
Introduction to Blockchain Technology & Applications 

Prof. Sandeep Shukla 

Department of Computer Science and Engineering 

Indian Institute of Technology-Kanpur 

 

Lecture - 16 

 

Welcome back to Blockchain Technology and Applications, another lecture. So last 

time we were talking about Ethereum blockchain and what are some of the 

differences between Ethereum and bitcoin and one of the difference we saw is the 

difference between how the state is maintained in the blockchains in case of 

Ethereum. 

 

It is based on accounts and in case of blockchain it is based on UTXOs or you know 

unspent transactions. Now the question, remember that in case of the block, the how 

the blocks are kept in the bitcoin we talked about Merkle tree, right. 

(Refer Slide Time: 00:56) 

 

So in Merkle tree we have a very specific data structure, which basically is a hash 

tree. Now Merkle trees, quite a bit of work to find a particular transactions for a 

particular account, for example, in case of bitcoin in case of Ethereum. So they use 

something called a Patricia Merkle tree. And so Patricia tree is a data structure, which 

is actually based on the idea of a prefix tree or radix tree or trie. 

 

So the idea there is that I want to save space, but I want to record a number of 

different strings, let us say. Not everything is not necessarily strings. It may be other 



objects like account addresses and information like that. So the question is, how do 

you store them? So in a trie, what happens is that if you have number of different let 

us say strings. 

 

And you do not want to so if you want to store the strings in a Merkle tree, for 

example, then if you have, let us say 100 strings, then you will have 100 leaves, each 

of them will be storing the string, and then two of them will be hashed and then 

another two will be hashed. So you will have a height of log of 100, which would be 

about height of let us say, log of 100 will be about close to maybe log to the base 2 is 

7. 

 

So you might have a tree of height 7, and then all the different things. Also finding 

something there unless the leaves are sorted, will be quite a bit of work. You do not 

know when you start from the root which direction to start. So the idea of trie is that 

you keep the prefixes of the different, prefixes of the different common prefixes on 

the path. So for example, suppose I want to store this strings to, tea, ted, ten and inn, 

right. 

 

So in this case, what you do is that we see that there are four of the strings starts with 

the same prefix, so t. So I will create a root and then I will have a child which is 

marked whose paths is marked with t and then I will have note for t and then I see that 

after t there are two with e and one with o and actually three with e. So therefore, I 

will create one branch with e and then it will be te and then I will be easily create this 

tea, ted and ten. 

 

And then you will have this one which is to that is separate. Similarly, here you will 

have, let us say there was another word A. So A is alone here and then you will have 

this one inn was different. So inn then n and in this will stand out separately. So we 

have basically used the prefix encoding in creating the data structure and therefore, if 

I want to search ted I know that I have to go in this direction, go in this direction, and 

then go in this direction. 

 

So the searching will be log n and it will be even sometimes if you have much more 

commonality in the prefixes it will be even easier. So this data structure trie is used 



for implementing for example, routing table and routers and so on. So this is not 

something new that is being invented here. But they decided that this is how they are 

going to store their account informations. 

(Refer Slide Time: 04:53) 

 

And then Merkle tree you already know. So there is nothing new to discuss in Merkle 

tree. So if you want to keep different data, then make them the leaves and then you 

start making hashes and get the hash. The root hash will give you integrity of the 

entire thing. 

(Refer Slide Time: 05:11) 

 

So they combined the idea of Merkle Patricia tree as the data structure through which 

the blocks are stored. So since we are not going to really work on the blocks, per se, I 



just want to give you an idea that this is another different optimizational aspect of 

Ethereum compared to the bitcoin blockchain. 

(Refer Slide Time: 05:36) 

 

So now what I want to do is I want to tell you how to go about playing with Ethereum 

blockchain and creating your own network so that you are not initially having to work 

with Ropsten or the or certainly not on the Mainnet. You create a simulated Ethereum 

blockchain on your machine using something called ganache, and then you use truffle, 

which will be used for creating smart contracts and applications and the ability to 

deploy contracts. 

 

So what these things will give you is the ability to very quickly get started with 

creating smart contracts. For example, you want to create some smart contract like 

already skeleton smart contract available, let us say and then you want to fill that in a 

little bit to create some functions in the smart contracts and play with it. So what I 

would do is that I will assume you have an Ubuntu. 

 

Otherwise, what you can do is that you can download a VirtualBox from the from 

Oracle. It is a free software, VirtualBox. You can Google it, and then you can 

download it. It is basically a virtual machine, ability to host a virtual machine through 

VirtualBox. Then Ubuntu distribution sites. And you can download Ubuntu let us say 

19 or 18.04 LTS whatever is the version you want to get. And you get a ISO image. 

 



It is going to be pretty heavy, couple of gigabytes. But nowadays that is not a big deal. 

So you download that and then you create a guest machine in the VirtualBox with 

Ubuntu. And then you can use that as your experimentation machine within your let 

us say Windows machine. Or what you can do is that you can find the instructions for 

creating nodejs and installing nodejs and truffle and ganache-cli on your Windows 

machine. 

 

I have not done that. But I am pretty sure you can find how to do that on the internet. 

So but I am going to assume that you have Ubuntu. So you have to update your 

Ubuntu first and then install nodejs. And nodejs is actually a development 

environment for JavaScript applications. And then you do a install the node package 

manager, which will allow you to do various things like install truffle, install ganache-

cli and so on. 

 

You want to check the version of npm. It is 5.0 plus is good. Then you use the 

package manager npm, to install three things, truffle, two things truffle and ganache-

cli. And then you ganache-cli will also create an account ganache-cli. So you actually 

do this. 

(Refer Slide Time: 08:47) 

 

Now when you start ganache-cli, right so you will see that it basically is starting to 

emulate Ethereum blockchain, which has already reconfigured 10 accounts 0 to nine 

and their addresses are given here. You may actually record this copy this addresses 



to a file and the corresponding private keys. So these are the private keys. And then 

you have the gas price here. This is in terms of Wei and then there is a gas limit. 

 

But this gas and gas price and all that stuff is going to be fake because this is not 

against the Mainnet so you do not really have to pay any money and then it will start 

listening for nodes to do things at this port 8545. So this port so when you make a 

when you deploy a transaction, it has to refer to this host and this port, so that you can 

you know this it goes to this Ethereum emulation, and then you will see the effects of 

deploying a contract or testing a contract and so on. 

(Refer Slide Time: 10:08) 

 

So then in order to, then you open a different window, because that window will now 

be busy listening to for, you know nodes to deploy contract or do transactions there. 

So you make another window and then you create a Demo directory. You make a 

directory name and go to that directory and then say, truffle init, right. So what truffle 

init will do is that it will create multiple different directories. 

 

And these directories are called contract migrations test and so on. And these 

directories will have some skeleton code for the contract called HelloWorld. It does 

not know what you want to do with HelloWorld. So that is what you have to fill in. 

But at least you will it will put out the skeleton. 

(Refer Slide Time: 10:58) 



 

So as you can see here, this is what we are doing. And then truffle can also be used to 

compile contracts, it can also use to migrate contracts which basically leads to 

deployment. And then you can do the testing of the contract. And once you have run 

the truffle in it, you will get this directories under HelloWorld contracts where the 

smart contract code will be there. Migration is the migration code for deployment. 

 

Because when you create a smart contract, you also have to create JavaScript or 

whatever to actually deploy the contract or call functions on the contract and so on. 

There is a test directory and there will be configuration JavaScript files. And now you 

have to start working with this. 

(Refer Slide Time: 11:50) 

 



So if you look at this thing, then you will see that you have HelloWorld and the 

HelloWorld is has contracts in which it will have one smart contract for migration 

called Migrations.sol. And then you have a JavaScript in the migrations directory, 

which is for the initial migration. And then you have this configuration, other stuff. 

(Refer Slide Time: 12:16) 

 

So contracts is where you store the Solidity code of the smart contracts. Now we will 

create a HelloWorld.sol file, and put in the contracts and fill it up. Migrations is also 

another smart contract that is going to be used to deploy this contract. And test is a 

test code and it can support both JavaScript and Solidity. And truffle.js is a 

configuration document. And truffle.js actually is already filled with everything 

commented. 

 

So you have to uncomment the configuration of the network. And in your case, the 

network is listening on local host. That is 127.0.0.1 and then it is actually listening to 

port 8545. So you have to make sure that you uncomment that network configuration 

in which the port is 8545 in this file, this file you can is only for Windows users or old 

Ubuntu users. So you can ignore it. 

(Refer Slide Time: 13:22) 



 

So now you do this create contract HelloWorld. And then it will create a skeleton for 

the HelloWorld.sol, which will have the skeleton code where you have to fill things 

in. 

(Refer Slide Time: 13:34) 

 

So this will look something like this. So pragma, solidity this says what is the version 

of Solidity. Solidity is a evolving language in last 4, 5 years. So right now I think it is 

0.7. So currently, so this is from last year. So most probably you will see something 

like 0.7 or something here. And then in the contract HelloWorld you will, there will 

be a constructor. 

 

Automatically you do not need to do anything in there for this particular example. A 

constructor is what actually initializes the contract. And it only gets called when you 



first time deploy the contract. But if the constructor is skeletal, which basically means 

that it is not doing anything. But in this case, we want another function, which 

basically does not take any input, but it returns a string. 

 

And this string is actually is of type memory. So it is not in the storage, it just in the 

memory, which means that this will not be stored on the blockchain. And then it will 

return HelloWorld. And then you can call truffle compile, and this will compile the 

HelloWorld.sol into bytecode. 

(Refer Slide Time: 14:55) 

 

Now it also creates a json file, which is in the build. So you will see a build directory 

that has come up, which was not there when you just created the read the truffle in it. 

So you will see that json file. In there, there are some of the configuration 

information. And you do not have to worry about it for this simple contract. And then 

in the migration directory, you create a another js file, JavaScript file. 

 

Remember there was already one underscore initial migration file. So now you will be 

creating a 2 underscore initial file. And in that case there you are going to say so it is a 

JavaScript. So there you are going to say that I have this variable HelloWorld. And 

the artifacts required for this is the HelloWorld.sol file. And then it will say 

module.exports equals function deployer. 

 

So it requests a deployer and deployer deploys this smart contract. So the name of the 

smart contract is HelloWorld. So it is going to deploy this. So when you run this 



JavaScript, it will deploy based on the configuration information that is already in the 

truffle.js and so on. 

(Refer Slide Time: 16:17) 

 

So as I said that in the truffle.js, you have to make this uncomment. So mostly they 

will come commented like this. So you have to basically uncomment the relevant part, 

so that you know that your host on which the network host is local host, and then the 

port at which it is listening is this. And then you call truffle migrate. 

 

And remember, there was a window in which the ganache was running, and it was 

stuck at the point where you left it. So now as soon as you migrate, you will see that it 

will tell you what is being deployed and all that stuff. So you will see all these things 

in the migrate this kind of information the contract address and so on will come in that 

screen where you have the ganache running. 

(Refer Slide Time: 17:07) 



 

This is actually the what you will see in the ganache screen where you will see all this 

different things being invoked. And these are the transactions, block number, and so 

on and so forth. 

(Refer Slide Time: 17:19) 

 

So now you can try this, you can also go to the Ethereum.org website, and you can 

actually directly play on the, through the web interface. So they have a Hello if you go 

a little bit down you will see a HelloWorld there will be a coins smart dapp. So 

various dapps are there. You can also play with that instead of having to do all this 

yourself. But I think it is more fun to do it yourself than going there. 

 

And because the amount of visibility of what you are doing will be slightly less when 

you are doing it to the web interface. But you can do that also and you can see number 



of different contracts to learn how the contracts look like and how they work and so 

on. So in this set of lectures, you learnt the design philosophy of Ethereum 

blockchain, some basic differences between bitcoin blockchain and Ethereum. 

 

The concept of smart contracts, the concept of Ethereum network and simulation of 

such network for testing, and finally, a clue about how to simulate a local private 

network and try out a simple smart contract on your own. So in this course, so we are 

about four weeks away from the end, and we have to cover a lot of other things. 

 

So next thing that I want to cover is some of the issues that this bitcoin and Ethereum 

this permissionless and cryptocurrency blockchains have, that we have ourselves at 

our laboratory have discovered and I want to actually make your aware of those 

because, as you know probably that RBI had put a restriction on cryptocurrency 

buying and selling in India. 

 

And then recently in last week, the Supreme Court has asked RBI to enable 

cryptocurrency exchanges and cryptocurrency selling and buying and so on. And I 

personally has been very, you know critical of that step because in a country like India 

where people can be easily fooled and they are not so aware, there are a lot of things 

about bitcoin and blockchain that people do not know. 

 

And they might actually lose money because it is very speculative. And therefore, I 

want to give you some little more idea from our own research as to why I think that 

cryptocurrency is not something that should be bought and sold in India. 

(Refer Slide Time: 20:07) 



 

So what we are going to do is I want to start talking about this and and eventually will 

talk in details. So first thing that I want to say is that we have studied the entire 

Ethereum blockchain until last year's April. We basically downloaded all transactions, 

all smart contracts that have been there since 2015 to 2019 April. And we analyzed 

how many contracts are involved in most of the transaction. 

 

How many contracts have most of the ether, how many contracts have most of the you 

know activities, and we find that there is a huge amount of inequality in the Ethereum 

smart contract. And we are doing this because bitcoin similarly bitcoin blockchain 

information has been similarly analyzed. And people found very similar patterns. And 

we wanted to see if Ethereum has the same. 

 

And remember that the idea that the blockchain was put forth in the first white paper 

by Satoshi Nakamoto is that he wants to create a more just currency system and 

transactional freedom anonymity and all the government into lack of government 

interference and so on. But we find that the real social inequality that we are seeing in 

real economy is being reflected here almost entirely and probably even more. 

(Refer Slide Time: 21:59) 



 

So what I want to show you very quickly and over this after in the next session. 

(Refer Slide Time: 22:03) 

 

But I want to show you some of the results. So what we have found is, so until last 

year, we collected all the blocks. So there were 7 million blocks 7.1 million blocks at 

that time. There were almost 400 million transactions, about 760 million addresses, 44 

million unique addresses among them. These are addresses that are referred in 

transactions. And then smart contracts there are we found 1.9 million smart contracts. 

 

And out of which we found source code for about 53%. Because there is, you know 

some authors of the smart contracts also put their source code, whereas the other ones, 

they do not put their source code. So we did this. So we finally, we can collected 1.9 

million smart contract byte codes, out of which half of which we can find. We could 



find the source code. But for what I am going to tell you now does not require source 

code. 

(Refer Slide Time: 23:14) 

 

So what I am going to show you is that see it is observed that out of 1.9 million smart 

contracts, 94.6 that is 95% are duplicates. So about 0.1 million that is about 100,000 

or so smart contracts are actually original smart contracts. Most duplicated contract is 

of course, the user wallet contract, which has about 650,000 instances. 

 

Only 2 out of top 10 contracts, which duplicated like when I say top 10, I mean, the 

ones which have been duplicated the most. So user wallet is the most duplicated and 

then the fourth duplicated is forwarded. This too we got the source code. Now observe 

that top 100 contracts, that is only 0.1% contracts out of the 100,000 original 

contracts, they actually get duplicated about 1.72 million. 

 

So that means that 90% duplication are only about 100 contracts. So diversity of 

contracts is very low. 

(Refer Slide Time: 24:30) 



 

And then we have the wanted to see balances, right. So we found that top 100 

contracts contain 99%, almost 99% of the Ethereum. So this is what we are worried 

about in real society today in the economy that like 0.1% of people actually control, 

let us say 70% of our country's assets and this is true in the US and other countries as 

well. So this is an inequality that is you know worrying economists. 

 

And we would have thought that this, you know bitcoin and Ethereum these things 

will liberate us from such inequality of the society because, you know there is 

integrity and all that stuff. But actually, that is not happening. So only 100 contracts 

basically own 99% of the ether. So this is very, very worrying thing. 

(Refer Slide Time: 25:26) 

 



And we saw that smart contracts on the on our data set were involved in 175 million 

transactions of which is 46% of all transactions. And we found that the 2500 contracts 

are responsible for 90% of the transactions. So which means that it is not hundred but 

it is still only 2500 contracts, which are doing most of the transaction so which means 

most of the accounts are excluded. 

 

So I will go through this in even more detail in the next session. But what I want to 

caution you about is that this idea that blockchain and this pseudonymous blockchains 

will free up free society and all that stuff is not happening. And this is not only in 

Ethereum block, other people have done similar analysis. And they have seen similar 

trends in bitcoin blockchain. 

 

So we will discuss this in more detail before we go into permission blockchain for the 

next several weeks. So but I think that this is something you should keep in mind 

when people advocate cryptocurrency, and you know cryptocurrency based society 

and all that, all that buzzwords. Okay, so we will see you next time. 

 


