
Introduction to Blockchain Technology & Applications 

Prof. Sandeep Shukla 

Department of Computer Science and Engineering 

Indian Institute of Technology-Kanpur 

 

Lecture - 22 

 

Welcome to another session of Blockchain Technology and Application on NPTEL. 

So last time in the last session, I was talking about Hyperledger Fabric. 

(Refer Slide Time: 00:25) 

 

And I was talking about this execute-order-validate paradigm as compared to order-

execute paradigm in the previous blockchains that you have seen. So going back a 

little bit. So Fabric actually distinguishes itself from the previous blockchains that you 

have studied, like bitcoin blockchain or Ethereum blockchain is that it follows the 

execute-order-validate paradigm and the transaction flow has three steps. 

 

First executing the transaction and checking its correctness. And this execution does 

not change anything in the blockchain or in the state of the blockchain. It just in a 

sense simulate the execution of the transaction. And then the transaction results are 

endorsed by some of the nodes. They are called the endorsers, and then endorsers 

send the result of the, of executing the transaction as read/write sets. 

 

And these read/write sets are then sent back to the client which originally requested 

the or proposed the transaction. And the endorsement is also given by multiple 

different nodes based on an endorsement policy. We will see what endorsement 



policy means. And each endorser also attaches the digital signature of that node so 

that others can check whether the right endorsers have endorsed the transaction. 

 

Then the transaction when the enough endorsements are collected by the original 

client, then it sends it or broadcast it to the nodes that are responsible for consensus. 

And here the consensus basically what it does is that it orders the transactions. And 

the ordering of the transaction is based on this read/write sets and ordering does not 

care what these transactions are about what kind of domain it is being done on. 

 

Like for example, it could be financial transactions, it could be land record 

transactions, it could be other kinds of any other kind of transaction about supply 

chain, it does not care. So transaction semantics is not looked into by the ordering 

nodes. The ordering nodes basically run a consensus algorithm and then they do 

decide on an order. 

 

And then once they have ordered the transactions, then they will bunch them together 

from various clients multiple transactions will come. If these transactions are working 

on the same data then the ordering is more important. If the transactions are on 

completely different sets of data, then their ordering is not that important, but in any 

case the orderer will audit the transactions. And then this ordered transactions are put 

into a block. 

 

And we call it cutting a block and then the block hash is computed. A sequence 

number is given to the block and then the block is broadcast by the consensus nodes 

to the rest of the nodes. The rest of the nodes, not necessarily all the nodes depending 

on what the administrator of the blockchain decided who should be the nodes that are 

called validator nodes. 

 

The validator nodes will look into every transaction and then look at the version 

information in the read/write set and decide which of the transactions are valid and 

which transactions are not valid. For example, if the version number of a particular 

data being read in a transaction does not match with the version number of the same 

piece of data in the state database, then that is not a valid transaction. 

 



Because that means it is reading a different version value of the value of that 

particular piece of data. And therefore it will if you execute that transaction, it will be 

bad. So those invalid transactions are then marked. And this marking is done by 

creating a bid vector, such that valid transactions are set to be 1 and the invalid 

transactions are set to be 0. Since the transactions are ordered we can do a bid vector 

to mark it. 

 

And then everybody, every node that is maintaining the blockchain will add that node 

to the end of the current blockchain and therefore, and then update the state for the 

valid transactions. The valid transactions will write may write on certain nodes, a 

certain date piece of data. So that will be written in the state database. So that is how 

the execution ordering transaction execution ordering validation happens. 

 

And that is the end of a particular block activity. In the meantime, the clients might 

have submitted more transactions for endorsement. Endorsement might have come 

and then they were sent to the orderer. So these things are happening sort of in a 

pipeline. So that is what is the execute order validate paradigm means. 

(Refer Slide Time: 05:59) 

 

So going back pictorially if you want to see what this order execute paradigm is, 

which is first a consensus happens. So everybody gets broadcasted all the transaction. 

I am talking about bitcoin, Ethereum, etc. So everybody gets a copy of any transaction 

that happens, then they will bunch some of these transactions together and they will 

try to cut a block, but in order to cut a block, they have to solve a puzzle. 



 

And once they solve the puzzle, then they have won that round of consensus. Then 

once the consensus is reached, the winning block is broadcast to everybody. And then 

everybody has to then execute the transactions at their own nodes and make sure that 

these transactions are valid, they have the right signatures, etc. And then they will 

update the state and add that block to the end of the blockchain. 

 

So this is the consensus is ordering. This is the execute and then update or permit. 

You permit the those set of transactions. So that is what we saw before. 

(Refer Slide Time: 07:23) 

 

So now we are we explained to you that we do it differently in Hyperledger. Now let 

us see, let us discuss a little bit on order execute in proof of work block chains like 

bitcoin or Ethereum. So we combine the consensus and execution of the transaction as 

follows. So every peer assembles a block containing valid transaction. To establish 

the validity, you already pre execute the transactions. 

 

You execute the transaction and you only execute the transactions if the signature 

matches and the output the you know coin is going to the going to a valid public key 

etc. The peer then tries to solve the proof of work puzzle. And if the peer is lucky, and 

win the puzzle, it disseminates a block to the network via gossip protocol. And every 

peer receiving the block validates the solution to the puzzle and all the transactions in 

the block. 

 



And doing so they have to also execute the transaction. Every peer repeats the 

execution of the lucky peer from its first step. And that means that we are doing this 

execution again and again and again in all the nodes in the system to although it is 

happening concurrently, but within each node, the execution of transactions are 

happening in a sequential manner. 

 

But if you think back about what I said about Hyperledger, I have a transaction I am 

getting endorsed. You have a transaction you are getting endorsed, maybe by the 

same set of endorsers, maybe a different set of endorsers. So I can have the execution 

of multiple transactions in parallel. Because if my endorsers do not overlap, then 

those transactions can altogether be endorsed and sent back to the respective clients. 

 

And all the clients can then submit those transactions to the ordering service. So 

therefore, and then afterwards, we do not execute the transactions, we only use the 

read/write set to update the state if the transaction is valid. So therefore execution 

happens before ordering and before validation. And these executions can also happen 

in parallel in concurrently on behalf of multiple different clients provided the 

endorsers are not all common. 

 

So that is the difference that throughput for blockchain that are execute order-execute 

based their execution of all the transactions even though those transactions came from 

different clients into the system, they are all executed once a block has won, that 

block’s transactions are all executed sequentially. Whereas here in Hyperledger, I can 

have parallel execution of transactions. 

 

And then I do ordering and then I do the validation. And then after validation, 

everybody updates their state. So that is one advantage that Hyperledger has in 

increasing the throughput of the transactions. 

(Refer Slide Time: 10:48) 



 

So as I already hinted, that this can be viewed as a limitation of the older order 

execute paradigm, the transaction’s sequential execution by every peer after the block 

the POW problem has been solved is bad for the effective throughput. Now POW 

itself takes time as we know and then on top of that everybody has to execute this 

transaction sequentially. 

 

So therefore, the other problem that can happen is among these transactions remember 

these transactions are being set as in case of bitcoin through bitcoin scripts. And 

remember the transaction execution would mean that I put the scriptPubKey and 

ScriptSig of the previous execution, previous transaction associated with this 

transaction’s inputs together and execute that. 

 

So each transaction execution is basically executing a small program. In case of 

Ethereum each transaction would be executing a function or multiple functions in the 

smart contract and therefore, if this smart contract is written in bitcoin, this is not easy 

to do or not even possible to do because you cannot have loops in a bitcoin script. 

 

But in case of Ethereum, what you will you could do is that if you are a bad player, 

you could put a smart contract and convince everybody to execute a function in that 

smart contract in and the function itself may have an infinite loop or whatever. And 

therefore, you can launch a denial of service attack. Of course, Ethereum solves it by 

limiting the gas etc. 

 



But if you do not have a native cryptocurrency, in your blockchain, then how do you 

price the gas, right. So therefore, it is a free for all. You can actually make the system 

execute very long functions and therefore slowing down the throughput very much. 

So Hyperledger does not have a native cryptocurrency. And Hyperledger is even 

allowing writing smart contracts that are not even in a stylized language like Solidity. 

 

It is it could be C, C++ whatever, where you know very long loops can be possible 

and there is no notion of gas or gas limits. So therefore, executing a transaction 

sequentially by the by all nodes would not be a good idea, because very easily one can 

do a DOS or denial of service attack. So that is the idea, one of the limitations of 

order-execute paradigm. 

(Refer Slide Time: 13:46) 

 

Another issue, we are already hinted about that in the last session is that you cannot 

have non-deterministic programs as smart contracts in the Ethereum or non-

determinism in the bitcoin because if the transaction execution, non-determinism 

means that the same code gives you different result at different times, right. For 

example, the function if you call random function twice in two different nodes, it will 

give you different results. 

 

So therefore, if you the blockchain not to get forked because the value the result of a 

transaction is different in one block and they are different in another block then you 

must make sure that your smart contracts or scripts are deterministic. So to do that, to 



ensure that what you do is you create special languages in which there is no way to 

create non-determinism right. 

 

So now you might say that if I limit my language will it still be Turing-complete and 

turns out yes, it will be still be Turing-complete and but you do a domain specific 

language and then force people who will write smart contracts to program in that 

language. Now when you want to bring a new now there are a lot of solidity 

programmers because Ethereum got popular. 

 

But if you start a new blockchain like Hyperledger and say that you have to program 

it in a very specific language, then there may not be any takers and therefore, the 

blockchain may not become popular and it will die. So therefore, you have to allow 

anybody who can program in any language to be able to write contracts. And 

therefore, and then if you do that, you cannot stop non-determinism because those 

languages will have non-determinism as a built-in property. 

 

So therefore, what Hyperledger decided is that they will not worry about non-

determinism because their final result does not depend on determinism and non-

determinism because if the transaction is non-deterministic, then during the execution 

itself right, by the endorsers, when the endorsements come back, you will see 

different the client will see different results coming from different endorsers the 

read/write sets and this transaction will be discarded. 

 

So therefore, we do not have to limit the language and still have determinism in the 

blockchain state. 

(Refer Slide Time: 16:37) 



 

Another issue is confidentiality of your IP. So suppose you are using Ethereum and 

you are creating distributed application based on multiple smart contracts which are 

meant for supply chain management. Now Ethereum has, you know other nodes 

which are not interested in your application but they will all get all your smart 

contracts because all smart contracts are part of the blockchain. 

 

And so they can see how you have what your business logic is. If they you know take 

the byte code, do reverse engineering, they can see all that. They will also see the 

results of all your transactions. In fact, they will execute all the smart contracts. What 

that gives you is that, so in such a system in a public blockchain, you cannot keep 

confidentiality of your IP. The IP means intellectual property the way you run your 

application. 

 

So that basically means that if you want confidentiality, then you have to have in such 

that your smart contracts are not part of every node or it is not part of the blockchain. 

So who has the smart contracts in them, the endorsing nodes. They execute the 

transaction, so they have to execute the smart contracts. So if you trust the endorsers, 

because they are part of your business environment or business entity, and those who 

run those nodes are also having real world identity associated with their identity. 

 

So therefore, you can have the endorsing node know your chain code, which is the 

smart contract in Hyperledger, but no other nodes the orderers do not need to know 



your smart contracts. The other nodes that are keeping the blockchain do not need to 

know your smart contract. 

 

And Hyperledger was specifically thought about as a way for multiple businesses to 

work together on workflows and data sharing that is meant for inter business 

activities. Supply chain management is an inter business activity. Banking between 

multiple banks is an inter business activity. So you may trust all the nodes that are 

associated with your bank, but you may not trust the nodes that are associated with 

another bank. 

 

So these kind of environments will be supported, if you have this, cannot be supported 

on say Ethereum but you can support this on Hyperledger. Now you might say that 

well in I can do lot of, you know very complex use of cryptography, zero knowledge 

proof etc., to ensure that kind of thing the confidentiality and probably yes. But it will 

have a lot of overhead of running cryptography, running zero knowledge proof which 

basically has heavyweight cryptography. 

 

So therefore, that is not a very good solution. So what Hyperledger decided that all 

you need to know for all you all the every entity needs to know who is the purveyor of 

your business blockchain is the state, what state be after every transaction, the system 

goes into. And what transactions were done, but the transaction ID, etc., who did the 

transaction, all that stuff. 

 

You do not need to really have the transaction details or the code for the smart 

contract and every node. So that is the basic idea. 

(Refer Slide Time: 20:29) 



 

The other thing that again, we discussed, you know superficially last time, the trust 

model. So blockchain in bitcoin for example, you do not trust any of your peers. All 

the nodes are untrusted and therefore, you have the consensus algorithm, which is 

very complex, very expensive, with proof of work etc. In Ethereum again the same 

thing. Now in a private version of an Ethereum, which is not public, you can simplify 

the consensus process if you trust most of your nodes. 

 

And then you can use something like a proof of authority proof of you know other 

kinds of consensus techniques. But in a public blockchain, your trust is with no, you 

do not trust anybody. So that is the trust about the consensus, like how the consensus 

making nodes are trusted among each other. That is one type of trust. The other type 

of trust is the trust of the business application, right? 

 

So do you trust everybody to faithfully execute your transaction, everybody to not 

breach the privacy of your code, not breach the privacy of your activities, etc. So what 

Hyperledger decided is that to split this notion of trust of the business application and 

notion of trust in the infrastructure. The infrastructure, which is responsible for 

consensus, there the nodes may all trust each other. 

 

Or the nodes may have some assumptions about trust, like we only we trust 

everybody, but some of the nodes may be compromised. So we only trust maybe one-

third of the nodes, two-thirds of the nodes, etc. And accordingly, you can design your 



consensus algorithm. But the trust mechanism at the business level would be enforced 

by a notion of what they call channels. 

 

So what the channels do is that they separate the on the same infrastructure you can 

run multiple blockchains. So one entity might be running a supply chain application, 

and one the same entity can run the supply chain application and some entity can run 

the banking application or monetary transaction applications between the same set of 

businesses. 

 

And they do not need to see each other let us say or they do not trust each other 

because these are two different entities. One may be audited another one may be for 

internal purposes etc. So you have this notion of channels. So the channels basically 

maintain separate block chains. Every channel has a separate blockchain, same set of 

nodes are running. 

 

The contracts, smart contracts associated with each channel are also different but they 

are running on the same node, but on separate dockers. So they are completely 

separated. But the ordering service which is transaction agnostic, semantics of 

agnostic, they do not care what business it is and so on. They just look at the 

read/write set the version numbers etc., and do the ordering. 

 

So they can be common between the two because you are never sending your code or 

you know you do a semantics of your data to them, you are only asking them to do the 

ordering. Now that set of nodes which are doing ordering has a business semantics 

agnostic infrastructure activity, which is to order transactions. So they can order 

transactions for this application, they can order transactions for that application, it 

does not matter. 

 

So that split of trust is possible because your execution is never happening by the 

same nodes who do consensus. So that is the other idea that is not possible in the 

order execute paradigm. 

(Refer Slide Time: 24:45) 



 

And the final thing is that the in bitcoin and blockchain the this thing is hard-coded, 

the order-execute blockchains they have the consensus algorithm hardcoded. Which 

means that bitcoin has proof of work, Ethereum has proof of work, but if it wants to 

go to proof of stake, it has to do a hard fork. 

 

So whereas here since you your ordering service or consensus service is agnostic of 

the business application, therefore you can decide the system configuration person or 

the blockchain configurer may decide that I will use simpler consensus mechanism if 

I trust all the nodes that are involved in consensus. If I feel that there I need crash 

tolerance, I will use a different type of consensus mechanism. 

 

If I need Byzantine tolerance, then I will use a different type of consensus. If I trust if 

I do not worry about crash and Byzantine behavior then I can even use a single node 

which will do all the ordering, which is called a solo. So that also is this consensus is 

pluggable. 

(Refer Slide Time: 26:09) 



 

So now let us talk about this state machine replication model. Because blockchain as I 

have mentioned the most of the technology that is used in blockchain is reincarnation 

of many things that the cryptography community, digital cash community and 

distributed algorithm and distributed computing community has invented over last 40 

or more years. 

 

So replicated state machine is one such model for distributed computing. And then the 

idea is that if you have a database server, and that database server is actually in the 

database server, you have you have a dedicated service that accepts your transactions 

and then execute them on the database and then sends you back the results or success 

or failure etc. So that service, if it is a single service, then it may crash. 

 

So therefore, people have started thinking about primary backup etc. So primary 

backup would be that there will be a primary for the service and there will be a replica 

for the service and the replica will be having the same set state transitions as state 

changes happen in the original primary service, because, if suddenly it has to take 

over from the primary because the primary crashed, then it has to be in the right state 

to continue as if nothing has happened. 

 

So therefore, the question is how do you make sure that one or more replica are in the 

same state and every time they decide to do the same activity all the time. And this is 

where the original problem of consensus came about. 

 



So each replica and you cannot have a leader follower thing all the time, because you 

have to then also elect a leader right, which basically is another way another form of 

consensus mechanism, that who would be the leader and who would be follower to 

follow the commands. So therefore, it is best that there should be a way that 

everybody independently come to the same conclusion about something. 

 

It may be that about choosing the leader and then follow the leader all through, or it 

may be that in every step, you want to build a consensus about what to do next, or 

what state to go to next, and then go there everybody independently goes there. But 

there has to be a consensus. 

(Refer Slide Time: 29:03) 

 

So let us look at some simple animations to understand this. So what but before that, 

we will take a break, and then when I come back, we will start with the animations. 

So we will see you next time. 

 


