
INDIAN INSTITUTE OF TECHNOLOGY PATNA

NPTEL

NATIONAL PROGRAMME ON TECHNOLOGY ENHANCED LEARNING

COURSE TITLE
BIG DATA COMPUTING

LECTURE-33
SPARK GRAPH-X AND GRAPH ANALYTICS

PART-II

BY
DR. RAJIV MISRA

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY PATNA

(Refer Slide Time: 00:16)

The graph in GraphX is represented as the property graph, so graph in a GraphX is called the
property graph. Property graph has information such that every node has the vertex ID, and also
it has the properties. This particular vertex has two informations, one is called vertex ID, the
other is called the property and both this information are stored in a table which is called vertex
property table.

Now similarly the edges have, so the edges have the ID’s of both the ends, so for example in the
directed edge it will be original, is the source ID and the destination ID, so this will be the edge
ID’s and then every edge will also contain the property with associated with that every edge, so

this information is stored in a table which is called edge property table, so we can see here that
for example the vertex ID I and vertex ID F, so vertex ID I and vertex ID F, so vertex ID I will
have this particular property that it is from, it is a professor and it is from Berkley. Similarly the
vertex ID which is F, the name is Franklin or the ID is the F, so it is also a professor, but it is
also working in the Berkley.

Now if you see this particular edge between I and F, so the edge between I and F is represented
over here and it represents the property which is called coworker, so we have seen that the
vertices have the properties, vertices have ID’s and also a property and we can represent the
vertices in a form of a table which is called vertex property table.

Similarly the edges are represented by source ID and definition ID and every edge also has a
property and this edge property table contains the information about all the edges, so vertex
property table and edge property table will form the representation of a property graph, so graph
can be represented in a form of, a property graph can be represented in a form of the table
property graph can be represented in a form of a table which are called as a vertex property
table, and the edge property table, so the graph again I’m repeating this aspect which is very
important that graph in GraphX is called a property graph, and the property graph is represented
in a form of a table which is nothing but vertex property table and edge property table.

So graph can be viewed, so as graph is represented as the property graph and it can be changed
or it can be viewed as the table also, that is having the property table, vertex property table and
edge property table.

(Refer Slide Time: 04:34)

So property graph is represented as the distributed table, so we can see here that if a graph
which is called a property graph, if it is too big it cannot fit in 2 1 machine, then we can cut

across these vertex, and once it is cut across this vertex the first plot can be stored in one
machine, the second part can be stored on the other machine.

So for example the corresponding vertex table and the edge table will be, can be stored in two
different machines, so this is machine number 1, this is machine number 2, so A, B and C, so
the upper part will be stored in, the first three node of the table will be stored in one machine,
the another three nodes will be stored in other machine, similarly the edges, so all the edges
which are in part 1 will be stored in the first edge table, similarly the remaining edges are stored
in another table.

These vertices and edges, how they are communicating each other is communicating through
each other via routing table, so routing table is also another table which is added in between, so
there are three different tables which you will see here are to represent the graph as a form of a
table, and this particular property graph will be represented in this way as the distributed tables,
so vertex table, routing table and the edge table.

By routing table we mean that so the, for example the vertex A, vertex A is a being referred by
the edges in both the parts that is, it will be referred by A, it will be referred by B, it will be
referred by F, so that means the vertex it will be referred in both the partitions, therefore it is
represented as the routing table will contain the partitions where this vertex A will be referred.

And for example the node or a vertex E will be only referred in the second partition, hence the
routing table for E will contain only 2, the second partition, this way the vertex table and edge
table can be distributed and with the help of routing table together will be used as the
distributed tables.
(Refer Slide Time: 07:25)

There are different table operators which are inherited from the spark, that we can see here,
(Refer Slide Time: 07:35)

let us see the graph operators which are supported here in GraphX, so graph is represented as a
class graph vertex and edges where the graph vertices is nothing but a having a table as off ID’s
and vertices,
(Refer Slide Time: 07:54)

and edges are also having the table of source vertices and definition vertices and the edges,
properties, so this is the representation of a graph, so graph is represented as the vertices and the
edges, whereas the vertices are represented as the vertex property table, and edge is represented
as the edge property table, and these are represented together as the graph, so graph here is

represented as the vertex property table, edge property table, and which is shown in this
particular representation of the graph.

Now having defined this particular graph in this manner, so you can also see the graph as table
view, so the vertices is represented by this table that is called a vertex property table, edge is
represented by the edge property table, and also there will be a triplet view of a particular
graph, that means so triplet view of a graph is also triplet view table can be represented.

(Refer Slide Time: 09:24)

Where various transformations in the graph which are supported here in the GraphX is called
the reverse of, then subgraph, finding the subgraph and then taking the map of this particular
graph, the joint operations are also performed on the graph,
(Refer Slide Time: 09:42)

and the computations are performed in the graph.
(Refer Slide Time: 09:47)

Now the triplet join vertices and edges, so triplet operator joins the vertices and the edges, so if
this is the edge between A and B,
(Refer Slide Time: 10:03)

so it will also combine with both the vertices A and B along with this edge is called a triplet, so
triplet means that, is that edge + both operates vertices is called the triplet.

So we can see here that this edge will have the property A also, property of vertex A,
(Refer Slide Time: 10:37)

and this edge also has the property of vertex B as well as it has the property of the edge A, B.
Together all three things is called the triplet. Triplet is supported in the GraphX and is very
much useful in building the graph algorithms.

(Refer Slide Time: 10:55)

The map reduce triplet operator sums the adjacent triplets and which will be used in various
graph algorithms,
(Refer Slide Time: 11:02)

let us see that how map-reduce using triplets can solve some of the important, some of the
problems of a graph analytics, so for example this vertex A
(Refer Slide Time: 11:20)

want to do the computation, it requires the information from the neighboring vertices and using
the map function on this triplet you can output, you can emit the A1, similarly for the map
function between A and C, it will output A, and then reduce will combine them together
(Refer Slide Time: 11:48)

 this particular view, so once the triplet view is there then map function and reduce function can
become very efficiently programmable in building the algorithms.

(Refer Slide Time: 12:00)

Let us see that how using this triplet view we can write an algorithm or a program for finding
the oldest follower, so the question is what is the age of the oldest follower for each of these
users? So let us see a simple program which can solve this particular problem and, so you can
see here that in this particular example, for example the node A is followed by C and, C and B,
now let us see that it says that what is the age of the oldest follower of each user, so the
follower of A, the oldest follower of A is 42, similarly you can find out the follower of C which
is 75 and 23, this is 75 and then you can find out the follower of 16 is 30, and follower of 19
which is 16, and follower of D is basically 19,
(Refer Slide Time: 13:18)

so out of these different followers you can find out the maximum that is the answer will be, the
C with the values 75, now this you can program using the triplet in a quite efficient manner, so
you can find out using the graph triplet, using MR triplet which will say that the edges with the
destination and source with the destination IDE and the source ID age will be now taken up as
the maximum of all the triplets which are merging at any node, so you can see that this A will
have this triplet, A will have another triplet, so it will find out the maximum of all the triplets a
particular edge is having, and this way that will now then emit the age value and it will take the
maximum in the reduce function, and this way you can see that using triplet it will be very
simple program to find out these details.

(Refer Slide Time: 14:30)

Let us see the GraphX system design details,
(Refer Slide Time: 14:38)

now as we have seen that the graph is represented as the property graph, and which is nothing
but the distributed tables, and here these different aspects that is the vertices, edges and
property tables they are represented in the form of the RDD’s.

Let us see how this distributed graph is internally managed in GraphX, why distributed graph is
required because the graph is very large, is called large scale graphs, now this large scale graph
cannot be accommodated in one computer system, therefore it will be stored in a distributed
manner, hence it is called a distributed graph.

If you say it’s a distributed graph that means the graph can be cut into different pieces and being
stored across the cluster of machines, how that is all done, we are going to see how the GraphX
will support this distributed graph.
(Refer Slide Time: 15:54)

So this is the example of a small property graph, let us see how it is done in the GraphX,
(Refer Slide Time: 16:05)

so the graph comprises of two table which is called vertex, now this particular GraphX which is
this particular graph which is called a property graph has the vertex property table and the edge
property table, now vertex property table will be represented as the distributed table of this
vertex table, so this is called vertex table RDD’s which are supported in the GraphX, so the
vertices, all the vertices of a graph let us say that it’s a millions of vertices so it cannot be
accommodated in one table, in one computer system so obviously several computer systems are
required.

Let us understand that two computer systems is good enough for this example to store the
vertex table in the form of RDDs,
(Refer Slide Time: 17:11)

now as far as the graph is concerned we are going to cut this particular graph across the vertices
(Refer Slide Time: 17:20)

 and this particular way these part of the graphs are stored in as a distributed graphs.
(Refer Slide Time: 17:30)

So let us see that once we cut the vertices, then there are two parts, part 1 and part 2, so part 1
and part 2 they are stored in different machines, so obviously the edge part that is called edge
property table which is nothing but edge table RDD which is stored in 2 different machines like
this, so the first part will have AB and then AC, the BC and then CD, so the first part is
represented in the form of a edge table, similarly the second part which is called AF, then AE,
the FE, and then ED, so all the edges of the second part is stored on the second node, so this
way the vertices are also is split and stored in different nodes, edges are also stored on different
nodes and this way it is called the distributed graphs which are stored in this way.

Now the thing is one over, there will be a communication between AB or AC or between AF
and so how this is all facilitated, that we are going to see because all these vertices and edges
they are stored on different nodes, and it is called distributed graph,
(Refer Slide Time: 18:59)

so for example A would like to communicate with the both the nodes that is the part 1 and the
part 2, both the parts will be stored on two different nodes, so this will be communicating with
part 1 and the other communication is shown by the arrows as of the part 2, so A will be
communicating to part 1 and A will be communicating to part 2, so to support these edges that
is, to support these edges AE and AF, similarly A will communicate with part 1 to support the
edges that is AB and AC.

Similarly as far as B is concerned, B can communicate with BC and BA, so BC and BA, so BC
and BA both are in part 1, so it does not required to be communicating with the part 2 in any
optic case.

Similarly D is concerned, D will have the communication with C on part 1 and D will have
communication with E on part 1, so D will have part 1, and D will have communication with
part 2 also, so therefore CD will be part 1, and then DE will be on the part 2, so therefore sum
of these vertices requires to communicate in all the parts where the edge table is being stored,
and some of the nodes are required to be communicating with or single part,
(Refer Slide Time: 20:53)

so therefore a routing table will capture this information and this is shown over here that for the
node A it has to communicate with the part 1 and part 2, for B will has to communicate with
part 1, C has to communicate with part 1, D has to communicate with both the parts, so also for
E and F, so once the routing table capture this information therefore the interactions between
the nodes and their corresponding edges can be facilitated using the routing table.

Now if we keep this information of the routing table part with the edge table also as a part of
caching then this communication cost can also be reduced.
(Refer Slide Time: 21:45)

So here we can see here that the edge table will now contain the mirror cache of the routing
table enter this,
(Refer Slide Time: 21:54)

and therefore the vertices which are required to communicate in the first portion, the first part
will be stored in its mirror cache, similarly the nodes which are required to communicate on the
second part will require to be stored in the mirror cache of that corresponding part.

Now whenever there is a change happening at the vertex table on those nodes,
(Refer Slide Time: 22:28)

and these particular changes are to be communicated in the mirror cache, and this mirror cache
in turn will propagate those changes further on the edge table.

Now as far as whenever this particular mirror cache will be now whenever the nodes are is
scanned and requires any changes in the mirror cache, so basically a local aggregation will be
performed and this local aggregation will be communicated back to the vertex table, so
therefore the number of communications are to be reduced here in this way of implementing the
mirror cache and performing the local aggregates,
(Refer Slide Time: 23:17)

so whether it is in the vertex whenever some modifications are done, or at while the scanning of
the edges, any computation or any changes are happening at this edges all this will be now
aggregated, and the number of communications can be reduced here in this way, hence the
performance can be increased.

(Refer Slide Time: 23:43)

Now if you measure how much reduction in the communication is done due to the cache
updates, so we can see here that even for the connected components, computation on a twitter
graph we can see that so many number of that means the communication is heavily dropped
here in this particular case, therefore the performance as we have seen earlier in the previous
slide that if it is graph or then Pregel or GraphLab, when you compare to the GraphX, so
GraphX becomes a better performance in compared to any other graph framework, graph
computation framework which are available due to these internal details of implementation
using cache updates.

(Refer Slide Time: 24:38)

So these are, we can see that this wave of scanning the edges and aggregating the local updates
and communicating with them is nothing but we are indexing, they are indexing the active
edges, so the indexing of active edges again in turn will reduce the run time and, why because,
these run times will be reduced because all the data is available in memory and they can be
executed efficiently, and the effect is shown here in this particular graph, the run time and the
execution time is heavily reduced, why because the indexes of active pages is being handled
automatically internally has the time will be reduced.

(Refer Slide Time: 25:29)

Similarly in this particular way we have eliminated the join, so identifying and bypass the join
for unused triplet fields, so even for the PageRank only accesses the source attributes, so
therefore the factor of two reduction in the communication due to the join elimination you can
see the improvement in the communication is quite reduced,
(Refer Slide Time: 26:01)

therefore there are additional query optimizations also available for indexing and bitmaps to
accelerate joins across the graphs, to efficiently construct sub-graphs, substantial index and data
reuse, so reuse routing tables across graphs and sub-graphs, reuse edge adjacency information
and indices, so these are all different query optimizations which are possible so that it will
accelerate either the joins across the graph or it can efficiently construct the sub-graph or using
the index and data reuse, it can reuse the routing table across the graphs and also reuse the
adjacency information and indices.

To summarize we can say that in this particular framework that is the GraphX, various
optimizations are already in place and we can exploit using these optimizations to make more
efficient algorithms on the graphs.

(Refer Slide Time: 27:18)

So if you measure the performance we can see that the GraphX is roughly 3 times slower than
the GraphLab, so therefore this large graph can be easily computable using the GraphX.

(Refer Slide Time: 27:41)

So let us see that again we have to come back and see that we can also build a small pipeline in
GraphX and this pipeline can be optimized so that it will be getting better performance, so
pipeline intern will start with a spark processing and framework,
(Refer Slide Time: 28:06)

so spark preprocessed will take the raw Wikipedia data and convert in the form of a hyperlink
graph, and use the HDFS to compute this PageRank and then perform the spark processing to
capture the top 20 pages,
(Refer Slide Time: 28:24)

so is you use this particular pipeline, so you see that the smallest time which is basically is
taking, is using GraphX, why because? This view of table and the graph is integrated or
basically unified in GraphX, whereas in all other framework this particular pipeline needs lot of
inefficiencies due to the internal HDFS storage for handling two different viewpoints, so

therefore time end to end GraphX is faster than GraphLab also, so due to the fact that we have
already seen that it has unified view of tables and graph which are supported in GraphX,
(Refer Slide Time: 29:32)

So therefore GraphX stack has this kind of features that means it has these different lines of
code which is great and above the spark, and different algorithms are available either through
the Pregel or GraphLab API’s or directly which is implemented as the libraries of GraphX.

(Refer Slide Time: 29:58)

Now here we have discussed the GraphX which is an alpha release apart of the spark 0.9,

(Refer Slide Time: 30:07)

so again we have to see that this new API is available and it has given a new system which will
combine the data parallel and a graph parallel system.

(Refer Slide Time: 30:17)

So this particular graphs also is used as the, I mean relational algebra so the queries, sequel
queries can also be operated on the graph data structure, so we have already covered the
specific views that tables and graphs, the tables and graphs are composable objects and

specialized operators can exploit these semantics and also we can efficiently span or build the
single pipeline which will minimize the data movement and therefore increase the efficiency,
(Refer Slide Time: 31:00)

so graph through the lengths of database systems we can also use different relational sequel
queries on top of this particular graph and various distributed join operations are also supported.

(Refer Slide Time: 31:13)

So this has become an active area of research, how from static data we can build the dynamic
data by applying the GraphX unified approach to a time evolving data model, and analyze the
relationship over the time.

(Refer Slide Time: 31:28)

Now serving graph data structured data, serving graph structured data, now allow external
system to interact with the graph and unify the distributed graph data based with the relational
database technologies,
(Refer Slide Time: 31:41)

so we can see here that with this support of all these internal implementations or optimizations
of a GraphX even the power large distribution of the large graphs can easily be supported even
for the Facebook we can see.

(Refer Slide Time: 32:06)

So here another property is about the active vertices, it’s not all the time the entire graph is to be
modified, only the active vertices are to be touched upon, hence the active vertices will improve
the tracking of active vertices will improve the performance,
(Refer Slide Time: 32:23)

so graph are essentials to the data mining and machine learning, it will identify the influential
people information, find the communities, understand people’s shared interest and model the
complex data dependencies.

(Refer Slide Time: 32:38)

Now the graphs can be modeled as the bipartite graph or recommending the products that we
have seen,
(Refer Slide Time: 32:49)

 it is also for recommending the products or the movies using the recommendation engines, for
example in the movie case the graph can also be used, similarly to protect the user behavior we
can model the problem as the graph and we can do the analysis finding out the conditional
random field or belief propagation,
(Refer Slide Time: 33:16)

finding the communities using triangle count and will also measure the cohesiveness of local
community, for example fewer triangles means a weaker community, more triangle means a
strong community,
(Refer Slide Time: 33:31)

 and also we have seen the building how graph analytics can be achieved using building the
pipeline and,
(Refer Slide Time: 33:38)

so these are some of the references and this is the paper of GraphX unifying data parallel and
graph parallel analytics.

Acknowledgement

Ministry of Human Resource & Development

Prof. Satyaki Roy

Co-coordinator, IIT Kanpur

NPTEL Team

Sanjay Pal
Bharat Lal

Ashish Singh
Badal Pradhan
Tapobrata Das
K. K. Mishra

Ashutosh Gairola
Puneet Kumar Bajpai

Bhadro Rao
Shikha Gupta

Aradhana Singh Rajawat
Sweta

Nipa Sikdar
Anupam Mishra
Ram Chandra

Manoj Shrivastava
Dilip Tripathi
Padam Shukla

Sharwan K Verma
Sanjay Mishra

Shubham Rawat
Santosh Nayak

Praduyman Singh Chauhan
Mahendra Singh Rawat

Tushar Srivastava
Uzair Siddiqui

Lalty Dutta
Murali Krishnan

Ganesh Rana
Ajay Kanaujia

Ashwani Srivastava
M.L. Benerjee

an IIT Kanpur Production

© Copyright Reserved

