INDIAN INSTITUTE OF TECHNOLOGY PATNA
NPTEL
NATIONAL PROGRAMME ON TECHNOLOGY ENHANCED LEARNING

COURSE TITLE
BIG DATA COMPUTING

LECTURE-34
CASE STUDY: FLIGHT DATA ANALYSIS USING SPARK GRAPH-X

BY
DR. RAJIV MISRA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY PATNA

(Refer Slide Time: 00:16)

Case Study: Flight Data Analysis

using Spark GraphX

ig Data Computing
Cast Study, Flight Data Analysis using Spark GraphX.
(Refer Slide Time: 00:20)

Problem Statement

s To analyze Real-Time Flight data using Spark GraphX,
provide near real-time computation results and
visualize the results.

Big Data Computing GraphX
The problem statement, to analyze the Real-Time Flight data using Spark GraphX, and to
provide near real-time computation results and visualize the results.

Refer Slide Time: 00:35

Flight Data Analysis using Spark GraphX

Dataset Description:

The data has been collected from U.S. Department of
Transportation's (DOT) Bureau of Transportation
Statistics site which tracks the on-time performance of
domestic flights operated by large air carriers. The
Summary information on the number of on-time,
delayed, canceled, and diverted flights is published in
DOT's monthly Air Travel Consumer Report and in this
dataset of January 2014 flight delays and cancellations.

- TLes slaals al=
So for this let us see the dataset description, so data has been collected from US Department of

Transportation DOT, Bureau of Transportation Statistics site which tracks on-time performance
of domestic flights operated by large carriers. The summary information on the number of on-
time delayed, canceled, and diverted flights is published in DOT’s monthly Air Travel

Consumer Report and in this dataset of January 2014 flight delays and cancellations are been
considered.

Refer Slide Time: 01:11
Big Data Pipeline for Flight Data Analysis using

ey § | 0
g I -]
O 4-: &
SRS e
Big Data Computing GraphX

So we are going to analyze this dataset that is a called a flight dataset using the pipeline, that is
called big data pipeline for Flight Data Analysis using Spark GraphX, so the first stage, first
step in the pipeline is we have collected the dataset, so we have obtained the dataset which is a
huge amount of flight data information.

Now this particular data base storing real-time flight data is being applied or being used into the
data base, so after getting the data or a car pass or a big data set, we converted into the form of a
graph, so that means the data is converted into the form of a table, and from table which will be

converted into the form of a graph, the second pipeline, so creating graph using GraphX we will
create a graph for the entire data.

So after creating the graph we can apply various queries based on the graph algorithms, so the
queries are we have to compute the longest flights, longest flight routes or we can compute the
top busiest airports or we can compute the routes with the lowest flight costs, so after doing all
these queries we can also do the visualization of a flight mapping on the maps, and then we will
use this particular result for this.

Let us see how this steps which is called the big data pipeline is use in doing this analyzing this
flight data information.
(Refer Slide Time: 03:11)

UseCases

| Monitoring Air traffic at airports

1. Monitoring of flight delays

m. Analysis overall routes and airports

w. Analysis of routes and airports per airline

Big Data Computing GraphX
So this particular study will have the use cases such as monitoring air traffic at airports,
monitoring of flight delays, analysis of overall routes and airports, analysis of routes and
airports per airline and so on.

Refer Slide Time: 03:32
Objectives

e Compute the total number of airports

e Compute the total number of flight routes

« Compute and sort the longest flight routes

e Display the airports with the highest incoming flights

e Display the airports with the highest outgoing flights

e List the most important airports according to PageRank
e List the routes with the lowest flight costs

« Display the airport codes with the lowest flight costs

e List the routes with airport codes which have the lowest
flight costs

Let us see the objective of this session about this use case or case study is to obtain for
following objectives, first is that how to compute the total number of airports in this dataset,
how to find out the total number of flight routes, how to compute and sort the longest flight
routes, how to display the airports with the highest incoming flights, how to display the airports
with the highest outgoing flights, how to list the most important airports according to the

PageRank, and list the routes with the lowest flight costs, display the airport codes and the

lowest flight costs, list the routes with the airport codes which have the lowest flight costs, let

us see how these queries or how these objectives are to be fulfilled using the given dataset.
Refer Slide Time: 04:23)

e 17 Attributes

dOf Day of Month

dOfw Day of Weelk

carriar Urnque Airline Carrier Code
tailNum Taill Number

MNum Flight Number Reporting Airrline
argin__id Orgin Airport 1d

arigin Origin Airport

dest_id Destination Airport Id

dest Destination Airport
crsdepttime CRS Departure Time (local time: hhmm)
deptime Actual Departure Time

Big Data Computing GraphX

This dataset, if we go in more detail and see the features, there are 17 different attributes are
available in this particular dataset, for example DOFM that is day of the month, DOFW means
day of the week, carrier unique airline carrier code, tail number is the tail number, and F
number is the flight number reporting airlines, and origin ID is the origin airport ID, origin and
origin airport, destination ID is the destination airport ID, destination is destination airport,
CRS departure time, departure time is actual departure time, and departure delay minutes
difference in the minutes between the schedule and actual departure and earlier departure is set
to 0.

(Refer Slide Time: 05:04)

|
|
|
I i

depdelaymins Difference in minutes between scheduled
and actual departure time. Early
departures set to 0.

crsarrtime CRS Arrival Time (local time: hhmm)

arrtime Actual Arrival Time (local time: hhmm)

arrdelaymins Difference in minutes between scheduled
and actual arrival time. Early arrivals set to
o

crselapsedtime CRS Elapsed Time of Flight, in Minutes

dist Distance batweean airports (milas)

Big Data Computing GraphX

Similarly there are arrival times and actual arrival time difference between, in the minutes
between the scheduled and actual arrival time that is arrival delay in the minutes, and similarly
the elapse time of the flight and the distance between the airport.

(Refer Slide Time: 05:33)

Sample Dataset

A B C D E F i H | | K | W N 0 . I
L |60 DN camier t:iNum Num ongin_id ongin dest i dest ersdeptime ccptme depdelaymins crsamtime amtime adelayming rSSiapSetme oist
11 1 M NM 1 1INF W 1B W W il 4 Ub 1B8 1 B M5

LD LLID 1 i8]
I | i 8 Ad NLTTAA g =i W d'_! 9 s =t s 144 <4 15 i
: 3 P i = - an 4 g
J CUN LT s L LI RK 1 J L un =0 I) =]
" aua ~ . . g - s
- 9 == L 0L Li=ig L Fio IV | M J i) Fi]
vy i - - - n—
i - adAa L Lsid LY. L L] LD Ll) Fi 1)
1A ¥ T ETr e ¥ LT .1
3 LU BT I A L L) | i L LD il Fo L)
— . T " -

] d + ! \iadhm ol L Ladi LAK M) ans Fol L o

Big Data Computing GraphX

So this is the sample dataset with all the 17 features shown over here for our analysis use case,
(Refer Slide Time: 05:40)

Spark Implementation

import
import
object

def ma

org.apache.spark._
java.io.File
airport

in(args: Array[String]){

case class Flight(dofM:String, dofW:String,

,dist:Int)

def parseFlight(str: String): Flight = {
val line = str.split(”,"”
Flight(line(®), line(1), ... ,

line() .tolInt)

;al cont =

new SparkConf().setAppName("airport").setMaster("local[2]")
val sc = new SparkContext(conf)

Big Data Computing GraphX
so here we can see here the part of the spark code which implements this flight data analysis
using GraphX, so let us understand some of the code before we go into more detail of it.

So that means first we have to create a class which is called a flight class with all these details
which are provided as 17 different features, then we can pass the string function to pass the

input into the flight class data, so for that these functions are there, and then we will create the
application name and we have to create the spark context, so this will create the spark context.

Refer Slide Time: 06:51)

sal textRDD = sc.textFile (“/homeflitp/spark-2.2.0-bin-hadoop-2.6/Mights/airportdataset.csv™)
al flightsrRDD Map ParseFlight to ext RDD
al airports lap Flight OriginID and Origir
pirports.take
& 4L nownere = 18 re
al airportMap = Use Map F ctio >llect.toList.t Ap
2l JTES flightsRDD. i ap Functior 1ist t
ute take
al edges = routes.mapd lap OriginID and DestinationID =» Edge(org_id.toLong,
edges.take
al graph Graph(Airports, Edges and MNowhere
graph.vertices.take(
graph.edges take

Big Data Computing GraphX

Now the next step is to read the file that is the text file, once it is read then it will become and
RDD, so the file is read and after reading it becomes an RDD into the spark system, and now
we have to pass the RDD into an RDD flight class using this map function, and it will create the
airport RDD’s with the ID and names using this particular function.

After defining default vertex called nowhere and mapping airport ID’s for printlines, so here all
these details are listed over here, now we have to create the routes RDD’s with the source ID
and destination and the distance using the map function, and create the edge RDD’s with the
source ID and the distance and so on.

So as RDD is the vertex IDD’s routes RDD’s are now created, now we can define the graph as
the airports as the vertices, and the routes and edges, so routes will be the edges, and the
airports will be the vertices, the vertices, edges and nowhere, so after taking them now we will
convert it into an edge RDD and vertex RDD.

Refer Slide Time: 08:50)

Graph Operations

val numairports = Vertices Number
val numroutes = Number Of Edges
graph.edges.filter { Get the edge distance)=> distance > }.take(

So using vertices and a graphs we can now, we have computed, we have form the graph of that
particular dataset, now we have to perform various queries, so the query 1 is to find out how
many number of airports are there in that, so just we have to calculate, we have to find out the
number of vertices in the graph. If you want to find out how many number of routes are there,
we have to calculate how many different edges are there in the graph.

Now if you want to find out, calculate those routes with the distance more than 1000 miles, so
easily we can apply the filter function of this GraphX on this particular graph, so after applying
the filter function where in the distance is greater than 1000, it will generate graph that is called
as subgraph. Now this whole function will not delete the portions the graph, but it will use
tombstone and will generate the subgraph out of the main graph.

(Refer Slide Time: 10:00)

Graph Operations

-
-
“"-‘I[_‘P" numyyertices
graph. numEdgas
-
graph.triplets.sortBy(_.attr, ascendingef) .map{triplet
Thare ware ~ + triplest.attr.toString =+ flights from = + triplet.srcAttr + “ to
« triplat.dstatTr + “.%).take(
res&d: Array[S5tring] = Array({There wers flights from SFO to LAX., There were
flights from LAX to SFO., Thare were flights from OG8 to HNL., Thare wers
flights from LGA to BOS., There were flights from BOS te LGA., There were
flights from HNL to OGG., There were 11 flights from LAX to LAS., There were
flights from LAS to LAX., Thare were 1 flights from LAX Tto SAN., Thare were
flights from SAN to LAX

Big Data Computing GraphX
Similarly if you want to find out how many airports are there, so airports are represented as the
number of vertices, so we have to run this particular function that is graph.number of vertices

so we can find out that number of vertices are 304, 305.

Similarly how many unique flights from airport A to B are there, so we have to find out the
number of edges here and if you want to find out the top 10 flights from airport to airport, so we
can find out using the graph triplets and we can sort the flights, top 10 flights and now we can
take these 10 data out of this sorted top 10 flights, we can use it, so we can see here that there
are so many number of flights from source destination and by taking the triplets and doing the
sort and we can easily get this information out of this particular graph.

(Refer Slide Time: 11:20)

Graph Operations

graph.triplats.sortBy(_.attr).map(triplet =

"There were + triplat.attr.toString + flights from " + triplet.srcAttr + " to e
iplet.dsTATEr - takel
reséd: Array[S5tring] = Array(There were flights from RNO to PIHM., There were flights fro
m PHL to ICT., There were flights from FSD to PIA., There were flights from RIC to JAX.,
There were flights from MOD to BFL., There were flights from ASE to MSN., There were
flights from JFK to HPN., There were flights from MCO to LIT., There were flight:z from
ROA to BWI., There were flights from OMA to ABQ.

Big Data Computing GraphX
So what are the lowest 10 flights from airport to airport using some triplets and by sorting it in
the descending order we can obtain this data also.

(Refer Slide Time: 11:31)
raph Operations

what airport has the most in degrees or unique flights into it?

graph.inDegress.join{alrportVertices sortBy : S l, ascandings= F.Takai)

Array[(org.apache.spark.graphx . VertexId, Int, String))] = Array(| o LATL

graph . outDegress . Joln{airportiertices) . . sortly(_._J2. 1, ascendingstal LCake

Array[(org.apaches.spark, graphx VertexId, Int, String)l)) = Array((o +ATL
Big Data Computing GraphX

Now if you want to find out which, what airport has the most in degree and or unique flights
into it, then using in degrees and the joint airport vertices we can obtain this amount of
information, and out of it what are the flights which are going out of the airport, most of the
degrees so that also we can find out using out degree, and after applying the joint operation.

(Refer Slide Time: 12:07)

Graph Operations

What are our most important airports ?

val reanksAndAirports s ranks.join{airportvertices sortBy(_._2._1, ascendingw mapi(__._
ranksAndAlrports . tTake
res8l: Array(String] = Array(ATL, DFW, ORD, MSP, SLC, DEM, DTwW, IAM, CVG, LAX

Big Data Computing GraphX
What are the most important airports? So for that using PageRank what we can ranks and, not
using PageRank, but ranks and airport means it will sort and find out the airports,

(Refer Slide Time: 12:24)
raph Operations

Output the routes where the distance between airports exceeds
1000 miiles

graph.edges.filter {

case (Edge(org_id, dest_id, distance)) => distance > 1000
}.take(5).foreach(printin)

Big Data Computing GraphX
so graph operations output the routes where the distance between the airport exceeds 1000 that
we have seen, it will just apply the filter and get this output of the routes where the distance
between the airport exceeds 1000 miles.

(Refer Slide Time: 12:42)

raph Operations

Output the airport with maximum incoming flight

// Define a reduce operation to compute the highest degree vertex
def max: (Vertexld, Int), b: (Vertexld, Int)): (Vertexid, Int) = {
if(a._2>b._2)aelseb

}

// Compute the max degrees

val maxinDegree: (Vertexld, Int) = graph.inDegrees.reduce(max)

Big Data Computing GraphX
Similarly if you want to output the airport with the maximum incoming flight, so here in degree
we can find out with the maximum of it, and this will give the maximum incoming flight.
Refer Slide Time: 13:00

Output the airports with maximum incoming flights

val maxincoming=graph.inDegrees.collect.sortWith (_._2 >
_._2).map(x == (airportMap(x._1),
x._2)).take(10).foreach(printin)

Big Data Computing GraphX
Similarly maximum incoming flights we can get using this particular piece of code.
(Refer Slide Time: 13:08)

Graph Operations

OQutput the longest routes

graph.triplets.sortBy(_.attr, ascending = false).map(triplet =>

"There were " + triplet.attr.toString + " flights from " + triplet.srcAttr
+ " to " + triplet.dstAttr + ".").take(20).foreach(printin)

- . rE - e
Similarly we have to output the longest routes by doing this kind of sorting, and applying on the
graph triplets.

Refer Slide Time: 13:19

Graph Operations

Output the cheapest airfare routes

wval gg = graph.mapidgei(s => 50 1oDouble + & attr.toDouble / 20)
ffCall pregel on graph

wal suip = initialGraph. pregel| Double, Pouitivelnfinity)(
ffvertex program

(ld, distCost, newDistCost) =>» math.min]distCost, newDistCoat) triplet == |
S ivend message

if(triplet_srcAttr + triplet_attr < triplet, dstattr)

i

Iterator] | triplet_dstid, triplet. srcAttr + triplet_attr])

}

=lue

{

Iterator ampty

¥

k

fiMerge Messages

(a b)) == math.min{a b)

)

ffprint routes with lowest flight cost

print] " routes with lowest flight cost™)
printin sssp. edges. take] LO).mkString| " W™])

Big Data Computing GraphX
So if you want to find out the cheapest airline route, then this is the code and using this
particular code we can obtain this.

(Refer Slide Time: 13:29)

Graph Operations (PageRank)

Output the most influential airports using PageRank

val rank = graph.pageRank(0.001).vertices
val temp = rank.join(airports)
temp.take(10).foreach(printin)

Output the most influential airports from most influential to latest
val temp2 = temp.sortBy(_._2._1,false)

Big Data Computing GraphX
Now we can find out the most influential airport using the PageRank, so we can apply the
PageRank algorithm over the vertices, and we can then join the airports and then take a temp,
and top 10 and then it will become the most influential airport using PageRank, so output the
most influential airport from the most influential to the latest, so further more we can sort and
we can obtain this.

Refer Slide Time: 14:05

e The growing scale and importance of graph data has driven the
development of specialized graph computation engines
capable of inferring complex recursive properties of graph-
structured data.

e In this lecture we have discussed GraphX, a distributed graph
processing framework that unifies graph-parallel and data-
parallel computation in a single systemm and is capable of
succinctly expressing and efficiently executing the entire graph
analytics pipeline.

Big Data Computing GraphX

So conclusion, the growing scale and importance of graph data has driven the development of
specialized graph computation engines, capable of inferring complex recursive properties of
graph-structured data.

In this lecture we have discussed GraphX, a distributed processing framework that unifies the
graph-parallel and data-parallel computation in a single system and is capable of succinctly
expressing and efficiently executing the entire graph data, graph analytics pipeline. Thank you.

Acknowledgement
Ministry of Human Resource & Development
Prof. Satyaki Roy
Co-coordinator, IIT Kanpur
NPTEL Team

Sanjay Pal
Bharat Lal
Ashish Singh
Badal Pradhan
Tapobrata Das
K. K. Mishra
Ashutosh Gairola
Puneet Kumar Bajpai
Bhadro Rao
Shikha Gupta
Aradhana Singh Rajawat
Sweta
Nipa Sikdar
Anupam Mishra
Ram Chandra
Manoj Shrivastava
Dilip Tripathi
Padam Shukla
Sharwan K Verma
Sanjay Mishra
Shubham Rawat
Santosh Nayak
Praduyman Singh Chauhan
Mahendra Singh Rawat
Tushar Srivastava
Uzair Siddiqui
Lalty Dutta

Murali Krishnan
Ganesh Rana
Ajay Kanaujia
Ashwani Srivastava
M.L. Benerjee

an IIT Kanpur Production

© Copyright Reserved

