Lec 07-
Hadoop MapReduce 2.0

(Part-II)

Let us see, some of the applications, of MapReduce.

Refer Slide Time :(0: 15)

Applications

e Here are a few simple applications of interesting programs that
can be easily expressed as MapReduce computations.

yDistributed Grep: The map function emits a line if it matches a
supplied pattern. The reduce function is an identity function that
just copies the supplied intermediate data to the output.

] Count of URL Access Frequency: The a \f/unction processes
logs of web page requests and outputsLUFﬂ.;_l‘)/. The reduce
function adds together all values for the same URL and emits a "
(URL; total coupt) pair. __ weo coont ivee p%@_f%}@?
yaeverseyveb-Link Graph: The map function outputs (target; 1
source) pairs for each link to a target URL found in a page named
source. The reduce function concatenates the list of all source
URLs associated with a given target URL and emits the pair:
____(target: list(spurce)) .\ =f\n) rE W o [(.!!CJ&Z]T

We are already the programs are available and its, use in the production, environment, by different
companies. So, here are the few, simple applications of interesting programs, that can be, that has, already
been expressed, as the MapReduce computation. So, the first one is called, ‘Distributed Graph’. Here, the
map function emits a line, if it matches a supplied pattern, for example, if the document is given and we,
we have already given one pattern. So, all the lines in that particular document, where that particular
pattern is appearing, will be emitted and reduced function will become an identity function that that just
copies, the supplied intermediate values to the output that is called, ‘Intermediate Graph’ or ‘Distributed
Graph’. so, the difference between the Graph and this distributed graph is that, here the document can be
very big, it cannot fit into one system, memory and therefore a document which is distributed the stored
on data nodes, can perform this operation the graph. So, it will filter and extract, only those set of
documents where we are interested in that particular pattern, that's called, ‘Distributed Graph’, has
various purposes various applications, the next application is the count of URL, access frequency. Now, to
do this, there is a map function, which processes the log of webpage, requests and the output URL with
the value 1. So, that means the map function, what it does is? It inspects the log of web pages and for
every URL, it encounters it will emit one as per the map phase. Now, reduce function will combine. So, it
will collect the all the URLSs, that means group by key and it will do the summation, of how many times
that number of ones are there it has to, just do a count. So, it is just like a word count program, an
extension of a word count, which will find out, the URL access frequency that means our URL how many
times it is being referred in a particular log file? Now, another example, another application, where it is
used this MapReduce program? Is called, ;Reverse Web Link Graph’, for example there are the web pages

and web pages are, pointing to each other. Let us say this is a B and C. We want to find out that, for let us
say web page see, how many different pages are pointing to it? We are given these, kind of pairs that is a
is pointing to C, web page is pointing to web page C and web page be pointing to A and B is pointing to
C, out of this we have to, now find out that for a particular web page, how many links are pointing to it?
It's called, ‘Reverse Web Link Graph’. So, it's called a, ‘Reverse Web Link Graph’. So, the map function
here, given this as the input, to the map function it will output the target and the source pair. So, for
example here the target is C. So, C and the source. So, given AC, in the map it will emit, C and A, for
each link in this, particular case similarly for BC, it will emit, C and B similarly for BA, it will emit, A
and B, for each link to the target URL found in the, in a page named source. Now, the reduced function
then concatenate, the list of all sorts URLSs, associated with a given target URL and emits appear, that is
called, ‘Target and List Source’ for example, here C is appearing ,two times and this list will become for
C a comma B. So, for C this is, the list is, C comma, A B. So, this is, one and another one is a and B. So,
this will be given to the reduced function and reduce will take this, target C and find out this list or the
source. So, C, page is being pointed to by A and B, that is being computed here by, the MapReduce and
the web page A, is being pointed to by only one, web link that is called A B. So, this way, popularity of
the pages can also be calculated if you want to do a sum, you have to just make a count of it. So, it
becomes, 2 this becomes 1 and this kind of statistics or this kind of output can be used in computing, the
Page Rank.

Refer Slide Time :(6: 31)

e Term-Vector per Host: A term vector summarizes the
most important words that occur in a document or a set
of documents as a list of (word; frequency) pairs.

e The map function emits a (hostname; term vector) pair
for each input document (where the hostname is
extracted from the URL of the document).

e The reduce function is passed all per-document term
vectors for a given host. It adds these term vectors
together, throwing away infrequent terms, and then emits
a final (hostnameyerm vector) pair

Now, another application is called, ‘Term Vector’, per host. So, term vector summarizes the most pardon
words that occur in a document or a set of documents as a list of a word and frequency pair. So, the map
function omits the hostname and the term vector, appear for each input document, where the hostname is

extracted from URL of that document, the reduced function is passed, on the all per document on vector,
for a given host it at these term vector together, throwing away the infrequent terms and then omits the
final hostname and term vector pair. So, that means, for a given term document we are going to find out
the most important or most frequent words and we have to basically omit the hostname and the term
vector pair in this particular application.

Refer Slide Time :(7:30)

e Inverted Index: The map function parses each document,
and emits a sequence of (word; document ID) pairs. The
reduce function accepts all pairs for a given word, sorts
the corresponding document IDs and emits a (word;
list(document ID)) pair. The set of all output pairs forms a
simple inverted index. It is easy to augment this
computation to keep track of word positions.

e Distributed Sort: The map functioryextracts the key from
each record, and emits a (key; record) pair. The reduce
function emits all pairs unct:juged.

Another application is about, the inverted index, which all the search engines are mostly does this, let us
see, what this application? Is and how the Map Reduce can be used to program, doing this inverted
index? So, here, in this application the map function parses, each document and emits a sequence of
world and document ID pair, the reduced function accepts, all the pairs of a given word sorts the
corresponding document IDs and emits, the word and list of document ID pair. So, the set of all output
pairs forms a simple inverted index it is, easy to augment, this configuration to keep track of the word
positions. So, we will, in the later slides you will see, more detail of MapReduce program for this
application that is, for inverted index that is, it is, possible that if, the set of documents are given, for
example search engine does this, Google when we type a keyword it gives you all the list of web pages?
Where those documents? Where these keywords are appearing and that is being performed using inverted
index? So, every search engine ,often computes this inverted index and that if, the number of documents
is huge, the search engine like Google, are being by Microsoft all, they are, they are basically computing
the inverted index and whenever the user searches it, it will perform it will check this, inverted index and
gives, that particular outcome. We will see, in more details how, this MapReduce exactly program this,
inverted index application, similarly the distributed sort, that is the map function extracts the key, from
each record and emits, the key and record pair the reduced function just emits all the pairs unchanged
,that means automatically, internally the map function gives, when it emits the key and required, pair it
provides in this sorted order and if there is, nothing different happens, into the shuffle phase, then if the

output is, given as it is, then this, particular outcome of the map face will be taken up, as and it will be
emitted unchanged, by the reduced function and this will perform the distributed sort.

Refer Slide Time :(10: 18)

Applications of MapReduce

(1) Distributed Grep:

Input: large set of files v 4
Output: lines that match pattern _

« Map — Emits a line if it matches the supplied
pattern L Lne)
G
gt

« Reduce — Copies the intermediate data to output

ft&qix ke)
Ve

We will see, in more detail of distributed sort application, how it is done in the Map Reduce? Applications
of MapReduce, we are going in now, little more details, of these applications which we have, some of
them which we have summarized .Let us take the example of distributed grab how using MapReduce we
can perform this distributed group operation? We assume, that the input is a large collection of files and
the output P I want to get is, the lines of a file, that matches that particular pattern, that matches a given
pattern. So, the map function, will emit, a line if it, matches the supplied pattern. So, map function will,
emit a line. So, here the things are quite simple, why because? Whenever the line is matched, in the map
function, line and a pattern. So, it emits only the line and the reducer doesn't have to do anything it will
copy the, all the intermediate data, which is given by the, map function and it, will output.

Refer Slide Time :(11: 53)

Applications of MapReduce

(2) Reverse Web-Link Gragb:

« Input: Web graph: tuples (a, b)
where (page a = page b)

« Output: For each page, list of pages that link I‘(_J it \
Ve e

« Map — process web log and for each input <source,
target>, it otputs <target, source> Qwasa’\bﬁ'} , Sowarce D

« Reduce - emits <target, list(source)> €x o (\n)

-n}'f LRSS) L o 5 $2.02

So, this will become the distributed graph. Reverse web link graph we have already, seen let us see again,
for the sake of completeness and we assume, that the web graph is, given in the form of a tuples, A, B. So,
again | am drawing the same picture, let us say it is, A B and C these are the web pages, web pages and
let us, say that a is pointing to, C and peace' pointing to A. So, in this example, the tuples which is given
as the input are AC, then BC, then BA. And so, as far as, the map is concerned map function on getting
this, as the input. So, that means these are the edges, which are given as the input to the map function and
that means the source and the target, source this is, the source and this is, the target. What it does is it
emits the target and the source? That means, for example for BA, it will, emit a and then B and for AC it
will, emit C and then A and for B C it will emit, C and then B. Now, after doing this emit, the reduced
function will accept this target, target means these, things will be accepted here, in this reduced function.
And we will, form the list that is the, the list of sources. So, far C, it will emit C and the list as list as, A
and B this will be the output and for, for A it will emit, the B itself. So, for a page C A and B they are
pointing you can see, in this particular picture, A for C A and B they are pointing to it and for, for A B is
pointing to it and this is called, ‘Reverse Web Link’. So, output for each page, the list of pages that link to
it that we have already achieved, in this particular application using MapReduce program. So, you can so,
the programmers can easily, write down the MapReduce program for different this application we have

seen, the reverse web link graph.

Refer Slide Time :(15: 14)

Applications of MapReduce

(3) Count of URL access frequency:
will
« Input: Log of accessed URLs, e.g., from proxy
« Output: For each URL, % of total accesses for that URL
/ Wt 5o urt ,I)H‘L?
« Map — Process web log and outputs <URL, 1> of wel Lo
« Multiple Reducers - Emits <URL, URL_count::- Q»’
(So far, like Wordcount. But still need %) <= LK.OV"J'
« Chain another MapReduce job after above one

« Map — Processes <URL, URL_count> and outputs <, (ud, e
<1, (<URL, URL_count>)> Ot Aot

- 1 Reducer — Does two passes. In first pass, sums up all
URL_count’s to calculate overall _count. In second pass
calculates %’s ./

MMMMMH

Similarly if you want to find out, if you want to count, the URL access frequency, that means the input is
in the form of the log file which has accessed URLs and normally, this particular log file we can obtain
from the proxy server, which maintains the log of URLs, which are accessed by the different clients. So,
out of this, particular log analysis and the output we want is, that for each URL, we want to find out the
percentage of total accesses, for the URLs .So, we want to find out and then rank it, later on we have
some other applications. So, how to find out for a particular URL how? What is the percentage of
accesses for that URL according to that log accesses? So, the map for this particular program will require
to get the weblog and output and it will emit the URL, with the value 1. So, for every URL it encounters
in, in the weblog, it will emit URL and with a value 1, the map function will do this, output. Now, then to
find out this, access frequency, in the percentage it requires multiple, reducers. So, the first reducer, it will
emit the URL and the URL count. So, that means, it will, do this, for every URL, it will also, do a count.
So, it is just like, what count program? Like what count it will do a URL count? So, out of this
,particular URL count, the map function, another map function will, will execute, it will take the URL and
URL count and output as 1 comma URL and its, URL count. So, after out after this, output the reducer
will now, perform two different passes, in the first pass it will, sum all the URL counts, to calculate the
overall count and in the second pass it will, calculate the percentage of that URL and percentage of that
URL. So, it will emit the multiple URL values and URL count divided by the overall count. So, in this
particular, example we have seen, not only one Map Reduce but, a series of Map Reduce. So, this is, the
first Map Reduce function, will emit this, one URL and URL count and which will be taken by another
Map Reduce function, which will compute, which will now, compute, which will emit, one and URL and
URL count which is it will emit one and whatever values we are getting and then there is, a third Map
Reduce which it will now, calculate all the sum and find out the URL. So, it will, emit the URL and URL
count, divided by overall count. So, they see that, this is a chain of, MapReduce functions, which are
required to solve this particular problem. So, earlier examples which we have shown only one
MapReduce but, now we have shown that several sequence of MapReduce, are required to solve. So, if
there is, such complicated or complex applications are there. So, it is, possible to make a chain, of

MapReduce job and solve this particular problem.

Refer Slide Time :(19: 44)

Applications of MapReduce

(4) Map task’s output is sorted (e.g., quicksort)
Reduce task’s input is sorted (e.g., mergesort)

radh
Sort / J L QQ‘HLJ _—
« Input: Series of (key, value) pairs Mo — l
« Output: Sorted <value>s .~ _ﬁ;r.r)

S/ v 05

« Map — <key, value> 2> <value, _> (identity)
« Reducer — <key, value> > <key,/vafue> (identity)

« Partitioning function — partition keys across reducers
based on ranges (can’t use hashing!) .~

= Take data distribution into account to balance

reducer tasks /

Another application we will see, about the sorting and here, the input is given in the form of a key value

pairs and we want the sorted, values to be output. This particular program as we have, shown you quite
simple for example, the input whatever is given to the map function key value, it will output only the
value? And the reducer job, also will just output this key and value, whatever is there? So, in this
particular process, when the map, outputs these values, which are already in the sorted form, normally
quick sort is done, here when during the shuffle phase and if the same thing is output, in the in the
reduced function. So, it passes on and it uses the mud shot. So, it is a quick sort and the reduced function
uses the merge sort. So, quick sort and merge sort together, will sort the applications and we don't have to
do much, the partitioning function we have to be careful ,during the sort is that partitioning, partition keys
across the reducer, is based on the on the on the ranges and you cannot use hashing, otherwise it will
disturb the sorted order. Okay?

Refer Slide Time :(21: 14)

The YARN Scheduler

/'_

* Used underneath Hadoop 2.x + W

. &
* YARN = Yet Another Resource Negotiator | Royoww® n Y‘J lacha)
* Treats each server as a collection of containers
- Container = fixed CPU + fixed memory ~
f "'V\ roa

¥ b } tzbf““”
. 6 W

, 2O

* Has 3 main components f
Global Resource Manager (RM) v

= Scheduling v
Per-server Node Manager (NM) //

* Daemon and server-specific functions W

Qs
P lication (j b}A\}o‘(ion M (AM) "
er-application (jo pppmpcation aster M

* Container negotiation with RM and NMs
* Detecting task failures of that job

The YARN scheduler. So, for MapReduce, job scheduling and resource management, YARN is used. So,
let us see and go through the YARN scheduler in more detail because, in Map Reduce version 2, 2.0 the
scheduling resource management and she dueling, is done by the YARN. So, let us see, how the YARN
does this she dueling? So, it is used underneath, the Hadoop 2.0 versions and onwards. So, YARN full
form is yet, another resource negotiator and its job is the, the resource manager and scheduler. Now, this
YARN treats each server as a, collection of containers. So, by this means is that so, the data nodes which
are called as, ‘Slaves’. Is in the form of containers, containers is, a container is having a CPU and a fixed
memory. So, for example if let us say, a data node or this machine or a server ,has let us say, eight cores
and has some memory, let us say 16 MB of space. So, the container will contain, a one core and let us say,
2 MB of space this is, one container. So, it will how, an four eight different container in this example,
eight containers, in this, configuration. So, it depends upon, how many cores are there in the server? So,
that many number of containers and the memory together can form the containers and container is the
unit, which is being allocated, by the YARN scheduler, for MapReduce job. So, it has three different
components, YARN has three different components, one is called, ‘Global Resource Manager’ and which
performs the overall scheduling and for per, node manager it is called, ‘Per Node Manager’. It's called,
‘Node Manager’ also, daemon and the server functions, it will specify and for per application, that is the
job ,there is another job ,application master and this application master will negotiate, with YARN, for
getting the container, with there is, the resource manager and the node manager and whenever it detects a
for failures? For that particular job the application master again contacts the, the yarn component that is
the resource manager and a node manager.

Refer Slide Time :(24: 22)

YARN: How a job gets a container

Resource Manager
*in . | Capacity Scheduler In this figure __ __
W = 2servers (A, 53},
\ & - 2jobs (1, 2)
& e
1. Need 3. Container on Node B 2. Container Completed
container
Node X [, '/ >
oce / Node Manager A Node B Node Manager B
Z Z
z 7 RSN it om———
_--'""'-.. 1

Application /

Applicatign : Task
Master 1

1
__—— 4. Start task, please! | o 3/ 1 (App2)

Let us see, how this all flows are in this YARN between the resource manager and node manager? So, let

us say that, we have two servers A and B, A and B there are two servers, A and B and we have a two jobs,
one and two which are to be allocated. So, how it does is first of all, this particular resource manager is
contacted and it knows, about the scheduling or it will schedule these jobs to be allocated? The containers
and then it will be shade ruled over there. So, this will, this client will, give a request to the to the
resource manager, that is a component of a YARN, for she ruling these two jobs and this particular
resource manager knows, that there are two servers A and B, with the available container, within it. So, let
us assume, that there is one container available, on B and there is, containers available on A also. So,
these containers, after allocate after allocation, it is informed to the application master and the application
master in turn, contact with the node manager and starts, the execution on these containers and once the
application, execution is over, then these containers, then this application master will inform and the
containers will be returned back. So, just see that, that means MapReduce jobs, with the help of YARN,
MapReduce jobs, with the help of YARN, allocates the container, for that many number of, for the
number of MapReduce jobs. So, this is done, through the help of YARN. So, this is explained here, in this
particular picture. Thank you.

	Lec 07-
	Hadoop MapReduce 2.0
	(Part-II)

