
Introduction to Blockchain Technology & Applications

Prof. Sandeep Shukla

Department of Computer Science and Engineering

Indian Institute of Technology-Kanpur

Lecture - 13

Welcome back. So we were discussing about Ethereum blockchain. And to start the

discussion on Ethereum we need to talk a little bit about why we use blockchain. And

you will see throughout the course that whenever we say why we want to use

blockchain, depending on which context we are talking about, which platform we are

talking about, we will talk it we will talk about it slightly differently.

So let us look at this in the Ethereum context. So earlier we said that, you know in the

bitcoin we said that it is about generating cryptocurrency and then making

transactions of cryptocurrencies, you know double spending proof and all that.

(Refer Slide Time: 01:02)

Now we are saying that blockchains are to be used when multiple parties perhaps

located across the world need to share data and transfer value without trusting each

other. Now we are bringing in data sharing as one of the key reasons why we want to

use blockchain and transfer of value which may mean transfer of properties, assets or

which could mean transfer of coins or cryptocurrencies, right.

So this is more generic than what bitcoin was doing. Now let us look at this trusting.

So we are saying that, even if we do not trust each other, the different parties, we can

still make sure that we can securely and we can generate a trust that everything will be

working fine without a third party ensuring that everybody is playing fair, right.

So usually we need a third party. Now this trust about the different parties in a

transaction and when I say transaction here I do not mean cryptocurrency transaction

any world real world transaction like buying a property or sharing information and all

that. So there is a, what the financial world calls this kind of mistrust is counterparty

risk. Counterparty risk means that the thought that or the risk that the other party

would not hold up their end of the bargain, right.

So for example, I want to purchase a book from you, and I send you money but you

do not send me the book, right. How do I ensure that that does not happen? Now

currently, the way it works is that the other party which is selling the book is normally

a large company, like Amazon and therefore they have a reputation to keep, because

tied to their reputation is their value of the company.

Now if it is a small time person like Amazon Marketplace, then it is Amazon who

underwrites the risk, right? So but in all these cases, the counterparty risk is mitigated

by either reputational issues or by a third party. So the blockchains, such as Ethereum,

tries to remove the counterparty risk through a clever use of mathematics,

cryptography and peer to peer networking, right.

So that is what the blockchain platform provides is the remediation of the

counterparty risk without a third party or centralized authority.

(Refer Slide Time: 03:52)

So let us see what is wrong with the centralized approach. And we discussed this

before. Let us say the central database is a your student grade database in a university

and all the grades submitted by the instructors are in the database. And the way to

interact with the database is through front end, like a through a browser. And then the

front end is actually rendered version of HTML, CSS, JavaScript, etc.

And then in the back end, there are some server program, server application like

written in PHP, Ruby, Python, and so on. And then there is a database. Now the point

is that how does the student know that the data in the database about his grades or her

grades is the correct grade that the instructor provided? How does the instructor know

that the grade they submitted is in the long term remains the same grade after some

years.

Could be that somebody insider could have changed the database, or it could be that

there was a cyber attack on the web server. And through that they gained access to the

website, maybe through SQL injection.

And also the when you backup and restore the database, depending on how you keep

your backup, and who has access to the backup and so on the database backup, when

you reconstruct the database from the backup, you may not be able to trust it. And this

is the problem with the centralized approach.

(Refer Slide Time: 05:32)

So one possibility is that every time the data changes, you make a backup copy. And

you retain all historical backups of the data. And you keep the hash of the backup and

keep the hash safe to prove the proof integrity violation. But the question is, where do

you keep the hash of the data because if the person who is in charge of the database

hashes the backup and give the hash with him.

Then later on, if he decides to go and change the data, he will change the hash also.

So the hash should be somewhere that he or she cannot manipulate, right. So one

possibility is that you do not put all the data in your database in a blockchain, but you

commit the hashes of the different backups to the blockchain. So every time you want

to go and check integrity, you have to look the hash up in the blockchain.

And given that blockchain is tamper resistant, that the person who is in charge of the

database may not still be able to access the hash and change it. If he changes the data,

and he cannot change the hash. So that is one possible way of mitigating this risk of a

central authority keeping the data. Now the when you share data, all stakeholders has

to agree that the data is not tampered with and maybe some proof mechanism might

be required.

Maybe again some hash kind of thing is required to prove that the data integrity is

maintained. So usually what we normally do in today's IT world is that we have we

get certified by a third party auditors. And this IT system auditors come and check

and say that okay I have checked all the logs and everything and nothing has been

tampered with and so on. I certify then whoever is interested, can actually look up the

audit reports and satisfy themselves.

But this has all kinds of problems because the auditors might be bribed, the auditors

might make mistakes, all kinds of problems. So I as the consumer of the data or

whose data is being kept at the central server has no way to directly get a proof of

integrity. You are always trust, you have to trust a third party auditor, or you have to

trust the party that is keeping the data. And that is not very comforting, especially in

today's day and age.

(Refer Slide Time: 08:20)

So one can consider blockchain in different ways. So one possibility is that you keep

all the data in the blockchain. And every time you commit a data, that is a transaction.

Every time you make a change in the data you make, that is a transaction. If every

time you deleted a data that is a transaction. So all these things will be in the

blockchain.

And since everybody has a copy of the ledger, so it is and therefore, depending on

what consensus mechanism you use, you are unlikely to be able to do anything

without being caught by some of the participants. So this makes the ledger secure,

decentralized, and replicated and so on. So it is a fault tolerant, and anybody who

wants to verify that the data has not been tampered with all the information about

when the data was put, like initiated, that is a transaction.

When the data was modified that is a transaction. When the data was deleted it was a

transaction. So you can actually go to go and browse the blockchain, it is public, and

then you can say that, okay you know I have a proof that so I have direct proof, not by

a third party auditor telling me that I have checked all the logs and everything. Now

one problem with this is that data often is private, information like grades.

You cannot put grades of students in a public ledger. So in that case, you do not

necessarily have to put the actual data in the blockchain, but you put the hash of the

data. Every time you make a transaction on the data, you put a hash of the data in the

blockchain. So every time you want to check data integrity, you have to check against

the hash that is there in the blockchain.

So this may not make a whole lot of sense right now but we will talk about this later

when we look at the applications. But the point is that blockchain is not necessarily

for keeping all the data on the blockchain. Blockchain could be only about keeping

the logs of all transactions in a secured form in the blockchain, so that you have proof

that the data has been tampered with or not.

You do not necessarily but it in some cases you can, if the data is not necessarily

public, or you cannot derive private information from the data by seeing the data, then

you can actually directly put the data in the blockchain. But again putting the data in

the blockchain will make the blockchain heavy and remember it gets replicated all

over the places.

So you have to find out based on your application needs, whether you want to put all

the data in the blockchain or you want to put some clever way of proofs of data

tampering or not in the blockchain.

(Refer Slide Time: 11:22)

Now what are the concepts that are common in blockchain? We have seen the nodes

which do transaction validation which do block validation which make blocks through

mining or some other technique and when they make blocks, it could be that they

might be solving puzzles or they could be part of the authority or they could be having

enough stake to be one of the nodes making the next block or the nodes could be

ordinary nodes who are just doing transactions.

So there is concept of transaction, there is concept of blocks and if it is through proof

of word, then there is mining involved. And which is done through solving hard

problems. Or if you can, you may actually do a Byzantine fault-tolerant consensus.

We will see other blockchains where that is done instead of mining. Hash is used for

integrity, digital signature for authenticity or authorization.

And there is tamper resistance. So we know all this. Just recalling some of the

concepts.

(Refer Slide Time: 12:29)

Now let us see one application, right. So let us say Bob has 3 coins. And he wants to

send one to Alice and Alice has 1 coin. So at the end of this transaction, Alice should

get 2 and Bob should get 2. That would be the next state right. So the current state is 3

and 1. The next state after the transaction should be 2 is to 2. But this is one of the

transactions and here are examples of many transactions.

So when a node that wants to make a block gets enough number of transactions to fill

a block, then they will do a mining or some other way of deciding that these are the

transactions that I am going to put in the block. They will actually check validity of

the transactions and then they will put the transactions and then put attach it to the last

block. So that is what happens here.

(Refer Slide Time: 13:24)

So at the end, when the block has been put into the blockchain and depending on what

the process is, whichever miner wins, then the state of the situation changes. Now you

have 2 and 2 for Bob and Alice. We know this from before, except that in case of

bitcoin, we do not have a specific thing about Bob and Alice or this account and that

account, right. So now we are talking about account to account transactions, right?

(Refer Slide Time: 13:59)

So that is something that is there in Ethereum and which is not in bitcoin. Okay, so

now we are ready to see what Ethereum is really about. So first of all Ethereum

allows you to run programs in its trusted environment, right. So we saw that in the

bitcoin blockchain also we run scripts, right.

So every time I want to validate a transaction, I look at the input transaction and I

look at the output transaction and I collect script from the input transaction, the output

part of the output script of that previous transaction and the signature of this new

transaction, I put them together and I execute a script. So that script execution actually

ensures that the transaction is valid, right.

So here also we have such programs, which run every time a transaction has to be

carried out. But this programs compared to the bitcoin blockchain are much more

generic program. In fact, the by intentionally Ethereum made their programming

language Turing-complete. So it can execute any arbitrary function unlike bitcoin,

which was not Turing-complete.

And therefore, we could not run any arbitrary functions or write any arbitrary

functions in that limited scripting language. We have programming language here,

which allow you to run, create any programs for any function. And therefore, we can

run any programs. And these programs run on something called an EVM or Ethereum

Virtual Machine.

This Ethereum Virtual Machine is actually like any processor or Java Virtual Machine

for example, which has a certain model of computation. So when it looks at the

different instructions of the program, how this instruction is executed is based on the

semantics of the Ethereum Virtual Machine.

So for example, in the bitcoin scripting language also we saw, remember we showed

you how the they have a stack and then and they put the data values on the stack and

when they actually get to an opcode, they depending on the opcode, they will retrieve

the top one or top two or whatever number of arguments from the stack and then they

will execute the opcode.

And then if there is an output of the opcode, then that is now put on the top of the

stack. So this is how that is what is the semantics of the script, right. And the

semantics of the script is dependent on the virtual machine or the programming model

of computation on which the program runs. So Ethereum Virtual Machine is also tag

based computational model, where there is a stack.

The stacks actually are 32 byte words per entry. And you can have at most, I think

1024 entries in the stack so the stack can grow up to 1024 and as the opcodes are

encountered, depending on the opcode you might take the top elements of the stack or

the top two elements or top three elements whatever the opcode requires to execute,

and then if the execution of the opcode has an output that output goes on the top of the

stack.

Now Ethereum also since the stack is limited in size, therefore it cannot give you up

completely Turing complete execution. So therefore, it allows access to memory and

also it allows access to storage. So therefore, unlike the so if you have to be Turing-

complete and those of you who have taken a course in theory of computation know

that a Turing machine has an infinite tape right.

And because it has an infinite tape, you know you can go you can have arbitrary long

intermediate state of the program. So here also there is memory and there is stack and

there is storage so you can actually do anything you want and your state can go pretty

large. And then again it may go become small, but that is how the Ethereum programs

are executed.

So Ethereum programs when they get executed, they produce some result. And

depending on what the program is supposed to do, this program could be putting

money from one account to another or it could be launching a new contract, a new

Ethereum program, a smart contract or it could be actually doing some data storage.

So depending on what the program is supposed to do.

Now what happens is that so a transaction is actually involves invocation of functions

in a smart contract. So smart contract is more like if you know C++ or Java, it is

actually a collection of methods and some data, right. So when a transaction needs to

happen, it refers to a smart contract, it may refer to a smart contract and some method

or function inside the smart contract.

And it can do that you know a transaction can be quite complex. So it can actually do

multiple different calls to different functions and in different smart contracts and these

have to be executed. So when the transaction has to be validated, every node that is

validating the transaction will also execute the entire code right. So every node that is

validating a transaction will actually run code on their EVM.

And this programs therefore, have to be what we call deterministic programs. So a

deterministic program is a program that no matter how many times you run they will

always produce the same result. Unlike a non-deterministic program or a randomized

program, where different runs may produce different results.

So therefore, all the different nodes that is verifying the transaction or validating the

transaction, when they execute, they end up with the same final state and final result.

So the code is contained in smart contracts. And the state of the EVM is persisted on

the blockchain. So every time you execute a smart contract, or a transaction, you

might change the state of the EVM. And that information is put on the blockchain.

So it is not just that the transactions are on the blockchain, but the EVM states are on

the blockchain. So all nodes process smart contracts to verify the integrity of the

contracts and their outputs.

(Refer Slide Time: 21:32)

So as I said, a smart contract is code that runs on EVM. Most of the smart contracts

are written in a language called Solidity. Solidity is an object oriented language, kind

of like JavaScript. So smart contracts themselves can accept and store ether, right? So

it is not only that a person's account on Ethereum can store ether and spend ether. But

smart contracts themselves can also accept and store ether.

It can also accept and store data, or it can accept and store both data and coins. Based

on what is written in the smart contract, in the code of the smart contract, it can

actually also distribute that ether to other accounts, other human accounts, or to other

smart contracts. So kind of like each smart contract as if they also have an account,

right? So humans can create accounts as players.

In the account they can put ether, they can earn ether by selling stuff, and then

somebody sends ether to their account, or they can mine ether, if they are if they have

enough computation power, and they can put those ethers in their account. Similarly,

the smart contracts themselves also can get ether, can spend ether and they can get

data and store data, then remove the data and so on.

So let us see what kind of transactions are done with smart contract. And here you

will not see much different from what this smart contract that we are going to show

now is very similar to what can be what we have seen before in terms of escrow

transactions, in case of bitcoin. Because this is this does not require a lot of

programming primitives. It can actually be done with very simple programming

primitives, like what is available even in bitcoin.

So let us say Alice wants to hire Bob to build her patio. And so but Alice does not

want to give the money upfront to Bob because she is afraid that Bob will then do a

poor job or not do the job or do worse, make her patio even worse. So Alice tells Bob

that you deposit some money to an escrow account and I will deposit also money in

that same escrow account. And an escrow account is basically a contract.

So contract, which is so instead of a person, like a Judy, like in case of the escrow we

saw in case of bitcoin where there was a third party Judy, who was you know kind of

working as an escrow, here a program will work as an escrow. So the program is

written in such a way, so that if the contract be the real world contract gets fulfilled,

for example, Bob really builds the patio to Alice's satisfaction, then Alice can invoke

a function in that contract, so as to pay Bob the money.

And if Bob does not do a satisfying job or does not build her patio, then she can

invoke a function in the contract to actually not only get back her money, depending

on what is written in the contract, maybe get Bob's deposit also. So that is how the

contract. So here instead of a human third party, we are using a program to enforce

this contract.

(Refer Slide Time: 25:14)

So here is an let us say an escrow smart contract. And you have both of them put

some money in there, in this case 1 ether each. And then at the end, Alice says, sends

an okay message to one of the functions that pays up Bob 2 ethers, right.

(Refer Slide Time: 25:33)

So one, his deposit back, and one for what he has earned.

(Refer Slide Time: 25:39)

So as I said before, the smart contract of Ethereum are written in Solidity. And in the

next session, when we come back, we will talk about a little bit on Solidity, what it is

like and so on. And I will give you a pointer as to through which you can actually

start writing your smart contracts in Solidity in a simulation environment. So that is

where we will start in the next class, in the next session. Okay.

