
Lecture 04

Hadoop Distributed File System (HDFS)

Hadoop distributed file system, HDFS.

Refer Slide Time :(0: 18)

Preface content of this lecture; in this lecture, we will cover the goals of HDFS, read/write process in
HDFS, configurations tuning parameters to control HDFS, performance and robustness.

Refer Slide Time :(0: 37)

Introduction, Hadoop provides distributed file system, as a framework for the analysis and performance
of very large, datasets computations using Map Reduce paradigm. Important characteristics of Hadoop is
the partitioning of data and computation across hundreds and thousands of the nodes of a cluster and
executing these computations, in parallel, close to their data, Hadoop cluster scales computations
capacity, storage capacity and i/o bandwidth by simply adding commodity servers, Hadoop clusters at
Yahoo! spans 25,000, servers and store25 pet bytes of application data, with the largest cluster being
3,500, servers100 other organization worldwide report using Hadoop.

Refer Slide Time :(1: 52)

With this introduction let us, see the picture of our overall viewpoint of Hadoop. So, Hadoop is an Apache
project; all the components are available via Apache open source license. And Yahoo! has developed and
contributed 80 percent of the core that is, core of Hadoop that is, HDFS and Map Reduce. HBase was
originally developed at Power set, now Microsoft. Hive was originated and developed Face book. Pig,
zookeeper, Chukwa were originated and developed at Yahoo!

Refer Slide Time :(2: 38)

So, some of the Yahoo! Project components and the first and foremost is the HDFS: that is Hadoop
distributed file system and the other important component of Hadoop project is, the Map Reduce that is
distributed parallel computation framework.

Refer Slide Time :(2: 57)

Now, let us see the Hadoop distributed file system: some of the design concepts and then we will go in
more detail of HDFS, design. Now, the first important thing is about a scalable, distributed file system:
that means, we can add more disk and we can get a scalable performance that is one of the major design,
concepts of HDFS, in realizing the scalable distributed file system. Now, as you add more you are adding

a lot of disk and, this will automatically scales out the performance, as far as the design, goal of HDFS is
concerned. Why this is required is because, if the data, set is big and very large, cannot fit in, to one
computer system. So, hundreds and thousands of computer systems are used, to store that file. So, hence
the data, of a file is now, divided into the form of a blocks and distributed, onto this large-scale
infrastructure. So, that means a distributed data, on the local disk is now, stored on several nodes, this
particular method, will insure the low cost commodity hardware usage, to store the amount of
information, by distributing it across all these multiple nodes, which comprises of low-cost commodity
hardware. The drawback is that, some of the nodes may get failure: that we will see that, it is also
included as per the design, goal of HDFS and the low cost commodity hardware, is to be used in this
particular manner, a lot of performance out of it, is achieved because, we are aggregating the
performance, of hundreds and thousands of such commodity low cost hardware. So, in this particular
diagram we see that, we assume and number of nodes let us say node 1, node 2, on so on, node n these
nodes are, in the range of hundreds and thousands of the nodes and if a file is given, file is broken into
the, to the blocks and these blocks are now, having a data, which will be distributed, on this particular
kind of setup. So, in this particular example, we can see that, a file is there and that file is, divided into the
blocks, file data is block, in divided into the data, blocks and each block, is stored across different nodes.
So, we can see here, all the blue colored nodes, blue color blocks of these nodes are storing a file data. So,
hence the file data is now distributed, onto this local disk in HDFS.

Refer Slide Time :(7: 02)

So, hundreds and thousands of the nodes are available and their disk is being used for storing. Now, these
comprises of the commodity hardware, so they are prone to the hardware failure and as I told that, that
this design. So, they are prone to the hardware failure, so the design needs to handle, the node failures. In
this particular case, so HDFS design goal, is to handle, the node failures also. So, another aspect is about
the portability across heterogeneous Hardware, why because? There are hundreds and thousands of
community hardware machines, they may be having different operating system and the software running,
so hence, this heterogeneity also requires, the portability support, in this particular case. That is also one

of the HDFS design goals, another important design goal of HDFS is to handle, the large data sets. So, the
data sets so the file size, ranging from terabyte to the pet bytes that is huge, file or huge dataset is also
now, being able to stored here in HDFS file system so it provides a support of, the handling the large
datasets also enable the processing with the high throughput. So that means how this is all ensured the
processing with the high throughput? That we will see and it has kept as one of the important design goals
of HDFS.

Refer Slide Time :(8: 44)

Now let us, understand the techniques to meet these design goals, the first of this technique is called a,
‘Simplified Core’ and model that is, which is nothing but, right once and read many times, this will
simplify the number of operations, hence since we are going to write once and read many times. So, most
of the design will be based on that coherent model. Another technique which will meet these design goals,
which we have seen in the previous slide, is about the data application. Now, since there is a, possibility
of hardware failures or a failing of these nodes, which are of commodity Hardware therefore, the data
blocks, which are store in this particular HDFS file system, is replicated at more than one nodes and
hence the data application, is the technique, which will be there to handle the hardware failures. So, by
data application means the data blocks, will be spirited, across different nodes and add more than one
times, these replications are the same piece of data, is now available on different nodes using replication.
So, it is not that only one copy of a data is stored but, the replication factor or replication we’ll tell how
many, different same piece of data, is stored on how many nodes? So, even if that node is fail or Iraq is
failed, even then there is a possibility that, the data is available and it will overcome from such failures
that is done through the hardware data application. Another important technique which basically ensures,
the high performance throughput, is that we moved, to the computation rather computation will be
moving close to wherever the data is there hence, we are not moving the data around and this will
improve the performance and the throughput of the system. Another technique which is used to meet the
HDFS design goal is that, we will relax some of the POSIX requirements, we increase the throughput for
example, when I write by the client, then the write operation, will keep on doing the cache, at the clients

end. So, this basically, is the relaxation of the POSIX and this will increase the throughput that we will
see later on in this particular part of the discussion.

Refer Slide Time :(11: 37)

So, this is the basic architecture of HDFS, which comprises of a single name node and multiple data
nodes and which supports the two operations which are write and read, by the clients, so and whenever
this, particular client want to do a read operation, a write operation then it has to contact to the name
node, try to find out the data, nodes where these particular blocks of a file, need to be written and out of
them one, the client will write to the, closest of these data blocks and that particular data block in turn will
replicate, through the other data nodes and that particular data node in turn will replicate to the other data
node, which is the, which is in the same rack. So, this way, the entire operation: that means this writing on
a one block and then replicating at other data nodes, will happen at the same point of time hence, the right
is done in, a pipeline mode. This will increase the throughput, of this right operation, similarly whenever
a read operation, is required by the client, then this client will contact to the name node, try to find out the
blocks or data nodes, where that blocks are stored and out of them, the client will prefer to read, from the
data block which is very close to that particular client. In this way the throughput is increased so,
therefore a name node and data node together, will which constitutes the architecture of HDFS, is able to
support this large-scale data storage and also, ensure the computations at that, place with a high
throughput.

Refer Slide Time :(13: 50)

So, let us see the HDFS architecture, again and describe its key components. So, a single name node that
we have seen, is nothing but, a master server that manages the file system name, namespace and basically
regulates, access to these files from the client and also, keep track of where the data is on the data node
and where the blocks, are distributed essentially. So, single name node will store the Meta, data that
means the information about the data, where it is, stored on the data nodes, is maintained by the name
space. Now, as far as the data which is actually stored on the data multiple data nodes. So, that means one
typically, one per node, in a cluster, is there that is maintained by the name node information and which is
used to store the, the data locally. So, the basic functions here, in this key components are that of HDFS is
to manage, the storage on the data nodes, where the actual data, is managed or is told and read and write
requests, are being initiated by the client, into the HDFS support in the HDFS architecture, similarly for
the block creation, deletion and the replication is all based on the instructions, from the name node. So,
name node is, basically managing the entire operations of the data, placement data axis, in terms of block
creation, deletion and replication.

Refer Slide Time :(15: 44)

So, we have seen that, in the original HDFS design there is single name node and a multiple data nodes
and these data nodes, will manage the storage that is nothing but a blocks of data and these data nodes are
serving, for the read and write request from the initiated by the client and also these data nodes, will
perform the block creation, deletion and replication.

Refer Slide Time :(16: 07)

Now let us see, what is new in Hadoop version 2.0? So, HDFS, in aversion Hadoop 2.0 or HDFS 2.0,
uses the HDFS Federation that means that, it is not a single namespace but it is a Federation, as that is
called, ‘HDFS’ name node Federation. So, so this particular Federation will now, have multiple data
nodes and multiple name nodes, are there and this will increase, the reliability of the name node, in this
case of Federation. So, it is not one name node, but it is, n number of n in name nodes and this particular
method is called the, ‘HDFS Federation’. The benefits is to increase the namespace scalability, earlier
there was one name is space now it has, a Federation of name a space so, obviously the scalability is
increased and also, the performance is increased and also, the isolation, performance is increased, why

because? Now the, the, the nearest namespace is used to serve, the clients requests and isolation means if
let us say a high, requirement high a large amount of resource requirement is there for a particular
application, it is not going to affect, the entire a single namespace, why because? It is a Federation of
name is space other, applications is not going to be affected by a very high, requirement for a particular
application that is called, ‘Isolation’.

Refer Slide Time :(18: 00)

Now, in HDFS version two, are in Hadoop version two how, this all is done let us go and discuss. Now,
here as we have mentioned that, instead of one name node here now we have, multiple name mode
servers and they are managing, the namespace hence they becomes a multiple namespace and the data, is
now stored in the form of a block pools. So, now this block pool is also, going to be managed across these
data nodes, on the nodes of the cluster machines. So, it's not only one node, but several nodes are
involved and they will be storing the block pools. So, there is a pool associated with each name node or a
namespace and these pools are essentially, spread out over all the data nodes.

Refer Slide Time :(19: 01)

 That we will see, in the further picture.

Refer Slide Time :(19: 04)

So, here you can see in this particular diagram that the namespace it has multiple namespace, name a
space one, name is space 2 and so on up to namespace n. Let us assume that it has, multiple namespaces
and each name is space, is having a block pool. So, these are called, ‘Blocks Pools’ and these block pools
are, stored on the nodes. So, they are on different nodes, just like a cluster machine so, each block pool is
stored on a different node. So, different nodes are there and this is going to manage, the multiple
namespace and this is called the, ‘Federation’ of the block pools. So, hence now it is not a single point of

failure, even if one or more name node, namespace or a name node fails, it is not going to affect, anything
and it also increases the, the performance reliability and throughput and also, performs also provides you
the isolation. So, if you remember the original design you have only one namespace and a bunch of data
nodes, so the structure looks, like similar but, internally it is managed as the Federation. So, you have a
bunch of named nodes now, instead of one named node and each of these named nodes is essentially write
to these pools. But, the pools are spread out over the data nodes just like before, this is where the data is
spread out and you can grass over the different data nodes. So, the block pool is essentially the main thing
that’s different in Hadoop, version or HDFS version two.

Refer Slide Time :(20:45)

So, HDFS performance measures, if we see that, here we see that, determine the number of blocks, for a
given file, for a given file size. And the, the key HDFS and the system components are affected by the
block size and impact of ,using a lot of small files on, HDFS and HDFS system. So, these are some of the
performance, measures that we are going to, tune the parameters and measure the performance. Let us
summarize it again, all these and different, tuning parameter for performance. And so, basically the
number of, how many number of blocks for a given file size? And this is required, to be known, in so
basically, we will see there is a performance measure or, or basically there is a tradeoff, in the number of
blocks, to be replicated. The another key component is, about the size of the block. So, here the block
size, which varies from 64 MB to 128 MB. So, if the block size is 64 then, what is the performance and if
we increase the block size, then what will be the performance, similarly the number of blocks, that means,
how many this is the replication, if the replication factor is three that means, every block is replicated on
three different nodes, for a given file size. So, if the replication is 1, then obviously we are, saving lot of
space. But, performance we are going to sacrifice, so there is a trade-off between this. And another
important parameter, for HDFS performance is about, the number of small files, which are there on, the
HDFS. So, if there are lot of small files, which are there in HDFS, the performance goes down, we will
see how and how this particular problem is to be overcome, in the further slides.

Refer Slide Time :(23:08)

So, let us see that, recall again the HDFS architecture, where the data is distributed, on the local disk, on
several nodes. So here, in this particular picture, we have shown, several nodes where data is divided and
that is called, ‘Distributed Data on Different Local Disk’, it is stored.

Refer Slide Time :(23:31)

Now, the data is stored in the terms of block and the block size is going to matter much, in the
performance, the default block sighs 64mb megabytes. And this is good for a large file. So, if there is a
file size of 10 GB, then this particular file is broken into, 160 blocks of size 64 megabytes. So, 160 blocks

we have to just store, in a distributed manner, on several nodes and therefore, this particular block size is
going to matter much. So, if we increase the number of or the size of the block, then obviously, it will be
less than 160 blocks. So, if the number of blocks are more hence, the parallel operations is more possible
and that we are going to see about, what is the, what is the effect of keeping the small block size, of 64 or
a more than 64.

Refer Slide Time :(24:34)

So, the importance of the number of blocks in a file. So, if the number of blocks are more, than the
amount of memory which is used in the name node, will be more in that case. So, for example, here every
block that, you create basically every file, could be a lot of blocks we saw in the previous case, 160
blocks. and if you have a million of files and this, that millions of objects, essentially is required to
basically store that, amount of space in the name node to manage it and it becomes, several times bigger.
If let us say, the number of blocks are more. And the files are more. So, we will see this kind of
importance, of the number of blocks, so it is going to affect, into the size, into the name node. And it
measures, how much memory is going to be used, in the name node to manage that, many number of
blocks of a file. Now, the number of map tasks, also is going to matter much, for example, if the file is
divided into160 blocks, so at least 160 different, map functions are required to be executed, to cover
entire data set operations or computations. So hence, if the number of blocks are more, not only it is going
to take more space, in the name node, but also more number of map, functions also required to be
executed.

Refer Slide Time :(26:16)

Hence, there has to be a tradeoff. Similarly, if there is a large number of a small files: this will impact on
the name node, why because a lot of memory is required, to store the information of this number of small
files. Hence, the network load is going to increase, in this particular case.

Refer Slide Time :(26:37)

So, if there is a large number of a small file: there is a performance issue or a problem of a performance.
So, suppose you have 10 GB of data, to process and you have all in a lots of 32 KB of a file size? Then
we are end up with, so many number of map tasks. So, huge list of tasks are now queued up and the
performance will go down, why because, when they spin up and spin down ,there is a latency involved

and because, you are starting up the Java and stopping them and also, it is inefficient due to the disk i/o,
with the small sizes.
Refer Slide Time :(27:19)

So, HDFS is therefore optimized for a large file size. So, lot of small files is bad and the solution, to this
particular problem is to merge and concatenate different files are, there is a operation which is called,
‘Sequence Files’, several files are Mouse together, in a sequence and that is called a, ‘Sequence File’. And
which is treated as one big file instead of keeping, many number of small files, another solution, to the
small number of lots of small number of files is, using the HBase and hive configuration, for this
particular large number of small files. They will be used to optimize this particular issue. And also there is
also, another solution is to combine the input file, input format, file input format.

Refer Slide Time :(28:20)

Now, let us see, in more detail about read and write processes, which is there in HDFS, how it is being
supported.

Refer Slide Time :(28:26)

Now, the read process in HDFS, if we see that, first of all we have to identify that there is a name node.
And this is the client. And there are several data nodes, in this example, we are having one name node and
there are three data nodes and there is a client, which will perform the read operation. So, so the HDFS
client, will then request to read a particular file ,this is the read operation and this particular request will
go to the name node, to know the, the blocks where that, read operation is to be executed and the data is
to be given back ,to the to the client. So, it will send the request to the name node and then, name node
will ,give back this information, back to this particular client end of HDFS and from there, it will have
two options, whether to read from the block number four or to read from the block number five. Then it
will try to read the, the one which is the closest one and this particular data is, given back to the client.

Refer Slide Time :(29:56)

Now, then let us see the write operation, which is initiated again by the client. So, whenever there is a
client wants to do a write operation and this particular write operation is now, going to be requesting, the
name node to find out the, the data node which can, be used to store, the, the clients data. And after
getting this information back, this particular right operation is being performed on this particular data
node, which is, which is the closest one and that, particular data node has to, do this replication. If let us
say, replication factor is 3 then, it will do this in the form of a pipeline. So, the client will write down or
will write the data, on a particular data node and that data node, in turn will carry out, the pipeline for the
replication, this is called a, ‘Replication Pipeline’. And once the replication is over, then it will send the
acknowledgment and the right operation is completed, in this particular process.

Refer Slide Time :(31:18)

Now, let us see in more detail about, HDFS tuning parameters.

Refer Slide Time :(31:24)

So, HDFS tuning parameters, we are going to see, especially the DFS block size, from that viewpoint and
also we will see the name node, data node and all these different tuning parameters.

Refer Slide Time :(31:37)

Now, as far as tuning parameter is concerned in HDFS, there is a file XML configuration file. And for
example, HDFS site dot XML file is there, where this particular environment or configuration parameter
can be set. In some of the cases like, cloud era, supports, automatic, GUI for these configurations or
tuning parameters of HDFS that is, through the management console.

Refer Slide Time :(32:13)

Let us see, what are the, which are most important, which need to be decided for performance from,
performance perspective. Now here, HDFS block size recall that, impacts how much name node memory
is used, the number of map tasks that are showing up and also have the impacts on the performance. So,
the by default the block size is 64 megabytes. And typically, it can go up to 128megabytes and it can be
changed based on the workloads. So, if let us say that, we want to have a better performance and the size,
file size is too big, too large, then obviously more than 64 megabytes is good enough, so that so, so the
parameter that this, make this particular changes is known as, DFS block size or DFS block dot size,
where we have to mention about, the, the, the, the block size, by default it is 64 but we can increase up to,
128megabytes. So if the, if the block size is more obviously, the number of blocks, will be, will be less
and if it is less than, the amount of space which is required, to store in the namespace memory, will be
less and also, if it is less and also the number of map tasks, which will be required to execute also, will be
less. And so, basically there is a trade off, where the performance is required, so we have to set, this block
size accordingly and application.

Refer Slide Time :(34:00)

So, another parameter is called the, ‘HDFS’, application by default that application is 3 and this parameter
is set in a DFS replication, configuration file. And there is a trade-off, that means, if we lower, it to reduce
the replication cost, that means, if the replication factor is not 3, if it is less, than the replication cost will
be less. But, the trade-off is that, it will be less robust, robust in the sense, if some of the nodes are filled
and there is only one replication, there is no replicas available of that node, so that particular data will not
be available. So hence, it will be less robust. And also, the it will lose the performance, for example, if it
is replicated then, it will be able to serve that, particular data block, from the closest possible, data block
to the client. So, higher application can make data local to the more workers, lower replication means, and
more space.

Refer Slide Time :(35:08)

Lot of other parameters are there, which can be set. But, these two parameters which we have covered.
And that is block size and application factor are the two most important, tunable parameters. So, the other
such parameters are available, for example, DFS data node dot handler count is 10, that means, the
number of the server threats, on each data nodes that is, maximum up to 10 and this is going to be a factor
of this performance, of that data node operations. Similarly, there is another parameter which is called,
‘Name Node’. Offense limits that is the maximum blocks per file, that is maximum number of blocks per
file is also set, as per, this one.

Refer Slide Time :(36:01)

So, let us see the, HDFS performance and its robustness. So, the common failures is a data node failure
and the server can fail, disk and crash and the data also can become corrupt, in that case, the, the replicas
is will be able to overcome, from this particular failures. another failure is called,’ Network Failure’,
sometimes there is a corruption of network or a disk issues. So, it could lead to the failure, of the data
node in HDFS. So, when a network go down, then If, if let us say, it is replicas, replicas are across the, the
rack then, it can be able to serve, from the other place. Similarly, name node if it is filled and it could be
named node failure, disk failure, on the name node, on the name itself, it could corrupt this particular
process. So, the Federation is there to, overcome from this name node failures.

Refer Slide Time :(37:09)

So, HDFS robustness, we have so far discussed. And so therefore the replication, on the data node is
done. So, that it is a lag fault tolerant, that means, the replicas are across racks, so that if the one rack is
down, it will be able to serve, from the other end. So, Name node receives the heartbeats and block the
report from, this one data nodes, so all these is measured and wherever there is data note down, this
information is captured or understood and the name node and that particular node is now, not being used
by for the client, for the requests.

Refer Slide Time :(37:59)

Now, the mitigation of common failures. So, periodic heartbeats from, data node to the name node is done
that, we have seen and data nodes, without recent heartbeats is being marked. So mark the data and the
new input, output, a new I/O that comes up is, not going to be sent to that node. Data node also
remembers that, a name node has the information on all, the replication information, for the files, on the
file system. So, if it knows that data, node fails which blocks, will follow that particular application
factor. Now, this replication factor is set, for the entire system, so you could, set it for a particular file,
when you are writing to a file either way, the name node knows, which block falls below the replication
factor and it will restart the process to replicate, to read replicate. So, therefore let us see, this particular
diagram that, this is the name node and it keeps on checking, the data nodes and several data nodes. So,
these data nodes keeps on sending their, heartbeats at a periodic interval and by that, particular heartbeats,
the name node knows that, these particular data nodes are active. If the heartbeats is not, received at the
name node, name node, now, understand that this is down and if it is down then, this particular application
factor is basically is reduced, for that, particular replicas stored on that data node. So, the name node
knows which of that block falls, below the replication factor. And it will restart the process to re replicate.
So, that number of, so that replication factor is maintained at all points of time. And that particular data,
data node, which is down, which is detected as down, will not be used for, further usage. So, the
migration of common failure is, handled by the name node, in this particular manner, with the help of the
periodic heartbeats.

Refer Slide Time :(40:28)

Mitigation of other common failures, such as, checksum computed on a file, we shows that, the data or a
block is corrupted or a checksum stored, in the HDFS namespace, also tells that it is failed. And used to
check the retrieve data and reread the alternative, alternate replicas. So, that means that, whenever there is
using checksum, if it is directed that, the data is replica is not or the data, which is accessed is, having an
error using, some failure then, alternative replica is consulted up or is being accessed and then, it will be
also made the, proper corrections, wherever there is a failure.

Refer Slide Time :(41:30)

So, multiple copies of Central Meta data structure is, being maintained to handle with these common
failures. And failover, to standby the name node is there and normally it is manually done, by default.

Refer Slide Time :(41:47)

Now, let us see, the performance issue that, if we change the block size and the replica factor, replication
factor, how is it going to improve the performance. Let us take an example, of a distributed copy
operation, hadoop supports a distributed copy that, allows the parallel transfer of the files.

Refer Slide Time :(42:08)

Now, there is a trade-off between the replication, trade-off with the respect to the, to the robustness.
Before we start, the idea is that, if we reduce the replication factor, then it is going to affect to the
robustness. For example, if let us say, it is not replicated, to the other data nodes. And if that data nodes,
containing that data or a block fields, then it is not available at other end. Hence, it is going to affect the
robustness. So, replication is so important, that we are going to discuss. So, one performance trade-off is
actually, when you go out, to do some of the Map Reduce jobs, having replicas gives additional locality
possibility. But, the big trade-off is the robustness, in this case we said, no replica, might lose a node or, a
or a local discount recover because, there is no replica. Hence, if replication factor is, is not immutable, so
if the replication so, no replica is available, if no replica is available, then obviously it is lead to a failure.
And hence, there is no hence, it is not robust. Similarly, with the data corruption and if we get, the checks
that is bad and we cannot recover, why because, we don't have any replicas and other parameters, changes
have similar effects. So, basically there is a trade-off between, the replica and the robustness.

Refer Slide Time :(43:51)

So in conclusion, in this lecture, we have discussed the HDFS. HDFS version two and operation that is
read and write which is supported in HDFS, we have also seen, the main configuration, we have also seen
the performance, parameters and the tuning parameters, with respect to the block size and the replication
factor, to ensure about, the HDFS performance and its robustness trade off. Thank you.

	Lecture 04
	Hadoop Distributed File System (HDFS)

