
Introduction to Blockchain Technology & Applications 

Prof. Sandeep Shukla 

Department of Computer Science and Engineering 

Indian Institute of Technology-Kanpur 

 

Lecture - 21 

 

Welcome to another session of blockchain technology and applications. So last time, 

we talked about the superficial overview of how Hyperledger blockchain works. What 

we want to do in this session and the next session is to actually take you a little bit 

inside the theory that is behind the particular design choice that the Hyperledger 

people made. And if you understand these design choices, you will understand the 

goal of Hyperledger blockchain or similar enterprise blockchains. 

(Refer Slide Time: 00:50) 

 

So much of this material is from Fred Schneider and the original Hyperledger Fabric 

paper that is available in archive. 

(Refer Slide Time: 00:59) 



 

So we have been discussing this several times, but there is no harm in repeating. That 

the first generation of blockchain which basically means bitcoin and similar 

cryptocurrency, blockchains, like Ripple coin, Dash coin etc., is basically for storing 

and transferring of value. They had very limited ability to program the transactions. 

And that limitation kind of prompted the idea of Ethereum and similar second 

generation blockchain, which is programmable via smart contracts. 

 

We are now seeing is what we call third generation blockchain and or enterprise 

blockchain. And enterprise blockchain, one of the early forerunners of the enterprise 

blockchain is Hyperledger. And then we will also see Corda very soon. And then soon 

there will be other blockchains, which are highly scalable with high concurrency. But 

let us focus now on Hyperledger. 

(Refer Slide Time: 02:08) 



 

But before we focus on the design choices of Hyperledger, let us understand this 

notion of order execute paradigm. So most smart contract based blockchains, they 

actually follow the idea of what is called a state machine replication. So state machine 

replication, we will go more into details of that, in this session or in the next session, 

is the idea that if I want a system to be fault tolerant, then I have to replicate the 

service. 

 

So let us say I am providing a service, let us say a database service, but I want to 

make sure that if my service crashes for example, then I should be able to still able to 

serve the customer or serve the users. So what people have done and this is more than 

40 years old theory from distributed computing literature is that you make replica of 

the see you can think of a service as a state machine, right. 

 

So you start with an initial state, the user interacts with you, you change the state, and 

you then interacts with some more, and then you change to another state and so on 

and so forth. So you can think of a program or a service as a state machine. So if you 

want to serve customer's irrespective of possibility of, let us say crash, then what you 

would like to do is to have a replica of the same service. 

 

But that replica must reflect all the state changes of the original machine, because 

otherwise suppose I crash at some point and then the user request is routed to the 

replica, if the replica is still in the initial state, then replica will not be able to serve 



correctly the customer and the customer it will be the user and the user will be very 

will understand that I am not any more talking to the service I was talking to. 

 

So in order to make it transparent to the user as well as give availability to the service, 

you have to have the replica always be in lockstep with the original services state 

transitions. So therefore, you have to replicate what is called a state machine. And this 

is the idea of state machine replication. Now as you will see that other than crash, 

there are other possibilities. For example, a particular service may be down for 

maintenance. 

 

So in that case, it is not a really a crash, it is actually a known declared you know 

downtime for one of the component of the service. Another possibility is that the 

either the original or the backup replica will actually start behaving weirdly because it 

has been taken over by a rogue entity or it has been affected by malware, or somehow 

its program starts behaving strange. And in such case, we say that that is a Byzantine 

fault. 

 

So there are all these different kinds of fault models people thought about when they 

started talking about this replicating services. And we will see that, that is where the 

original problem of consensus came into existence. Then you have to be in a 

consensus so that you are all agreeing on the next state for example. Now in case 

there is a fault, then also you have to keep maintaining this state transition as you 

interact with the user. 

 

So this is called the active replication. So a protocol for consensus, or atomic 

broadcast needs to order the transactions that propagate to all the peers. So 

transactions may come to your system. And you have, let us say replicas, 4 replicas, 

or two replicas, whatever for your service. Now depending on where in the network 

this replicas are the transactions may come to the primary replica, or it may come to 

one of the secondary replicas. 

 

Now as we saw, as we saw before, that if I give money from A to B, and then B tries 

to give money to C, then if B's original balance was zero, and the B to C transaction is 

only possible when A gave some money to B, then that ordering is very important. If 



the ordering is done differently, then in one case, both the transactions will succeed. 

In the other case, if B to C goes first, then it will not succeed, but A to B will succeed. 

 

So as a result, if different replicas, do the transactions in different orders, then you 

will see the replicas are now out of state. Their states will differ. In order to avoid 

that, what you have to do is you have to ensure that the transactions are ordered and 

everybody agrees on that ordering. And if that ordering is agreed upon, then the state 

will also go in lockstep. 

 

So in Ethereum, for example, what happens is, the consensus step decides that 

ordering, right. Remember that all of the miners are trying to create a block and in that 

block they choose the order of transactions and then everybody else, once they once 

the block has been actually created through proof of work or whatever the processes, 

then it is being sent to every other node and every node will eventually agree to add 

that as their blockchain next block and therefore, the state will always be the same. 

 

But, one of the major issue is that ordering will never be different in different nodes, 

because the ordering is done by the winning the mining node. So consensus is done 

first in bitcoin in Ethereum and then once the consensus is done, then every other 

node falls in there in line with the same ordering. 

 

So therefore, we call it an order execute paradigm, which means that ordering is first 

and then execution. Execution means that every node will change their state in the 

same way, right. And then when the block goes to the other nodes, they will then do 

the transactions. They also have to remember they have to also run the same 

transactions and change the states and so on so forth. 

 

So they have to do this sequentially as they get the block that wins. So this order 

execute architecture has been the first two generations of blockchain has been 

characterized by this order execute paradigm. And it requires all peers to execute the 

transactions and all transactions have to be deterministic. Remember that in 

Ethereum, we cannot have a random, call to a random number generator for example. 

 



Because we do not want non-determinism because once the block has been decided, 

order has been decided, then that block goes to somebody else, they will also execute 

all the transactions and if there is non-deterministic execution, then the state in one 

node will be different from the state in the other node. So determinism is a must. 

 

So order execute architecture is in Ethereum or in some other permission based ones 

like tender meat chain and Quorum. And then transactions must be deterministic. So 

these are the hallmarks of the earlier generation of blockchains. 

(Refer Slide Time: 10:31) 

 

The second issue is that remember, in bitcoin you cannot overnight change the 

consensus mechanism. Then you have to do some kind of a hard fork, right. Similarly, 

in Ethereum you cannot change the consensus mechanism, you have to do a hard fork. 

So therefore, the transaction we say that the consensus mechanism in this block chains 

are hard coded. You cannot change them and without creating forks. 

 

In Hyperledger and more recent blockchain they have somehow extracted out the 

consensus mechanism so that you can actually depending on your need, you can 

change the consensus mechanism. So the trust model of transaction validation is 

determined by the consensus protocol. So trust model means what like so in case of 

bitcoin you do not trust any of the other nodes. 

 

In case of Ethereum also you assume that nobody is trusted. And even these smart 

contracts are coming from anybody and everybody. They can actually deploy a smart 



contract. So the smart contract itself may not be actually, you know honest. And 

therefore, the trust model is that do not trust anybody. But in a permissioned 

blockchain since you have strong identity of each node or each user, therefore, you 

can decide what will your trust model be. 

 

For example, as I was saying that if your blockchain has multiple organizations 

participating, then all the SBI let us say SBI, UBI they are together doing maintaining 

a blockchain and doing all their transactions on the blockchain. Then you can assume 

that the SBI employees they know each other because their identities are clear. And 

UBI employees know each other, their identities are clear. 

 

So they can trust each other, trust within their group but may not trust across the 

group. So this is one type of trust model. Another type of trust model could be that 

you do not trust anybody. So you do not even trust your SBI colleagues, you do not 

trust your UBI colleagues. And then your mechanism for transaction validity etc. will 

be lot more complex. Because then now you cannot trust anybody. 

 

But if you can trust somebody, then your mechanism for transaction whether the 

transaction is valid or not, etc. will be different. So now this trust model is different 

from the consensus trust model. The consensus trust model is about what is the fault 

the what is the fault model you are assuming about the consensus mechanism. So the 

remember the consensus mechanism is about ordering the transactions. 

 

And so if you assume that the nodes that are participating in the consensus 

mechanism, some of them can be rogue or some of them could be affected by let us 

say malware, then you have to have a very strong consensus mechanism. If you trust 

all these nodes, then you can have a very simple consensus mechanism. So therefore, 

what you have to do is that, you have to consider two different trust models. 

 

One model is about those who are doing transaction among themselves, how much 

they trust each other. And another trust model is that those nodes which are 

autonomous and which are doing the consensus, how much you can trust those. And 

in bitcoin and Ethereum these two trust models are intermingled. There is no 

difference in these two trust models. 



 

But in a permission scenario, this can be very different and therefore, we have to 

somehow extricate the one from the other and have two different trust models and you 

can play with the trust model. You may have, if you have a very nice you know 

secure set of nodes which are doing consensus, then you can fully trust that. Whereas, 

since the transactions are coming from outside from clients and so on, you may not 

trust. 

 

Or you may see that the all the people who are doing transaction are within your 

organization, you trust them. You can have a good trust, but you may say my 

consensus mechanism is maybe faulty. Some nodes may actually crash and so on. So I 

cannot trust that fully. So I have to have the right complex consensus mechanism. So 

you can have all kinds of mixes of the two trust models. 

 

So other thing is that in bitcoin for example, you have to write any kind of complex 

logic, business logic like micro payments or escrow etc. in a nonstandard fixed 

language called bitcoin script language. In the case of Ethereum, you have to write 

them in Solidity. Now there are some few other languages which can also converted 

to the EVM bytecode. 

 

But, in case of Hyperledger as I said before, you can write the smart contracts in any 

programming language, because there is no EVM concept or VM concept associated 

with them. You are basically going to execute the smart contracts inside dockers and 

in a regular programming environment. And this fixation with specific language is, 

you know hindering the wide adoption of this blockchain technology. 

 

Because there are not many people knew Solidity, not many people who knew Go, but 

lots and lots of people know Java, C++, Python, etc. So you can do that. Now another 

issue is that in bitcoin and Ethereum etc., all once you get a block, you have to 

execute all the transactions in that block, even though you did not mind that block. 

 

And so therefore, if a transaction, if a smart contract that you are executing is very 

time consuming, then you might get into an infinite loop or very long loop. And then 

that particular node will become engaged for a long time, and that can lead to what is 



called a denial of service attack. That node will not be able to add to the blockchain 

and therefore, nodes will be busy processing the last block’s transactions. 

 

So in Ethereum this is solved by using gas mechanism, right. But in the gas, 

mechanism works because Ethereum has a native cryptocurrency. So you can talk 

about we that is the in a smallest unit of Ethereum and you can say gas costs so many 

weights and so on so forth and you can do that. But if you are having a permissioned 

blockchain in a private setting, you do not have a native cryptocurrency. 

 

Therefore, you cannot really have this notion of gas or or incentive mechanism like in 

bitcoin and therefore, you cannot stop this possibilities of infinite loop and so on. And 

so therefore, this you cannot afford to run the smart contracts at every node. Smart 

contracts are only run on specific nodes, which you trust. And the smart contracts are 

written by specific entities that you trust. 

 

So therefore, you assume that they will not put in an infinite loop or some kind of a 

very computationally intensive logic inside the smart contract. So because you are 

trusting so much you can afford to do that. Therefore, that is why you are writing 

programs in general purpose language C, C++, with which you can do such things 

like creating infinite loops very easily. 

 

But you assume that smart contracts are not written by random untrusted people. It is 

written for specific business purpose by the entities that you know very well. Their 

signature is associated with the smart contract and the corresponding to that signature 

there is a digital identity and so on. So therefore, you can do afford to do that. 

 

Also in those platforms like Ethereum therefore, remember that otherwise there will 

be divergence if the smart contracts have non-deterministic logic, because once the 

block comes to you being mined by one of the nodes, you have to execute the 

transaction. If the transaction was non-deterministic, the result you will get will be 

different from the other blocks what the other nodes will get, and then there will be a 

fork in the blockchain. 

 



And this will be too often and therefore, you cannot afford that. So determinism is has 

to be inbuilt into the language in which smart contract is written. And to do that your 

language should be designed and that is why there is specific languages like Solidity 

or Ethereum you know scripting language, which do not have any construct for non-

determinism. 

 

And then, again, this we talked about earlier that every smart contract runs on every 

node in case of Ethereum, which means that every node needs to know your smart 

contract the byte code of your smart contract. And therefore, any intellectual property 

you have in the logic of the smart contract or any business secret as to how you 

process transactions, how you make decisions on the transactions etc., will be known 

to everybody else. 

 

That is also not desirable. And therefore, the confidentiality of the business secrets 

etc., is not kept and therefore, we need to have some way of also not having a system 

in which smart contracts will be run at every node. So all these things that they 

figured out in the earlier blockchains that they want to get, make a difference from. 

(Refer Slide Time: 20:58) 

 

So Hyperledger has many different incarnations. So Hyperledger Fabric is the one of 

the most used one. So we are talking about Hyperledger Fabric. There are other 

implementations of Hyperledger, but Fabric is the, I would say most canonical 

implementation of Hyperledger, which is done by IBM. So Fabric is the first 



blockchain system. So to support execution of distributed applications written in any 

programming language. 

 

So this gives us the ability to attract people to use it. So there is adoptability will 

increase because, if I have to code a business logic in C, I already know C, I do not 

have to learn Go or Solidity or whatever that makes the barrier to entry into this 

technology much lower. So the architecture of Fabric follows execute-order-validate. 

So earlier we were talking about order execute. 

 

So order first execute next. Now we are talking about execute-order-validate 

paradigm. And we will explain what that means for distributed execution of untrusted 

code in an untrusted environment. So it has a transaction flow, which has three steps. 

First executing a transaction and checking its correctness and thereby endorsing it. So 

there is a step called endorsement. 

 

So when client or the user of the application proposes a transaction, for example, give 

this much money from my account to somebody else's account or give this much price 

for the entity I am purchasing from that other entity. Then, the endorsers are certain 

nodes which will simulate the execution of that transaction and say If the transaction 

happens, then this will be the final situation. 

 

Your account will be debited, that account will be credited or things like that. So that 

information along with an endorsement which is which comes in the form of a digital 

signature of the endorser comes back to the client or to that code that is running on 

behalf of the client. Then, after and this endorsement may be from one node, or it may 

be from multiple nodes depending on what is called an endorsement policy. 

 

The endorsement policy is also flexible. So then, once you have got enough 

endorsements, as per your endorsement policy, if the endorsement policy says one 

endorsement is enough, that is fine. That then you are done with one endorsement if it 

says that it has to be a two out of these three nodes, then that also has to be gotten, 

things like that. 

 



And then what you will do is that you send the send this endorsements with the 

possible changes in the state that is how much your balance will be, what will be 

deducted from your balance, what will be added to the other balance etc. to the 

ordering service. Ordering service will then order the transaction. Ordering service 

does not care about the semantics of the transaction, it does not execute the 

transaction. 

 

It just do the check the read/write sets and order them. And there is some notion of a 

version issue also. But right now let us not worry about it. Just understand this that the 

transactions will be ordered and a block will be cut and that block will be sent to peers 

called validating peers. So then validation will be done by this validating peers. 

 

What they will do is they will check which transaction is meaningful, which 

transaction is meaningless and they will mark those transactions which are 

meaningless. And for the rest of the transactions, it will use the read/write set to 

change the state replica of the entire system in its local copy and add that block to the 

end of the blockchain. So this is validating peers are also designated peers, not 

everybody in the network has to do validation. 

 

So you see that for a transaction, not everybody executes the transaction or everybody 

does not need to endorse the transaction for each transaction or application. There is a 

transaction endorsement policy and that has to be fulfilled. Similarly, validation also 

is done by specific validating nodes. And when we come back, we will get into more 

details of Hyperledger Fabric. 

 


