeneous representation. So if you want to do   s√d    ΠΣΠΣ         

iterated matrix multiplication say you want to compute the top left entry, you are say               

multiplying matrices d many of them so the degree of the polynomial you are  n × n               

computing is d. 

 

This obviously you can write down a circuit which will be small, but when you               

squash it down to depth 4 then the depth 4 representation homogeneous with            ΠΣΠΣ   

fanin representation will be this . So this big O actually becomes a theta in√d       sΩ( )√d           

that case then for that specific problem of IMM. So I think we will do that after the                  

mid sem as a lower bound result. 
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And if you can do something better, so if you can find a polynomial for which this                 

type of a representation requires size . So instead of big omega if you can make      nω( )√d           

it little omega, then actually you have proven a super polynomial circuit lower bound              

result. So such a polynomial cannot be written in a small sized circuit representation. 



 

So that is really the key motivation for the depth reduction to this extreme extent. And                

now we will do something even better. So the question we ask is could we reduce this                 

to depth 3 in some non-trivial way and so the answer to this will be yes as weΠΣΠΣ t                    

will prove. But this will assume high characteristic or zero characteristic. 

 

What comes into the picture is just . If that does not exist then there is a problem.       /n!1            

So this was called depth 3 chasm result. And the previous theorem that we showed the                

Agarwal Vinay result was originally called depth 4 chasm. So chasm means that this              

is the depth at which point things become suddenly very general. So depth 2 for               

example, is kind of the trivial case. 

 

And if you go to depth 3 then suddenly you are able to connect with general circuits                 

with unrestricted depths. So this theorem is due to Ankit Gupta, Pritish Kamath, Niraj              

Kayal, and Ramprasad Saptharishi. It is not too old. Says that same thing with .              ΠΣΣ  

So let f be a degree d polynomial with a size s circuit over f and let us think of f as the                       

field of complex rationals. It could be any characteristic zero field. 

 

In fact, you will see in the proof that it suffices if the characteristic is more than d. So                   

maybe I also add that. Just more than the degree. Then there is a circuit of              ΠΣΣ √d    

size exactly computing f. which should be a shocking result. So you were given a s√d                

general circuit of size s and you are able to squash it and bring it down to depth 3                   

which is just .ΠΣΣ  

 

This is just a representation where you are adding a bunch of products of linear               

polynomials. So this was not really conjectured before it was shown. It never looked              

possible. Even if you are given depth 4 chasm result. Even after that this does not look                 

possible because how do you compress two multiplication gates into one that they are              

doing very different things. 

 



So the proof will be highly counterintuitive, as you will see. So one very              

counterintuitive thing will be that although f is a degree d polynomial, this             

multiplication gate in will have a huge fanin. Its fanin will be . So for these   ΠΣΣ           s√d     

products of linear polynomials they will be computing a product polynomial which            

has far more degree than the degree of f. 

 

But then these all these product gates will come together and things will cancel out               

and give you f in some non-trivial way. This by the way did not happen in depth 4. In                   

depth 4 the multiplication fanins were even smaller than d. And together they were              

giving you only things around degree d. They were not really computing something             

much bigger than degree d. But here it is different. 

 

So something non something counterintuitive will happen in the proof. So let us just              

realize what this model is. So model computes things like and is a      ΠΣΣ m      ∑
k

i=1
∏
di

j=1
lij   lij    

linear polynomial in how many variables? So this m is the fanin of . So in m             Σ     

variables. m may be much smaller than n which will be kind of the case we are in. 

 

fanin we will have actually only the bottom sigma fanin. So it might be actuallyΣ       √d           

adding just few variables taking a linear combination and k is the top fanin. So that is                 

one thing about the model. The second thing is that this model is inherently              

inhomogeneous. We get inhomogeneity, that has to be the case where both top fanin k               

and the ’s could be very high .di s√d  

 

So it is inhomogeneous and these other things which are unspecified k and ’s, these             di   

can be as high as the size. This inhomogeneity has to be there because well your                

product gate is multiplying a lot more things than you needed. So if this model was                

homogenous, then you will never be able to cut back f. So it is actually the                

inhomogeneity that is the beauty that can cancel things out. 

 



So it produces not only high degree monomials but also all these lower degree              

monomials and then the higher ones cancel and the lower ones remain to give you the                

sum as f. So let us go to one interesting consequence, which you can see as a new                  

classical result. 
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Something is telling you about the determinant which was never known and not even              

believed. So determinant has a non-trivial depth 3 representation. So by definition            

determinant is defined as a sum of product of variables right. But then these products               

are how many? For matrix it is many, so many. So that can be     n × n     !n    nn     nn    

reduced to .n√n  

 

So there is an efficient, well not really efficient but a non-trivial depth 3              

representation. So over Q or over complex whatever; determinant has a        n × n     n√n  

size circuit. So remember that determinant is defined in this form. And ΠΣΣ √n           ΠΣ    

then its size is . But if you look at it with this bottom fanin    nn        ΠΣΣ     Σ   √n  

representation then it can be done compressed much more all the way to .n√n  

 

So from the definition of determinant could you ever deduce this? Right you cannot              

even conjecture this. How do you show this now using the previous theorem? So you               

have to observe that determinant has variables but degree is only n and you      n × n   n2          

have seen in multiple ways you have seen circuits of size poly n for determinant. 



 

So you get which is . This actually sheds light on something very basic. You   s√d    n√n           

learn something new about determinant and that you have been doing every other             

week to learn new things about determinant. So what we do not know is these two                

conjectures. So first we conjecture that it cannot be done any better. 

 

So determinant requires size circuit. So this representation is   nΩ( )√n   ΠΣΣ √n     ΠΣΣ    

optimal. That is in fact, any depth 3 representation. So depth 3 representation for              

determinant is optimal. This is the optimal, this is the only way in a sense to express                 

determinant in depth 3. And the second conjecture is for permanent. 

 

So what do you want to say about permanent in depth 3 representation? So what do                

you know about deputy 3 representation of permanent? is by definition, but there        nn       

is something better you have seen. The Ryser’s formula gave you . But in that           2n     2n  

if you recall the formula, the bottom fanin was not . In the bottom actually it was          √n        

an inner product of all the variables with fully supported vector. 

 

So bottom fanin was actually n. Intuitively, it seems that if you want to reduce that to                 

square root and bottom fanin then what should be the size? Just the definition of               

permanent which is , so . At the level of depth 3 already, these are reasonable   nn   nΩ(n)            

conjectures. And they suggest that permanent and determinant are very different. In            

the exponent there should be a gap of square root or in the exponent there is some                 

squaring happening 

 

So remember that these conjectures are on . These are lower bound conjectures. So       Ω        

these are both are big open questions if you prove both these conjectures what do you                

get? It will imply that VP VNP. You do not even need to show 1, you just show 2.      =/               

If you show that permanent requires size circuit, then there cannot be      nω( )√n   ΠΣΣ  √n       

a sized circuit for permanent because if there was then the from the previous oly(n)p               

theorem you would have also obtained depth 3 representation of this special      nO( )√n        

type in fact. 



 

So just 2 here actually implies something basic conjecture we started with, Valiant’s             

hypothesis. But we are conjecturing more than that. So here actually we are             

conjecturing that permanent and determinant they are very different. VP, VNP is not             

really the same. It does not talk about permanent versus determinant. It is just              

permanent versus circuits. 

 

And we do not know whether the determinant is complete for circuits. Circuit for all               

we know maybe slightly more general than the determinant model. So determinant is             

equivalent to what? Yeah determinant is complete for ABP so which we define the              

class VBP. But VBP for all we know could be strictly smaller than VP. So this is what                  

we have now. And this gets connected, so Valiant’s hypothesis is now connected to              

the optimality of Ryser’s formula right and who knew? 

 

This was not clear before. The VP VNP question is just about whether this Ryser’s               

formula is optimal. It gives you and if you can show that that is optimal you      2n            

cannot improve that depth 3 representation. Then again by the sequence of            

connections you will prove VP different from VNP. Then we will dive into the proof               

and there will be a lot to dive in. 

 

So the proof requires a host of ideas. And initially you will not understand why we are                 

doing, what we are doing in the proof okay. So it will be, for a while it will be                   

magical. So just to guide you through that process. So one common feature is change               

of basis to express polynomials. 

 

So one common feature is to use powers basis let us say or basis of powers of                 

polynomials instead of the standard basis which is the basis of monomials to express              

polynomials over this for now characteristic 0 field F. Already this idea is very              

suspect right? To go from depth 4 to depth 3, why are we looking at powers, sum of                  

powers, right? That already I really have no answer for that. So let us just continue. 

 



So the outline is that from a general circuit we will go to depth 4 representation which                 

is circuit. This you have already seen. Then we will, from here we will go to ΠΣΠΣ                 

something you can call it depth 5. So . So wedge is like a product gate,        Σ ⋀ Σ ⋀ Σ    ⋀)(       

but all the inputs are the same. So since the inputs are the same, your multiplication is                 

just actually giving you a power of this one single input of the first input. 

 

It is a special multiplication gate and then it is depth 5 now. So we actually increase                 

the depth. We will go the opposite way, instead of reducing the depth. And from there                

we will suddenly jump for some reason to . So from 4 we go to 5 and from 5 we        ΠΣΣ             

go to 3. This we will do so okay let us specialize this to, the field is the field of                    

rationals. 

 

Because given a rational polynomial, this, will actually be complex, will have      ΠΣΣ        

complex coefficients. But that is also so you are going to have constants above your               

field. So then you have to in one step, you will have to come down to rationals,                 ΠΣΣ  

circuit over rationals. This will be the end. So we will convert our polynomial f from                

general circuit to  circuit over Q.ΠΣΣ  

 

And we have to keep analyzing the size. So this is already done, this is step 0. This is                   

step 1, step 2 and step 3. These will be the 3 new steps that we have to describe. Is the                     

outline clear? ​“Professor - student conversation starts” Is it because of the depth 5              

circuit we are getting the characteristic of 0. So step 1 requires characteristic ​0. Only               

step 1. ​“Professor - student conversation ends”. 

 

Other steps are characteristic independent. Step 0 definitely was. And step 2 and step              

3 will also be characteristic independent. Well, step 3 you have to define what does it                

even mean? So step 3 is actually the weakest step. It is not of great interest. Step 1 and                   

step 2 are the most interesting ones. But step 1 is the reason why we need                

characteristic 0, or bigger than the degree d. Step 2 is also very interesting. 

 



But fortunately, it works for any field. Does not matter. I mean, for any characteristic               

as long as the field is big, which we can always assume. Just to recall step 0 is done.                   

So what is what do you mean by done? So let f have a circuit of size . Let us call it                 s0      

of n variables. So by this depth 4 chasm or depth 4 reduction we get a sizeCo (x )n                   

.s1 = s0
O( )√d  

 

Homogenous circuit, let us call it . So you start with. is your ΠΣΠΣ       C1   C0     C1    

depth 4 with this these special product fanins both square root d and the size is to                s0   

the . Degree of f is d. So now we want to convert this into . So basically I √d               Σ ⋀ Σ     

want to replace these general multiplication gates by very special ones. So that will be               

step 1. 
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How do you change the product gates? So we show a general way to change the basis                 

that converts to wedge. So change of basis will basically be this changing  Π   Σ            

product gate to wedge. But then this as you can immediately realize is impossible, but               

it somehow will become possible if you take a sum of powers. So we are basically                

writing a product as a sum of powers. 

 

This product is your elementary symmetric function and previously you were only            

interested in expressing it as a function of sum of powers. But here, it is even                

stronger, we want it to be a sum of powers, not a function. There should be no extra                  



function. This will just be a syntactic translation. This does not need any assumptions              

on what the product is. 

 

So this is actually given by Fischer’s lemma or Fischer’s trick. So it is a simple                

statement if the characteristic of the field is bigger than r or 0, any expression g where                 

you have sum of products of polynomials in the product you are multiplying r things.               

So you have this kind of depth 4 representation where in every product gate there are                

only r inputs. Characteristic is bigger than r. 

 

This you can rewrite as a sum of powers. So we are replacing each of these products                 

by a sum of powers and then we are taking the sum. So ultimately g can be expressed                  

as a sum of powers. So what is ? It is at least k, but how much will it blow up? We        `k               

will show that it blows up by  exactly.2r  

 

Every product we will express as a sum of many r​th powers. And the degree of         2r         gi  

does not blow up. That bound remains the same. Essentially, we will just take linear               

combinations of . So whatever was there degree bound remains the same remains  sgij ′            

for . This proof you have seen in Ryser’s formula. The proof you have already seen gi                

actually. 

 

So recall Ryser’s formula proof which was basically this why is permanent in VNP,              

that proof. So is in VNP. So that there you have seen the ideas. So this   erp n               y1 · · · yr  

this monomial. Right, this is essentially permanent of a matrix. What is the matrix?              

Same rows. So this equals rows, permanent of this is just times the product of           !r      

these row entries. 

 

And in that proof you were able to express this permanent as a sum of products of                 

linear polynomials where these linear polynomials are just inner products. So you can             

just directly write it as this for all subsets. So well the only new thing is this, this part.                   

Now this is a perfect power. And why is that happening? It is an r​th power because in                  



that old formula, these linear polynomials you got in the product gate, they were the               

same inner product. 

 

So now since all the rows are the same, you get the same factor. In other words you                  

get r​th power. So this product can be written as a sum of powers with very    y1 · · · yr              

simple coefficients, but the problem is this . So should exist. Otherwise even       !r   r!)( −1      

if it vanishes, then you do not get anything about . So this should not vanish,          y1 · · · yr       

that is all. 

 

So as long as it does not vanish, we have a representation for the product for general                 

multiplication gate. And then we can apply this on each product. ​“Professor -             

student conversation starts” Are we converting the product gate to be sum of             

powers of sum, right. Sum of powers of linear polynomials. Yeah, so that should be               

like  right? Oh, in the idea you are saying.Σ ⋀ Σ  

 

Yeah, sure. That is true, yes. ​“Professor - student conversation ends”. I did not              

mean the sum of monomial powers. That would be impossible again. So apply this on               

the i​th product gate, just computing . So you will replace these by .      gi1 · · · gir       syj ′   sgij ′  

It is just a simple combination of the . So the degree is obviously bounded and        sgij ′         

what is ? So how many summands, how many powers are there?`k  

 

The number of subsets, right so that is to get a sum of powers r​th powers which        2r       2r      

implies the lemma statement. The cost is that fanin increases exponentially in r. But it               

is a simple exponential function. Can you do this thing over other characteristic? So              

will this Fischer's trick exist for other characteristic?  

 

So that is in the assignment, solve the assignment. There is a question that it is                

impossible. So this business is actually I mean this to representation, this         Π   Σ ⋀ Σ    

basis change, requires characteristic to be large. Otherwise it does not exist. It is              

provably impossible. Once we have this, we will use it on representation. So           ΠΣΠΣ    

on product gates with fanin  on circuit  we get.√d C1  



 

So yeah this has to be thought about carefully. So you have these two layers right on                 

the bottom you will apply this transformation. ​“Professor - student conversation  Π           

starts” So take the polynomial for characteristic p, take the monomial . There           x xx1 2 p   

are only 3 variables. Yeah, so let us say characteristic is 2 and you are looking at x 1,                   

x 2. Yeah. 

 

So now if I can express it as to the sure yeah that would mean that by binomial I        gci i             

can that means is like power t which is not true. This is a multinomial. Yeah,   x1 · · · xp               

so you have to solve it in the assignment. ​“Professor - student conversation ends”.              

We cannot discuss all the details here. There are some details. You have to also               

remember that this r is merely an upper bound, this when you are multiplying r things,                

many of these things may just be 1. 

 

So when you are looking at , it does not mean that you have to express it as a      xx1 2              

sum of squares. Maybe you can express it as a sum of cubes or sum of force powers                  

or some of hundred powers. ​“Professor - student conversation starts” So in the g              

equal to to the r that is like where , no not . It is an upper bound on the  gci i        `r   `r    `r         

multiplicative product fanin. ​“Professor - student conversation ends”. 

 

But many of these things, all of these things maybe one. It is merely an upper bound.                 

So when we say that the basis change is impossible, then you have to show that no                 

powers whatever be the exponent can produce your polynomial. Yeah, but do not get              

distracted here, can do it at home. So what you have to think here is what happens                 

when you replace this pi by Fischer’s trick. 

 

So this is not a single , obviously it is in the layer, bottom layer. So there are many      Π              

multiplication gates. Each of them you will replace by a and that already has          Σ ⋀ Σ      

increased the depth by one. This is now depth 5 and what happens to the top layer of                  

multiplication gates? So when you replace them by since it is already        Σ ⋀ Σ      

sandwiched between sigmas this will not increase the depth. 



 

Okay, so you get depth 5. So this gives you a circuit of size which           Σ ⋀ Σ ⋀ Σ   C2    s2   

we have to calculate. But first let us look at the fanins here. So what is the fanin of the                    

bottom wedge? So since it was , so if this is then is going to . And not      Π√d      Πr   Πr     ⋀r    

only that, this bottom is also just r. This is the change of basis we have deduced    Σ               

from Fischer’s trick. 

 

So using that you get these r , both of them and what else do you know? The top       √d             ⋀  

that is also . Others are general. So they can be very large. So these 3 fanins   ( )O √d               

you have guaranteed to be small and what happens to the size. So was of size             C1     s1  

let us say. So on top of that how much multiplicative growth are you doing? So each                 

transformation will cost you by .2√d  

 

So this is . That is it. You do it times, which is . So that does not   2O( )√d        s1     s0
O( )√d      

change. So we actually without paying any price, you have gone from this depth 4               

chasm to a very special depth 5, which is  

.⋀ Σ⋀ ΣΣ O(√d) √d √d  

Well, but what have we gained? This is no gain, right? This is just increasing the                

depth. So now what do you want to do? 
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So that will be our step 2. So step 2, now we want to do the opposite which is convert                    

to gate. So we show an efficient transformation from to over⋀   Π          ⋀ Σ   ΠΣΣ   

complex. Wait what did I define step 2 as? Step 2 here is, so what I am saying is this                    

, I will convert this into . And the other one also I will convert to . And⋀ Σ       ΠΣΣ           ΠΣΣ   

how will that help? 

 

You get back to depth 4, right? That you do not want to do. So why are we doing all                    

this? Yeah, so you will see. While we do this conversion, you will see that you will                 

actually in the end when you do these things simultaneously, you will get to depth 3                

and not back to depth 4. You will see why from the trick. So this thing worked well so                   

I christened it, duality trick in 2008. So I will show that. 

 

So let me state that. So the duality trick is the following theorem. So there exists                

degree b polynomial. Maybe I should mention why I call it a duality trick. So it is                 

duality because in some sense this product addition gate is being swapped. So             

powering is being written as a sum of products. It is in some sense I mean obviously it                  

is a transformation, but in some sense it is also a dual 

 

So quantitatively what happens is any degree b polynomial sorry any sum of variables              

let us say s variables raised to b. So b​th powers of linear form can be expressed as a                   

sum of products of univariate polynomials. So let me write that down. So there exists               

degree b polynomial  such that the following identity holds.f i  

 

The left hand side is power of a linear form and the right hand side is basically you                  

are evaluating at these different variables of the linear form, taking the product and  f i              

then taking a sum. Okay, so the sum of products of these univariates will give you the                 

power and this will be an efficient transformation. So there exist these polynomials             

.sf i′  

 

Now obviously LHS you can just expand fully, that also will give you a sum of                

monomials and obviously a monomial is of this type. It is just multiplying univariates              



in fact distinct variables. But what is the problem? The problem is that they are too                

many. So that is not an efficient transformation. So that is also a dual but it is an                  

inefficient dual. This on the other hand is an efficient dual because you are using only                

 many products.sd)( 2  

 

So that is the point of this over the trivial representation, it is a non-trivial expansion                

you can think of it like that. This transforms circuit to sum of product of         Σ ⋀ Σ        

univariates. For duality trick, well, motivation is to solve the identity testing problem             

for this model, which is the sum of powers of linear forms. So model  Σ ⋀ Σ             )∑
 

 
(li

d   

you want to test whether it is 0. 

 

So that is a natural model, but then there is as always, there is an exponential blow up                  

happening in just . So how do you test whether these things sum up to 0   l1
d              

efficiently? So for that I convert to this dual and then I can do identity testing for      l1
d             

this case using linear algebra. That I think we will see if we get time towards the end                  

of the course. I will not give my proof because that is complicated. 

 

It uses exponential functions and what not. So I will give a proof that is much clearer                 

by Amir Shpilka. So this is just by considering auxiliary polynomials and then doing              

interpolation. So the auxiliary polynomial he considers is, so remember that we are             

working with only . So we have reduced all our model difficulties into   z )( 1 + · · · + zs b           

just this case. We are only focusing on the sum of distinct variables raised to b and we                  

want to express it in an alternate yet efficient form. 

 

So can you guess what this auxiliary polynomial will be using these to . So a            z1   zs    

polynomial whose roots are to right, kind of. So let us consider this. So let us    z1   zs             

consider this auxiliary polynomial where the roots are essentially or minus of that         szi′      

and you see a coefficient that computes the sum of . So this is equal toszi′  

(t) (t ) t t  F =  ∏
s

i=1
+ zi =  s +  s−1 (∑

 

 
zi) + · · ·  

and then more complicated things. 



 

But we will not care about them. So we will bring this on the LHS so that            ts       zΣ i  

becomes the leading term, okay. So consider  

. t  (lower degree terms in t)  (F )− ts b =  (s−1)b(∑
 

 
zi)

b

+   

So now what do we want to do? We want to extract this, right. So think of it as given                    

that you want to extract the highest degree t monomial. 

 

So how do you extract, how do you extract coefficients from a polynomial? Here you               

cannot quotient because the remaining are lower degree. If you quotient then this             

leading will be killed. So better is to use interpolation. So you actually evaluate this               

LHS, this function in T for various values of t and then take a suitable linear                

combination so that all these lower degree t terms get canceled. 

 

These coefficients do not contribute. And the only thing that remains is this leading              

coefficient . So using interpolation formula with respect to the formal variable )(∑
 

 
zi

b            

t, so we want to eliminate t basically. There are many variables, but our interpretation               

is that t is our only variable. Everything else is kind of a constant. And I want to                  

extract this particular monomial in t. I want to eliminate t. 

 

So there is an interpolation formula that also I wanted to do, but I think I will skip it                   

because it is for this crowd it is standard. You all know what interpolation is. So let                 

me skip the Lagrange interpolation formula and just say that we can extract using it               

the coefficient of in . So will be the value that you will get   t(s−1)b   F )( − ts b   )(∑
 

 
zi

b          

and this you will get by taking a linear combination of evaluations of that function at                

 and linear combination with .αi βi  

 

And how many will you have to try? How many evaluations do you have to look   sαi′               

at? That is basically the degree with respect to t plus one. So that is . So               s )b( − 1 + 1   

those many coefficients are there and if you want to focus on if you want to extract                 



one of them, still you have to evaluate the polynomial at maximum number of points               

and then there will be these betas which will be special. 

 

They will be functions of such that when you take the linear combination     αi          

everything cancels out and you only get the coefficient that you wanted, which is              

. So this implies that is so you can expand it. This is just using)(∑
 

 
zi

b      )(∑
 

 
zi

b            

binomial expansion. Treat F as a single variable so this is just you just have a                

difference of two things raised to b. 

 

So you can expand it out and F then is just a product. So you get a sum of product                    

representation. So ultimately you get something like  

. (α ) α )  (∑
 

 
zi)

b

=  ∑
 

i,j
γij i + z1

j · · · ( i + zs j  

So these j's are all the, these exponents are all the same here. In this part the exponents                  

are all the same, because this big F is a single thing and then this is being raised to j.                    

So we actually are getting big F raised to j evaluated at some alpha i. So that is this                   

product. 

 

Many such products for all these and then linear combination. depends on      sαi′      γ    α  

here. This is the that we were talking about. This is very simple, it has a very    f i        f i         

simple form. So that finishes the proof of duality trick. And it is characteristic              

independent also. Now what? Now we see once you have seen this now we have to                

apply this. This was a detour. 

 

So let us go back to where we were stuck. So we were stuck here, right. Now this                  ⋀ Σ  

and the bottom we will use duality trick, let us say we will use it first on the   ⋀ Σ                 

bottom . So that will give us a representation. So the top is actually ⋀ Σ        Σ ⋀ Σ      ⋀    

acting on? Okay let us write that. 

(Refer Slide Time: 1:05:14) 



 

So thus a homogeneous circuit yeah so maybe I should have said that in the    ⋀ Σ ⋀             

beginning that we will now do it like this. We will focus on this . So this              Σ ⋀ Σ ⋀    

is on which we will apply the duality trick. That will give me . So let us⋀ Σ ⋀               ΠΣΣ     

see why or how. So this  can be converted.⋀ Σ ⋀  

 

So you are taking power of sum of powers. So in general this is the format                

. So the bottom fanin is a and the top fanin is b. So this is the general (∑
s

i=1
zia)b 

                  

format and this now by the duality trick becomes what? So the duality trick actually               

gave you a very special form. So in that special form when you substitute, when you                

replace  by  it still remains rather special.zi zia  

 

It becomes  

.(α  z ) α )∑
 

i,j
γij i +  1

a j · · · ( i + zsa j  

And I am saying that this is representation, is it? So it is a sum of products, but       ΠΣΣ             

inside the product, this is not a linear polynomial in . It is a general polynomial in          z1        

. So why am I calling it ? Technically it is depth 4. Well you factor it. So it is az1        Σ               

univariate . So over complex, it can always be factored completely. Factors α z )( i +  1
a            

will be linear polynomials. 

 



So it is actually a product of linear polynomials. So the summand actually factors over               

complex to give representation. Yes, so I think I will stop now at this point. We   ΠΣΣ               

just have to give the quantitative statements now. So qualitatively what we have done              

is we had this and this middle part we will convert it into by the    Σ ⋀ Σ ⋀ Σ           ΠΣΣ    

duality trick. 

 

Okay, so that is the duality trick with factorization. Duality trick works for any field at                

least Amir Shpilka’s proof and factorization you can do over the algebraic closure.             

And so together you will have a but since it is sandwiched between sigmas it is       ΠΣΣ           

equal to . So that is what you get. So that is the moral reason why depth 4 can be  ΠΣΣ                   

reduced to depth 3 for special fields. 

 

We will look at the parameters and especially the fanin, what is the bottom fanin. So                

because it is actually not just a run of the mill depth 3 representation. It is a very                  

special depth 3 representation. So any general circuit you can actually reduce to a              

special depth 3 representation. So if you can prove lower bounds against this             

representation, then you have proven lower bounds against general circuits. 

 

Okay, that is the moral of the story. 

 


