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There is a course page, for this you can go to my homepage; under teaching you will 

find CS748 for this semester. So in the course homepage you can see the lecture notes 

and assignments will be posted and mid sem end sem will also be posted there. They 

will all be takehome. And there are  some ideas for advanced topics. 

 

If you want to give a talk, half an hour talk then you can pick one of those topics that                    

will be optional. Other grading distribution will be- four assignments mid sem and             

end sem. Maybe 30, 30, 40%. It is not fixed but around that. The topic is arithmetic                 

circuit complexity. So arithmetic is probably not a very good term. 

 

Now instead we use algebraic. This is really a course on algebraic complexity theory.              

This is an extension of the complexity theory course. In complexity theory you must              

have or in TOC you must have seen Turing machines. Instead of Turing machines we               

will use in this course a different model which will be in some sense stronger than                

Turing machines,  and it will be more algebraic, for sure. 

 



 

So classically computation is modeled as a Turing machine. This is what you see in               

theory of computation ultimately, we start with automatons and pushed out,           

pushdown automata and so on. But ultimately the real model which subsumes all the              

models is Turing machine. And so maybe I should quickly do a recap of Turing               

machines. 

 

A computer program is seen as a Turing machine, is a Turing machine description.              

How do you see a C program as a Turing machine description? For Turing machine               

you can draw a transition graph or you can define a transition function. So that               

transition function is basically what a C program or any computer program describes. 

 

You can translate, it is only a translational issue. So you translate a computer program               

into a transition function or this transition graph of a Turing machine. Now what do               

you do with memory? So if a computer program for example, wants to store              

something in a variable or if it is an array, then you may not even know how many                  

variables. 

 

The variables may be unboundedly many. So how do you simulate that on a Turing               

machine? For that we use the tape. That is it. The control, the transition function               

control is finite. That is your finite program and whatever memory the program is              

using that is actually unbounded, but for that purpose you have the tape in a Turing                

machine. 

 

Tape is bounded. So this is how you can immediately translate any computer program              

into a Turing machine description. Let us go into a bit of notation for that. Turing                

machine notation would have an alphabet, state, and transition function . So where          δ    

so , Q, and . So  is the alphabet of the Turing machine.Γ δ Γ  

 

For us the alphabet, we can take it to be just 0, 1 okay that is what is enough to                    

represent any other thing that you do in computers. Let us say the main elements are                

 



0, 1 letters are 0, 1 but you may also need some special characters like start symbol                 

(▷) and blank (�). So ▷ is the start symbol, � is the blank symbol. 

 

On the tape, what you will read is initially all blank with a start symbol, let us say on                   

the left end of your tape. So there is only one start symbol, everything else is blank,                 

infinitely many blanks. Then once the computation, and you can assume also that the              

input is written in the initial part. That will be 0, 1. 

 

Start the 0, 1 for the input string and then after that you have the blank, infinitely                 

many blanks and on that the computation begins. The remaining part of the tape can               

be organized as the working space for the algorithm. We will use the simplest Turing               

machine description which is the left side, is the start symbol and then the tape               

stretches to infinity on the right. 

 

And it is a single tape, but actually for one complexity class we will need another tape                 

which we can call the work tape. But for most of the applications one tape is enough,                 

except when you want to specify how much space was used, ignoring the input. If you                

want to ignore the input then it is better to talk about another tape, that we can call                  

work tape. So there is this input tape and there is a work tape. 

 

Q is the set of states. There are again two distinguished states and beyond which you                

may have your own states, but at least you should have the start state and the final                 

state. So q​s and q​f​. Okay so these are the two distinguished states that you will always                 

have in a Turing machine. So the start is obviously, when the computation has not               

begun, and when the machine reaches qf then the computation just halts. 

 

And whatever is there on the tape is considered as the output. Now meaningful              

computation is one where q​s to q​f there are finitely many steps. We never talk about                

infinitely many steps. Infinitely many steps means that there is no computation, the             

computation field. So whenever we say computation we mean that q​s to q​f finitely              

many steps were taken and an output was given. 

 

 



Finally, is the transition function. Transition function basically tells the Turing δ            

machine or the head of the Turing machine how to move and what to do. At any point                  

of time the configuration of the Turing machine is given by what is there around the                

head and what is the state. Based on this what should be done next is decided by the                  

transition function. 

 

That is basically your one step of your C program execution. That is exactly what a                

computer program tells you. So , mathematically is a function that takes as input     δ          

current state. I am using Γ​2 ​because I am assuming two tapes. There is an input tape,                 

an input head which is reading input bit and the second one is the work tape head,                 

which is reading the bit at the current work tape head. 

 

Those three things will then decide how these heads should move and what should be               

the next state. What should be written by the head in the current position. The tapes                

can also be modified by the head. State to go to, what to write, and finally where to                  

move. Either stay or left or right. So this is the transition function description. 

 

Since Q is finite and is finite, is also finite. It just has a finite description and     Γ    δ            

you can think of as your C program or your computer program. It is really the same    δ               

thing. Let us use color. So this part is the head movement. 

 

“Professor - student conversation starts” Can I find the start from this one.             

Professor: No, no the start is always at the left hand. ​Student: So it should be gamma                 

minus? ​Professor: Ideally yes. Yeah. So I mean not all transition functions would             

make sense, but that would be taken care of by your program or by your algorithm. So                 

you would always write a meaningful algorithm and then just translate it. ​“Professor             

- student conversation ends”. 

 

In this notation, looking at the algorithm is scary, because the details here are too               

many data. I mean, this is completely non-intuitive. So we never actually work with              

this notation. We are doing it in the first class only to formalize what computation is                

 



on a Turing machine. But obviously, when you try to solve a problem, then you find                

an algorithm in a very intuitive high level notation, okay, not this low level. An               

example, any questions about this since this page will be gone.  
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Okay, so an example configuration is so you have a control in the start state. q​s is the                  

state of this control and you have these tapes and the tape has cells.This is the input                 

tape and this is the work tape, okay. So the start symbols are here and then you have                  

the bits and then in the remaining ones you have the blank. Right. So the input here is                  

for example 101 and the state is start state so the computation has not begun and there                 

are two heads. 

 

These for example are the two heads, the input tape head and the work tape head and                 

then as the starting from this looking at , the configuration will change. That will be        δ         

called one step. Okay and then so on. You do not know how many steps there will be                  

because the tapes are infinite. Actually,  because the work tape is infinite. 

 

Since the work tape is infinite, you do not really know how many genuine different               

steps there will be. They could be anything from one to infinity. So this model               

basically is enough to capture any real life computation that humans have ever seen.              

Okay, there is nothing beyond this model and yeah any questions about this? So this               

models everything that we know. 

 



 

Turing machines abstract every possible man-made device or even otherwise, okay.            

So till now it has always been true that whatever computing device you think of,               

either man made or natural its processes can be modeled this way. The reason why we                

are defining it is just to make sense of time and space. Time in this notation would be                  

the number of steps for a given x. 

 

You are interested in solving some problem and you are given an input on the input             x     

tape and how many steps your Turing machine takes that is supposed to solve the               

problem that will be called the time taken to solve . But we never really talk about a          x         

single input, right? We always talk about all inputs of length n, right? 

 

So the number of steps should actually be, is always seen or it is meaningful to see the                  

number of steps as a function of n, how many bits excess, right? We should, we never                 

care about a specific input view, we actually work with all the inputs of length n and                 

so the number of steps is just a function, that is the time complexity of a problem and                  

space is the number of work tape cells used by this Turing machine on .x  

 

Space is also a function of size of which is, which we are calling n. So both time        x            

and space are functions of n and the space we do not consider the input length, okay.                 

We just consider how much of the space of work tape was used. This is usually, this                 

has no significance except in one complexity class. Otherwise, you can just look at              

one tape and everything is happening there. 

 

Once you have defined time and space as functions of n, you can define complexity               

classes. This is what we do in complexity theory course, computational complexity            

theory course. I would not go into all those issues, but let me just talk about the main                  

ones, in case you have forgotten. So, for a function real valued, positive          →R  f : N     

real valued, I would say, we can talk about complexity classes. 

 

 



The most important one is deterministic time. Dtime f(n) and the second important             

one is space f(n). So these are, what is Dtime f(n)? This is the set of all those                  

problems that can be solved on a Turing machine, on some Turing machine, in time,                  

and is a set of all those problems that can be solved in a Turing(f (n))O  pace(f (n))S                

machine in work tape space, workspace .(f (n))O  

 

So problems solvable in time and this is problems solvable in space.    (f (n))O         (f (n))O   

Based on this what are the complexity classes you already know? what is the most               

natural specialization of . If you take to be a polynomial, then Dtime   f     (n)f        

polynomial, overall polynomials will be polynomial time complexity class, r. This           

leads to a zoo of complexity classes. 

 

There are hundreds of complexity classes if not thousands that are currently named             

and studied. We will only be talking about Dtime( ) ∀c So if you        P :  =∪
 

c>0
 nc       

look at all the problems, any problem or if you look at the set of all these problems                  

that are solvable in time for some c, c should be an absolute constant, right like    nc              

1000. 

 

c is constant means that c is not a function of n, okay c is independent of n and c you                     

are taking everything. So this is the complexity class P which is deterministic             

polynomial time. And correspondingly you have space(n​c​). we do not      space =P : ∪
 

c>0
    

do D because D is not important in space. So a polynomial space is the class of those                  

problems that you can solve in workspace  for some c absolute c.nc  

 

And furthermore, you can define, you can look at variations of Turing machines. So              

for example, if your Turing machine has the ability to use non determinism which              

means that the transition function in one step has multiple choices, okay. Instead of              

transition function being a function, it is a relation. So if the transition if you have a                 

transition relation then that is called an NDTM non deterministic Turing machine  δ           

and the corresponding complexity class is NP. 
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NP := Ntime(n​c​) ​This is Ntime is basically on a non-deterministic Turing  ∪
 

c>0

          

machine. And finally, I have log space, which is a very small class,       = pace(log n)  L : s        

because these are the set of those problems. These are those problems that can be               

solved in log space. Okay, so this is the log space complexity class. 

 

This is a very small class. So if you want to compare the classes then a simple                 

consequence or sequence of containments is      

P space XP Xspace ExpL⊆ P ⊆ N ⊆ P ⊆ E ⊆ E ⊆ E   

 

That class we have not defined, but there is a class where you can take Dtime f where                  

f is an exponential function. So then you get EXP, okay. So problems that can be                

solved in time So instead of poly n, it is so for some c. So these   2poly(n)         2poly(n)   2n
c
      

are the problems in x. And then based on this you can also, based on exponential                

functions you can also define EXPspace. 

 

So EXP will be then contained in EXPspace. And just like an exponential function              

you can look at a doubly exponential function. So . And that will give you EEXP.         22n
c

       

Okay, yeah and so on. So there is no reason to stop. This is an infinite hierarchy. But                  

 



we do not know whether these containments are strict. Okay, so many of these classes               

could actually be equal. So what are the open questions? 

 

So do we know whether log-space ≟ P. We do not know, right. That is an open                 

question. Do we know whether P ≟ NP. Yes, that is an easy guess. Do we know                 

whether NP ≟ Pspace. Yeah and so on. So any question you ask ​you it will be a                  

question mark. So the reason is that whenever you are comparing different resources,             

then to date we do not have a good understanding. 

 

log, space versus time questions or deterministic time versus non-deterministic time            

questions. All these will be open and the ones which are known is when you compare                

the same resource, so for example, P vs EXP. That is the same resource, Dtime. One                

has polynomial and the other has exponential. So that actually there is a theorem that               

they are different. 

 

You know that P and EXP are different but then in the middle NP, Pspace may go                 

either way. That we do not know and similarly Pspace is different from EXPspace.              

That is a strict hierarchy. There is a theorem which we cover in complexity courses.               

There are also randomized versions of this. You can, now look at a third variant of                

Turing machine which is probabilistic Turing machine. 

 

Now the transition function is still a relation just like an NP, it is a relation, it can,                  

from one configuration, it can move to two configurations. But there is a probability              

attached to those events. So let us say it moves to one of the two configurations with                 

probability half. So okay so when you do that, then it is called a probabilistic Turing                

machine. 

 

It is like your C program, that program is flipping a coin in every step. That is a                  

probabilistic Turing machine and that gives you randomized classes. So using           

probabilistic Turing machine. So these are, for P there is, there are several versions              

.PP P PP P spaceZ ⊆ R ⊆ B ⊆ P ⊆ P  

 

 



So ZPP is, it is what, do you already know? Zero-error probabilistic polynomial time.              

This I think is also called in older literature Las Vegas algorithm. Las Vegas              

algorithms have the property that on a given input instance x, the algorithm, whenever              

the algorithm halts it will give the correct answer, . The only tricky thing is that                

maybe the algorithm takes a long time. 

 

But the probability of that is guaranteed to be small. So with high probability the               

algorithm will halt soon, like in polynomial time or polynomially many steps and the              

or the guarantee the other important guarantee is that whenever it halts it gives the               

correct answer. So this is why it is called zero error. It is also called, these algorithms                 

are also called Las Vegas. 

 

Yes, so the expected time complexity is yeah, I will not go into the formal definitions                

of these classes. In RP, so RP is randomized polynomial time. This is one-sided error,               

it is also called one-sided error. So if your string x is a yes string, then it may make an                    

error. But if your string is a no string then it does not make an error, okay. This is                   

one-sided error. BPP is both-sided error. 

 

And this is called bounded probability or bounded error probabilistic polynomial time.            

Bounded error because wherever the, so algorithm will stop in polynomial time, there             

is no question about that. But when it stops its answer you have to take with some                 

confidence. If it is saying yes in the answer then or it is saying no, the probability of                  

being correct is more than let us say 66% okay. 

 

There is no, I mean both side there are errors, but they are bounded errors. These are                 

very good practical algorithms. In practice, you would be happy to use a BPP              

algorithm if it is fast. You do not really need the full power of P. You do not really                   

need deterministic polynomial time in practice. So many practical algorithms are           

actually BPP algorithms. 

 

The probability is taken as free in all practical applications. PP is probabilistic             

polynomial time. This is something very bad. So here the algorithm stops and             

 



whatever it says the chance of it being correct is only half. It can be very close to half.                   

This yeah there is a reason why this is not good. So error could be half here. So                  

both-sided error and it is half. And all these problems, they can be solved in Pspace,                

okay? 

 

There are many probabilistic versions, you can also look at the quantum model and              

then you will get different complexity classes. But that I will not mention here. There               

is a course running in parallel on quantum complexity, okay. And finally, there are              

Oracle based classes. So Oracle based classes are, yeah this you may or may not have                

seen. 

 

For example, NP NP​NP​. So what does that mean? Right, so in the so you have a     ⊆                

non-deterministic Turing machine and it has access to a subroutine that can solve for              

example SAT okay. So whenever this non-deterministic Turing machine wants to           

solve SAT instance, it just transfers the SAT instance to the Oracle Turing machine to               

the Oracle to SAT and an answer is given immediately. 

 

That is considered one step okay. So yeah, so it is clearly a very impractical situation,                

you can never implement it. Because you can never get a subroutine to SAT but               

assuming that there is a subroutine what can you solve, okay? So those are the               

problems in NP​NP​. What can you solve in a non-deterministic polynomial time? So             

this is called 𝚺 ​2​. 

 

Okay this is defined as 𝚺 ​1 and then you can go crazy with this. So you can look at NP​𝚺                    

that will be 𝚺 ​3​. This is called 𝚺 ​3 and so on. Okay, so this is a hierarchy which is again                    

not known whether it is tight or not, whether it is a strict hierarchy or not. These are                  

open questions. Well, because, even in the base of the hierarchy this is an open               

question. P is 𝚺 ​0​, okay? 

 

Everything here is an open question and this hierarchy is called yeah, so this hierarchy               

is called polynomial hierarchy. If you take the union of all these classes, in the limit it                 

is called PH. Well, there is no limit, just the union.The union of all these is called PH                  

 



and everything in PH can be solved in Pspace. So you can see that, in inside, Pspace,                 

there is a, there is a huge amount of diversity, okay? 

 

This hierarchy is supposed to be an infinite hierarchy and this is all inside Pspace.               

Okay so Pspace contains pretty hard problems, believed to be even harder than NP              

although we do not know whether NP and Pspace are different. But if you believe this                

hierarchy to be strict then between NP and Pspace there is a, there are infinitely many                

classes which are all different, increasingly hard. 

 

There are some natural problems which are actually in Sigma 2 but not known to be in                 

𝚺 ​1 and in 𝚺 ​3 not known to be in 𝚺 ​2​. Yeah, but we will not be going into that I think.                     

So these are the things you learn in a complexity course and then you compare these                

classes and you prove theorems about which one contains which one and so on. 

 

In this course, we will take a different route. We will define, again complexity classes               

and we will study computation but using a different model, okay, and that model will               

be in many cases related to Turing machines, but it also will have different properties.               

Okay so we will, we will look at those things in detail. 
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This course will take a different route to build a zoo of complexity classes. We are                

doing this mostly for fun, but it is not all fun because if you prove theorems in this                  

 



different computational model, strong enough theorems then they will also mean           

something in the classical complexity classes, okay. So we are really studying we will              

ultimately we will really be studying natural problems. 

 

In this model when we prove hardness it will also mean hardness generally. It will               

not, it will not just mean that it is hard for our algebraic model it will actually mean                  

that it is hard in real life okay. So there will be a strong connection. And so this                  

abstraction using algebra is highly motivated. See this is not just for fun. So any               

questions till now before I give some definitions of the algebraic model. 

 

Instead of seeing computation as a sequence of simple steps, as a sequence of very               

simple steps, right? This is what a Turing machine does. Turing machine divides             

computation into many steps, each of the steps is trivial.There is a sequence of trivial               

steps and in the end something highly non trivial happens. This is how Turing              

machine use computation. 

 

We instead want to view it as an algebraic expression. We will view it as an algebraic                 

expression. So that will be the main point of departure from what we have seen               

before. And so what is this computational model? This we will call it arithmetic              

circuit as the title suggests. An arithmetic circuit, well let me first say in words before                

I write. 

 

An arithmetic circuit is basically, it will have input in the leaves, it will be a tree                 

where the input will be fed in the leaves. And then there will be gates like addition,                 

multiplication gates, which will add or multiply the variables and that will give you              

polynomials. And after a sequence of such layers, in the end, the output will be given                

which will of course be a Polynomial. 

 

The circuit is a tree that computes a polynomial based on the leaves as variables. So                

that is an arithmetic circuit. So an arithmetic circuit is, circuit C, since you want to                

add or multiply, you want to work over a ring or over a field. You can think of just                   

 



integers. Basically, if there is a variable X, you can multiply it by a number, let us say                  

10. 

 

And then you can add another number and then you can square the whole thing and so                 

on. , in the base, formally speaking, there should be constants with addition,             

multiplication operation, so this is what a ring is, but you can simply also think of                

integers. So over a field F is a rooted DAG directed acyclic graph as follows. There is                 

this root which is important that will give you a single output. 

 

The other important places are the leaves. So the leaves of the DAG of the tree, the                 

leaves are the variables x​1 ,.., x​n​. These are called the input variables. And the root of                 

this tree outputs a polynomial. So this polynomial is . Okay, so is just the         (x)C    x     

variables x​1​,...,x​n​. So what you have seen is you know the input, they are in the leaves                 

and you know the output, it is in the root. 

 

And the output is considered a polynomial. So this polynomial lives where? What is              

the polynomial ring where this polynomial lives? So this is the polynomial ring F(             x)  

right? So these are the set of polynomials in the n variables, constant from the field F,                 

right? So now we are talking about something else right? In the case of Turing               

machine, we are, about computing a function that output 0 (or) 1 a decision problem. 

 

Here it is not that is not what we are doing. Here we are not talking about computing a                   

polynomial, right? The polynomial as a whole. This is not a functional question that              

we are solving. We are actually solving something more formal than a function. We              

are actually outputting a representation, the polynomial representation. The internal          

vertices are gates. 

 

In the tree these internal vertices other than root and leaves, we call them gates and                

they are basically just doing addition, multiplication. Star or so multiplication or            

addition in the polynomial ring and write the, the internal. The edges in your tree ,                

these are called wires, right? Since the whole thing we want to call a circuit it makes                 

 



sense that think of these internal vertices as gates and the gates are connected by wires                

and the current kind of flows from the leaves to the root, okay in that direction. 

 

The wires can be used to multiply whatever is flowing on them by a constant, field                

constant, okay. Basically it is just scaling up whatever is whatever is fed into the wire.                

It can scale it up and then you can add two such things by a gate or you can multiply                    

two such things by the multiplication gate. Basically this model can compute any             

polynomial, right trivially and they have constants, they have constant labels to do             

scalar multiplication. So this is the full model, okay? 

 

Any questions about this? ​“Professor - student conversation starts” Analogous to           

Turing machine Cartesian problems this computes two constants, 0 and 1. So analogy             

in making. Then polynomial is just 0 x not taken. ​“Professor - student conversation              

ends”. No if you want to make an analogy with Turing machines then well then you                

have to talk about function. 

 

Turing machine computes a Boolean function and here if you want to simulate the              

same thing then you can for example maybe you can say that I will only evaluate x i's                  

at 0 (or) 1 and the computation will be modulo 2. Then the output I mean, although                 

the output is still a polynomial over the finite field with elements 2. Even in that case                 

actually, arithmetic circuit is computing something more than a Turing machine. 

 

Because Turing machine will only give you an answer 0 (or) 1 but arithmetic circuit               

will give you the whole representation of that function. So you might have said that               

Turing machine computes a value while this circuit model computes a function, okay?             

It is actually, it gives you the function and then it is for you to evaluate it. You can                   

evaluate it at any point. 

 

So this from the very start it is actually a much stronger model. And it is highly                 

algebraic, as you can see, it is not combinatorial. ​“Professor - student conversation             

starts” But in a sense this will actually be it is only computing polynomial and the                

transmissions in the Turing machine and the internal if you write, the internal working              

 



as a function and that could be any function and not all functions could be captured as                 

polynomials. ​“Professor - student conversation ends”.  

 

Yeah. So there are differences for sure, yes. You, these two are not equivalent.              

“Professor - student conversation starts” ​Is there, like a natural way to see             

problems, like sorting, modelled as polynomials, intuitively, not directly. ​Professor:          

No, no. So to get to an equivalence between circuits and Turing machines, you have               

to look at the model of Boolean circuits. So Boolean circuits is where the gates are                

only computing and, or, not. ​Student: ​This is stronger than boolean function then.             

Professor: Well, in some sense it is stronger in some sense it is weaker. It is                 

incomparable. So very strictly speaking these are three incomparable models, Turing           

machines, Boolean circuits, arithmetic circuits. But there are some similarities and           

you can still think of any one of these three as modeling real life computation.               

“Professor - student conversation ends”.  

 

Once we have defined the model we have to define the resources here, right? When               

do we say that the circuit is a good circuit or it is a bad circuit? Because as you can                    

see, well, already you know that it is a complete model. It can compute any               

polynomial, right? How do you do that? How do you model a polynomial as an               

arithmetic circuit? Right, a polynomial is a (sum of monomials with coefficients from             

the field, monomials)  you can compute by  multiplication gate. 

 

And then when we have computed all the monomials you scale them up and then you                

use an addition gate, right? So this you can achieve in just two levels. Addition,               

multiplication and leaves. It is, it is a, maybe I should write it down. Any polynomial                

has a depth 2 circle circuit, depth meaning in the first layer you have addition, in the                 

second in the bottom layer you have multiplication. So this is a complete model. 

 

This is why we say that it is complete, complete model of computation. But that will                

not be enough that by itself is not enough because we also want to talk about the                 

resources because ultimately you want to say that some polynomial is easy for circuits              

 



and some polynomial is hard for circuits. For that, let us now define the parameters,               

The resources, the resource parameters, so that is basically something very natural. 
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The number of wires is called the size of the circuit. Let us say, number of, basically                 

the graph size, the tree size. The size of the DAG is the size of the circuit, . Size of                    

this graph, directed acyclic graph includes the leaves and also the edges and also the               

vertices. This the combinatorial representation size is the size of the circuit. 

 

And sometimes you may also but so this is ignoring the size is ignoring something in                

the representation, what is that? It is ignoring the constants which are present on the               

edges or the wires, right. I mean in practice, somebody can object and say that what if                 

the constants are huge. So ignoring it is not natural. Sometimes you also include the               

bit size of those constants. 

 

Sometimes we include the bit size of the constants on the wires. Yeah, but formally               

speaking, we will not do that we will just, we will continue with the size as defined by                  

looking at the graph only. And that is the basic resource in algebraic complexity              

theory if you only look at the graph size. 

 

The question is always that given a polynomial what is the smallest graph you can               

design and naturally, the depth is just the length of the longest path from a leaf to the                  

 



root. A max-path from a leaf to the root determines the depth of C. You have size and                  

depth, and we have already seen that depth 2 is enough actually. It can compute any                

polynomial in the polynomial ring. 

    

But then what will happen to the size? Well size will be just as big as the number of                   

monomials here. How many monomials are there in an n-variate d-degree polynomial,            

Student: . ​Professor: That is a bad thing. So number of monomials is equal to n d
n+d                

plus d choose d for an n-variate d-degree polynomial, right? So is something              d
n+d    

like       ​or it could be  )( d
n d )( n

d n   

 

Depends on what is bigger, but for general setting this is exponential that you are               

really talking, about in fact I should put a constant here. So if you take d =n , so you                    

are looking at , right. And is like . This is clearly exponential in the arity   n
2n    n

2n    22n         

and the degree of a generic polynomial. If you look at the representation at depth-2,               

then the size is necessarily very, very large for almost any polynomial. 

 

It is exponentially large, right. That is the worst representation that you can have. So               

we are not interested in those representations, although they exist, or at least they              

exist. We are interested in the smallest representation, right. We will formalize that             

later, but you get the idea of the blow up that is happening. And finally, degree of C,                  

so what is the degree of C for an arithmetic C? Where, at the root? Yeah, so right. 

 

We want to define degree to be the maximum possible degree at any intermediate at               

any vertex.Degree of C refers, or is the degree of the intermediate polynomials             

computed in C, okay. The reason is that it may happen that ultimately everything              

cancels out and at the root you get something very low degree, but that does not mean                 

that the circuit computation needed that lower degree. 

 

We here we only want to define bounds. So when we say degree of a circuit we mean                  

the maximum possible degree at any vertex, not the degree of the final polynomial,              

although that is also important, but not in the definition, in the general definition.              

 



Okay, so let us look at a small example. Let us look at the polynomial               

)​4 ​If you expand this out how many monomials you will see,)f = (x1 + x2
8 − (x1 + x2

            

sorry, that is too less. This has 14 monomials.This first part has 9 and the second part                 

has 5. And they do not cancel. They are of different degree where the first one is just                  

homogeneous degree 8. The second one is homogeneous degree 4. You have 14             

monomials. 

 

Obviously you have a depth -2 circuit with how many, which size? Much more than               

14 because you have to compute the monomials and then you have to add them. It                

will be 30 or so the size or even more. That will be a bad representation. There is a                   

much more compact representation, right? The compact representation is sorry no, no            

but what is the circuit. So what is the DAG? 

 

The DAG is you add, let me skip the arrows. You first compute . Yeah, then             x )( 1 + x2    

you use the output, right then you use the output twice to multiply, right? So this will                 

give you square; 2 and you can do it once again. And that will give you, that   x )( 1 + x2               

will give you 4​. So the 4 is computed, but you also wanted 8, right? So for   x )( 1 + x2               

that, let us do it once again. 

 

Now you have both 4 and 8, you just have to add them with sign. Right, so this is the                    

representation. That is your f at the root. So there are only 5 intermediate vertices.               

Overall the size is only, well the vertices are 7 and so many I think wires. But, you                  

can see that it is a much smaller representation than what the polynomial in full               

expansion is, right? 

 

This gives you an idea that using the circuit operations, you can actually compress the               

polynomial a lot. So one thing that we are using here is this repeated squaring. So this                 

is a very useful technique. The circuit C, the circuit size is small because of repeated                

squaring here. And another example where the repeated squaring can do wonders is             

.x )( + 1 2n   

 

 



If you look at it has monomials. But by repeated squaring you can    x )( + 1 2n    2n         

manage in n gates, right? So if say n was 100 then this polynomial, it is a huge                  

polynomial. But it has a very small circuit.The circuit representation is a very natural              

way to compress a polynomial. Obviously, it is not always possible, right? So the              

question is: when is, when is it not possible? 

 

When will all your clever techniques fail, and the only way to represent your              

polynomial would be depth-2 sum of monomials which is the worst? Right, so that is               

the foundational question in this area. And we still do not know the answer to that.                

Well, we know the answer in some sense, and we do not know the answer in general                 

sense. So we will see as we proceed, right. In this example there are two more                

parameters, resource parameters. 

 

So one is fan-in and the other is fan-out. So fan-in is the maximum indegree and                

fan-out is the maximum outdegree. which in this case is how much? Well it is actually                

3. There is this top star which has fan-out, fan-out 3 but other than that it is 2. Yeah,                   

so I drew it so that it is close to 2. So fan-in 2 is fine but fan-out 2 is what is giving                       

you the kick. 

 

Right because you are able to use the output multiple times. So you do otherwise what                

you will have to do is you will have to copy that and the copying will double the size.                   

So when you are when copying is banned, then we call it a formula okay. So formulas                 

are even more special than circuits. 

(Refer Slide Time: 1:05:21) 

 



 

So fan-in respectively fan-out of a circuit. Fan-in is the max indegree respectively             

outdegree of the graph, of the DAG, the underlying graph. No. handwritten            

representation is formula. Because in a hand in this when you write by a pen on a                 

paper, then there is no way to reuse computation. What you are writing in a line that is                  

naturally a formula. On the other hand the cheating that you do in a C program right it                  

is not in a line. 

 

In a C program you define something called, call it a variable x and then you use x in                   

multiple places. So that is a circuit okay but when you are writing just a algebraic                

expression in a line that is a formula. A program is a circuit if you look. In a program,                   

like a C program, an expression that you have computed, once computed, you can use               

it,  unlimited amount of time. 

 

So that is like, that is exactly, the dependency graph is like a circuit. So a circuit with                  

fan-out 1 is very special and natural, is called, it is called a formula. And there are                 

numerous special cases of circuits which we will see in this course. Okay. Yes, so any                

questions at this point? So let me just define the notion of problem solving or solving                

a problem using an arithmetic circuit. 

 

One thing that you may notice here is the size of the input is the number of variables                  

which is n, right and for that n when you fix n on top of that you have drawn a circuit.                     

 



So it is conceivable that for different n the circuit is different. I mean, obviously it has                 

to be drawn differently because the leaves have changed right. So for every so first               

observation is that for every input size, there is a different circuit. 

 

When we talk about solving a problem or so what is the meaning of solving a problem                 

that we are able to actually compute a sequence of polynomials. But then to compute               

a sequence of polynomials over different number of variables, you have to give a              

family of circuits. This is again a departure point from Turing machines. In the case of                

Turing machine just one Turing machine description was given to you. 

 

Here you will need infinitely many in the worst case. I mean maybe all the circuits are                 

highly correlated and you can come up with a even more compact representation. But,              

in general you have to give a circuit for every input size. Yes, in the case of Turing                  

machine if you say that for a given n there is a C program and for different n there are                    

different C programs. 

 

That will really be a different definition of computation or resources. So suppose you              

are looking at a family of polynomials f, i-th polynomial, is in i variables. This is a                 

family of polynomials. This is called a problem. Somebody has given you this             

problem which is a family of polynomials, okay? So i-th polynomial is i variate and to                

solve this problem by an arithmetic circuit means that for every f​i you will have to                

produce an i variate circuit. 

 

So you will have to design a family of circuits. So a family of circuits solves F if ∀ i,                    

C​i is f​i​, right. That is all. This is the notion of problem solving. Here the problem is                  

not a single polynomial because well if somebody gives you a single polynomial then              

n is fixed. If n is fixed, then everything can be done in constant size, right? So that                  

does not really give you asymptotics. 

 

So to get asymptotics you actually need a sequence of growing arity, infinitely             

growing and for that, then you have to look at the circuit family and then you have to                  

talk about sizes of the C​i​'s, how is that going with i? Using that using this now we can                   

 



define complexity classes and we can define what is hard and what is easy. Okay, so                

the notions, notion of hard polynomials, easy polynomials will now be based on this              

formalism of family. 

 

But many times for simplicity of discussion, we will ignore the term family. We will               

just say a polynomial, but when I write a polynomial, it would be implicit that I am                 

not talking about a single polynomial. But all such polynomials for growing n. Okay,              

so it will be implicit. We will not use this rigorous notation all the time because it                 

becomes a mouthful to say that there is infinite family of circuit polynomials, infinite              

family of circuits. It will be implicit from now on. Any questions? Yes. 

 

“Professor - student conversation starts” We look at the polynomial right          x )( + 1 2n  

and we were allowed to copy so we had a small n size circuit. So but when in a                   

formula we will have to create copies at every step. So naively that will still be 2​n                 

right, because and but then do we actually know what is the formula size of .               x )( + 1 2n  

2nd Student: You can prove that it is exponential size. ​1st Student: Is it indeed               

exponential size? ​2nd Student: Because you can show that the degree you need at              

least that much size for formula. Otherwise you cannot reach that. ​Professor: ​Yeah.             

So you can lower bound it by looking at the degree parameter. So formulas cannot               

exponentially blow up the degree. So formulas are actually very slow with the degree.              

“Professor - student conversation ends”.  

 

If the size of a formula is s, then the degree you can show is some polynomial in s, it                    

cannot be more. But circuits can really blow up the degree. It can blow up to s raised                  

to s because it can keep on multiplying the thing to itself again and again. That is                 

repeated squaring. Yeah, that is a good point. 

  

 

 


