
Lecture - 29 
Big Data Predictive Analytics 

(Part-II)

Gradient boosted decision trees for regression.
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Boosting: Boosting it is a method of combining outputs of many week classifiers, to produce a powerful
and ensemble. There are several variants of boosting algorithms, AdaBoost, Brown Boost, Logic Boost
and Gradient Boosting. 
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Now, we see in the big data that, the size of the training examples are a very large. And also, a large
number of, large number of features describing the objects are present. So therefore, this one kind of



scenario occurs in a situation of a big data. So, in this situation it is very natural to assume that, you
would like to train a really complex model, even having such a great amount of data and hopefully, this
model will be accurate. There are two basic ways, in the machine learning to build the complex models.
The first one is that, you have to start with a very complex model from the very beginning, and fits its
parameters, with the data. So, this is exactly the way how the neural networks operates, so they operates
with the, with the very complex model, in the beginning itself and they will fit the data, they will fit the
parameters and the data will be now, then predicted based on that fitting of its parameters.  Now, the
second way is to build a complex model iteratively. So, we can build a complex model iteratively that is
with each step requires, the training of a simple model, so in the context of good boosting, these models
are called, ‘Weak Classifiers or the Base Classifiers. Therefore, it is an ensemble of weak classifiers and
which makes, this particular model iteratively. 
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Let us see, the regression. How this particular concept can be applied in the regression, in a gradient
boosted our decision trees. So, let us assume that there are samples which are given which are specified
by Z, where x1 is the set of features, in the data set and y1 is the label and x1 to xn are n different
samples, in the training data set. Now, the goal here is to find n FX, using this training set such that, this
particular minimum of FX minus y Square and the summation of this is, the minimum such error will be
there and so at the test set, given the test set this error should be the minimum one, here in this case. How
to build this FX is a question?
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So, how to build such an FX? And boosting our goal is to find is to build, the function FX iteratively. So,
we suppose that, this function FX is just a sum of other simple functions, hm of X. So, in particular you
have a let us assume that, each function hm is a decision tree. So here, each function is a decision tree.
And the, the aggregation of it is basically the FX function.
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Let us understand: The gradient boosted decision trees for regression in more details. So, gradient boosted
trees for regression problem. So, let us take the input set of n different data that is training data set, which
consists of X is the set of features and y:i consists of the labels, so in turn this is the training data set of n
different samples which are given, as an input to the gradient boosted trees for regression. And M is the



number of iterations and now, the step number one assumes the initial calculate the initial, f0x. So that
will be calculated by summing up all the label values and their average or their mean is assigned over
here. So, it will take the mean of, of the label values from the training data set and that becomes F 0 or the
initial  F 0 function, initial  effects function. Now, then it  will  iterate for M iterations, wherein it  will
calculate the residual, which is Y I cap is nothing but, Y I - this residual of M minus 1 that is of a previous
iteration and so here, it will be 0 residual and so residuals are nothing but, the differences of values in the
actually labels and the predicted labels that is called the, ‘Residual’. Now, this after that, the next step
would be to fit a decision tree hm, to the targets that is Y I cap. And then, it that means, it will generate an
auxilary training set, out of this particular set wherein, Y I cap will be replaced here as the labels, as the
new labels which are nothing but the residuals.  And then, F M, F X will be calculated by giving up
particular regularization, coefficient and therefore, it will calculate the value of FM and in this manner, it
will iterate and compute all that things. Now, as far as the regularization, coefficient that is nothing but I
mean, it is recommended to be less than 0.1 here in this case, this is going to be important parameter, in
this gradient boosted trees for regression. 
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So here, you might have noticed that, gradient boosting is somewhat similar to the gradient descent in the
optimization theory. That if we want, to minimize the function in the optimization theory using gradient
descent, we make a small steps in the direction opposite to the gradient. So, gradient of a function, by
definition, is a vector which points to the direction, with the fastest increase. Since we want to minimize
the function, we must move to the direction opposite to the gradient, to ensure the convergence, we must
make very small steps, so you are multiplying each gradient by a small constant, which is called a, ‘Step
Size’.  It  is very similar to what  we do in the gradient boosting.  So,  gradient boosting is considered,
minimization in the functionality space. That is FM of X is nothing but, F 0 of X plus V times H 1 of X
plus V times s 2 of X and so on. So, boosting is the minimization in the functional space.
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So, let us see the summary and boosting is the method for combining the outputs of many weak classifiers
or the regressors to produce a powerful and ensemble. And gradient boosting is a, is a gradient decent
minimization of the target functions, in the functional space. So, gradient boosting with the decision tree
is considered to be the best algorithm for general purpose classification or the regression problem. Now,
let us see the gradient boosted decision trees for classification problem,
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from let us assume that, the training set which is given that is Z, comprises of X 1, y 1 and to y2 ends 1 up
to X & Y and we're in X 1 is nothing but they are the features and y1 is nothing but, the class labels. So
here, there will be a class label Y because this is a, classification problem so the classes, lies between lies
0 & 1. So, class labels let us assume that it is 0 & 1, so these will be assigned as the labels, in the training
dataset. Now, goal here is to find out that, effects using the training data set such that, it will minimize this
particular function that is the summation of, summation of FX, which is not equal to the label of y. So that
means, the label FX is the predicted value and Y is that, the target label if it is not matching, so that
becomes  an  error  and  the  summation  of  all  such  miss  classification.  So,  the  summation  of,  so  the
aggregation of miss classification is  to be minimized,  so that  should be the value of FX, which can
achieve this so that, this particular prediction can be applied on, the test data set. So, test data set consists
of x1 y1, x2 y2 and so on up to xn. So, how to build this FX is? The problem of gradient boosted decision
trees. 
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So, gradient boosted trees for classification. Here, we have to see how we are going to build, such a
function FX. So, we use the probabilistic method by using the following expression, so the probability
where y is equal to 1 given X is given by this equation that is 1 upon, 1 plus exponential of minus to the
rich power of summation of M is equal to 1 to M H X, where H X is the decision tree. So, therefore this
the value of probability, function lies between 0 to 1. Therefore, we model the probability of belonging of
an, object to the first class and here, inside the exponential there is a sum of HM’ S and each HM is a
decision tree. So, we can easily check that each expression or the probability will always be between 0
and 1. So, it is the normal regular probability.
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This particular function is called the, ‘Sigmoid Function’, which Maps all the real values, into the range
between 0 & 1. So, this particular sigmoid function is 1 upon, 1 1 by 1 plus e raise power minus X.
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So here, also the same equation is appearing 1 by 1 plus exponential, exponential to the power of minus
FX. This is called sigmoid function. So, let us let us denote the sum of hm(x) by FX. It is an ensemble of
decision trees, then you can write the probability of the belonging to a 1st class in a simple, way using FX
and the main idea which is used here, is called the, ‘Principle of Maximum Likelihood’. So, what is this
principle of like maximum likelihood? So, likelihood is a probability of absorbing some data, given the



statistical model, if we have the data set, with an object from 1 to n, then the probability of absorbing such
data  set  is  the  multiplication  of  probabilities  of  all  single  objects,  the  multiplication  is  called,
‘Likelihood’. And here that can be expressed, likelihood as the multiplication of the probabilities for all
single objects that is nothing but, probability of y 1 given X 1 dot, probability of Y 2 given X 2, X 2 and
so on, 2 probability 1. So therefore, it comes out to be the multiplication of all the probabilities.
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And now, likelihood function we have to calculate. So, the principle of maximum likelihood, can be given
by this algorithm, to find a function FX which maximizing the likelihood, which is equivalent to find FX
maximizing the logarithmic of the likelihood. Since, the logarithmic is the monotone function. So that can
be represented here in this case that, the logarithmic of the probability of all Y ones given X 1 and this
particular summation, here is called ‘QF’. And we have to find out the maximum of qf that is, which will
maximize the likelihood. So, we have to find out that FX, which will maximize the likelihood. 
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Hence, we have to fit our distribution in this data set, by way of, principle of maximum likelihood .So, we
will denote it by Q of F, the logarithmic of the likelihood and it's now ,it is the sum of all the logarithm
logarithms of the probabilities and you are going to maximize this particular function. Now, you will use
the shorthand, for this logarithmic that is capital L by Y I and FX of I. So, it is the logarithmic of the
probability. And here, we emphasize that this logarithms, depends actually on the true label that is Y I and
our predicted values that is FX of I. And now, Q of F is the sum of, the logarithm of Y I and F X of I. So,
logarithmic,  a logarithm of Y I and FX of Y is nothing but,  given as likely, given as the log of the
probability of Y given X I and which is nothing but, Q F is nothing but the summation of all I is from 1 to
N and the logarithmic of Y I and FX of I. So, Y I is the, the true label, for the idea the data object in the
set and FX of I is, the predicted label and this logarithmic of, of this is represented by this likelihood and
the summation of this is represented by this, likelihood which has to be maximized for that key way.
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Let  us  see  the  gradient  boosted  trees  for  classification,  by  putting  it  everything  whatever  we  have
discussed. Now, the algorithm for gradient boosted trees for classification. Here, the input set Z is given
as, X I, Y I where in X I you know that, it's a features in the data set and why is the labels, which are
assigned as, the categorical type that is labels given. And M is the number of iterations and the for, the
first class, the part of the objects of the first class is P of 1 and F 0 of X is equal to log of P 1 minus P 1 by
1 minus P 1 and for, iterating between from 1 to M, so we will find out the gradient that is GI is equal to
differentiation of, this likelihood function L of Y I and FM of X I. So, this will calculate divided by
differentiation of F M of X I. So, this is called the, ‘Gradient’. So, gradients are calculated and then, it
will fit a decision tree hm of X, to the target, to the target GI. So, auxilary training data set, which will be
used here, is that, X I and x1 and then it will be replaced by, label will be replaced by the gradients and
this will call an, ‘Auxilary Data Set’. So, given the other rate data set, it will fit the decision tree that is
called, ‘HM of X I’. And wherein the role value will be arc max of Rho that is for Q of F M minus a1 X
plus Rho times, H M of X. So, Rho will be calculated and F M of X is equal to FM minus 1 of X plus, V
is the regularization coefficient Rho M and H M of X I. So, this process will in turn, will give the X
symbol of different values. And so, it will do this kind of classification in this particular manner. So, let us
see the stochastic boosting, so gradient boosting trees for classification, if we use this stochastic boosting.
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Then it will be represented here in this case, we are this observe a set, which is used as the training set
will be now, k is equal to 0.5 n will be created by the random sampling with the replacement, so this
particular part here, we are going to use the, the concept of the random forest, for the bootstrap generation
of the data side. So, this is the, the gradient boosting, gradient boosted trees + stochastic boosting is
shown over here. 
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And this way, sampling with the replacement is there. 
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So here, we have to see that the size of the sample will be reduced by K is equal to 0.5 n that is here, the
author a training set, will be reduced by the size half and it will be created, by random sampling with the
replacement. And this is called the, the, the, ‘Concept of Bagging’, which will be used over here in the
stochastic boosting. 
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So, sampling with the replacement is used but here, the value of K will become half of, the size of the,
the,  the  total  features.  So  here,  it  will  be  half  of  that  particular  features,  will  be  taken up  into  the
considerations. 
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Hence, as we reduce the size, this becomes more efficient this particular case. 
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So,  let  us see the tips for the usage,  first  of  all  it  is  important  to understand how the regularization
parameter works. In this figure, we can see that the behavior of the gradient boosted, decision trees with
the, with, with the two variants we can see with the parameter, point 1 & 0 & point 0 5 that is point 0 5.



So, we can see that, this one point 1 is not that accurate and point 0 5 is more accurate. So, what happens,
here is that initially stage of the learning, at the initial stage the learning, the, the variant that is 0.1 is
better but because, it has the lower testing error. 
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But, later on so at each iteration, you measure the testing error, up our example of on the holed out data
set. But, eventually the variant with the lower regularization that is point zero five, reach the lower testing
error, finally this variant turns out to be the superior. So, it is very typical behavior and you should not
stop, your algorithm after several dozens of iterations, so you should proceed over until it converges. So,
convergence  happens  when  you're  testing  error  does  not  change  a  lot.  The  variant  with  the  lower
regularization convert more slowly, but eventually it builds a better model.
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So, the recommended learning rate, should be less than or equal to 0.1 that we have already seen. And the
bigger your data set is, the larger it will be the number of iterations it, should have. So, the recommended
number of iteration ranges from several hundred to the several thousand’s. Also, the more features you
have in your data set, the deeper will be your decision tree. And there are many general rules, because the
bigger your data set is the more features you have, the more complex model you can build without over
fitting, in this particular scenario. 
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So, somebody it is the best method, for general-purpose classification and regression problems. So, it
automatically handles the interaction of the features, because in the core, it is based on the decision trees,
which can combine several features in a single tree. But also, this algorithm is computationally scalable. It



can be effectively executed in the distributed environment, for example, in the SPARK. So, it can be
executed on top of the spark cluster. 
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But  also,  this  algorithm  has  very  good  predictive  power.  But,  unfortunately  the  model  are  not
interpretable. And that problem we have also seen, in the random forest but here, the predictive power is
better than that in the forest. So, the final and simple effect is very large and cannot be analyzed by the
human experts. So, obviously it is not having the good interpretation of this due to the complex, nature of
this particular model. So, there are always a trade-off in the machine learning, between the predictive
power  and interpretability, because  the  more  complex  and accurate  your  model  is  the  harder  is  the
analysis of this model, to be interpreted by the humans. 
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Spark ML, based decision trees and examples, we have to see the programming aspect of it, how using is
part ml we will now use, the decision tree and decision tree and ensemble.
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So here, we will talk about a spark ML for doing classification regression, with the ensemble trees. 
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And first we will see that, we have to, we have to first see the decision trees how, the decision tree will be
implemented over the spark image and then we can extend it for, the random forest and gradient boosted
trees. So, the first step here is to create the spark context and in the spark session. Which is shown here, in
this particular steps that we have to, create the spark context and we have to also, create the spark session.
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And this is spark session is required for building the data frame. And then, we can download the data set
and now, we can see the data set, after downloading.
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The data set into data frames and then we can see the features that, it has the data has an ID number and
the label that is categorical label, which can be denoted by 0 & 1 or you can see that it is, it is M and B,
finally which will be converted into 1 & 0 .So, this particular data set has the, the features and it has the
labels  and it  has  an ID.  So,  there  are  three different  important  parameter  sighs.  So,  let  us  take this
particular case, where all these important parts are, there in the data set. So, now we can further look into
the data set. 
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You can see that, these data set. How, so these data sets, so these features are the result of the analysis and
it has around 569 different examples, in the data set. 
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And what we, we all need to transform this label, which is given in M or B to the, to the numeric value
and using string index or object, we can do this and that is the string index our object will create this, into
the label values.
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Into the numeric values and then we can create the data frame, which is stored in the distributed manner
on the on the cluster. So, this particular data frame will be, created with the label and the feature, so these
two part will be used up in the data frame, which will be input to our system. So, string indexer and then
it will transform,
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so that, all the values will become here. So, all these labels will be converted into the values using string
indexer. 
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So now, after index, label index and all these label values are converted, from letter to the numeric values.
So,  here  can have this numeric  value either 1 or it  is  0,  as  the label  values.  So,  we have now two
important things, one is the feature and the other is label indexed, in the data frame which is shown over
here, this particular data frame will be now used for further analysis. 
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Now, then we will make the training test is splitting, into the proportion 70 to 30 that when 70% is the
training portion and 30% will be the test portion of the data set. So, first we model with that 70% data set
to train the model on a single decision tree and then we will use the 30% of the data set for testing
purpose. So, this is to be done in this particular manner using random split, of 70 by 30 and then we will
train the  decision  tree  model,  using  decision tree  classifier  and  we'll  apply the label  in  text,  in  this
particular case and then we will fit, the decision tree on the training data set. So, this will become this will



build a model called, ‘Decision Tree Model ‘. It will build and this will be represented as DT model, as
the variable. Now, you can see this particular model has how many nodes? What is the depth? And what
are the important features? And so on. 
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And so after the, so these things now we are making, the import decision tree classifier we can create the
class that is responsible for the training and then we call the, ‘Method fit’, to the training data and obtain
the decision tree model that we have shown.
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Now, so the training was done in a very fast manner and now the we have to see the results, so the number
of nodes and depth out the decision tree and a feature importance and number of features used in the
decision tree and so on. These different things we can inspect. 
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And now, we are going to see the decision tree and we can take this one, so we can print this decision,
decision tree model and you can see that, it is nothing but an if-then-else and then that means all the
internal nodes of a DC entry and finally the leap will be having the predictions. So, once the decision tree
is built,
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now we can use this decision tree, to for the test data, to obtain the predictions. So, now we can use the
test data and use the same decision tree model and now, we will perform the, the predictions. So, so the
predictions are now, there and then we will evaluate this particular, the predictions using multi class, multi
class classifier evaluator, we will evaluate these predictions, which are done by this one decision tree for
its accuracy. So, what we will find here is that? 
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That accuracy is very high and the error is very less. And so, the testing error is only thirty percent, so the
model is quite accurate. So, with only three percent error, the model is quite accurate. 
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And now, we are going to see the another method, which is called a, ‘Gradient Boosted Decision Trees’.
So, first of all we import, the data and then create the object which will do the classification. And here, we
are specifying the label column is a labelindexed that we have seen, in the previous example also and the
features column as the features. Actually, it is not mandatory to specify the feature column, we can do it
either using the assignment or without this argument, now the thing is, so after having done this, now we
will fit this particular model and apply this particular gradient boosted, classifier using labelindexed the



features that we have seen, now we will fit this particular model, onto the training data set and we will get
the model, gradient boosted a decision tree model. So, once we obtain the model, then we will see, its
where then we will using this particular model, we will now apply the test data on it this particular model
and now, we using a multi-class classification evaluator, we will evaluate its predictions. 
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So, let us see, so this we are going to do 100 iterations and default step is point 0.1. So, after that, so we
will see that here the accuracy, here the error is here the, the test error is quite. So, basically this has
improved or the DC entry model. 
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Now, we are going to see the random forest. And random forest again, the same data set we will take and
but here, the classifier we are going to change as, random forest classifier and we will fit, the training data
on random forest classifier and we will get a model, which is called, ‘Random Forest’, ‘Forest Model’.
Now, using this particular model we will, now we will transform the test data, we will apply the test it on
this particular model and get the predictions. So, now after getting the predictions we are not evaluating
these  particular  predictions,  using  multi-class  classification  evaluator  and  this  will  now, evaluate  its
prediction accuracies.
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 And this we will now, be able to see that, that the test error is very less that is, than the previous decision
trees. Hence, this we can see that, in this example, the testing accuracy of the random forest was the best,
with the other data the situation may be quite different. In general case, the bigger your data set is more
features, it has the quality of complex algorithm like gradient boosted or the forest will be much better. 
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Now, let us see the cross-validation using spark ml. So, class validation helps to assess, the quality of
machine learning model and to find the best model, among the family of the models. First of all we have
to create the spark context that is, shown over here and then we will, do the spark session. 
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Then we'll build the spark session, will build the spark session, which will create the data frames and then
we will use the data set, read the data set, load the data file and now, we will create the data frames, DF as
the input data frame. 
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And now, we will apply we after doing various transformations. Now, we will input data we can see, it is
already indexed now we have to do the cross validation. So, what steps are required for doing cross
validation with the data set? So, for example, we want to select the best parameters of a single decision
tree. And we create the object decision tree, then we should create the pipeline. So here, we are going to
create the pipeline and in this pipeline stage, we are only using the decision tree, based pipeline.
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So, then we will apply this cross validation, using parameter builder and we have to also, see the cross
validation. 
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So, then we import their class validator and parameter great, builder class and you are now creating the
parameter grid builder class. For example, you want to select the best maximum depth of the decision
tree, in the range from 1 to 8. And we don't have the parameter build grid builder class and we create the
evaluator, so we want to select, the model that which has the best accuracy among others. And using this,



all these parameters whatever we have said, now we are going to evaluate, using multi-class classification
evaluator. 
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And now, we will see the evaluator will now, evaluate the cross validator. And cross validator will fit it to
the input function and it will select the best model, into the different stages. So, we create the evil water
so we want to select the, the model which has the best accuracy among others, so we create a cross
validator class and pass a pipeline into, into this class parameter great and the evaluator. 
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And finally, we select the number of folds and the number of holes should be not less than five or ten.
And the number of folds we have selected and after that,
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we create the CV model and takes some time because, spark need to make the training and evaluation, the
qualified the ten times. 
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Now, we can see that the average accuracy, amount of fold, for each of the failure of the three depths. 
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Now, we can see and the first stage of our pipeline was the decision tree, so you can get the best model
and the best model has the depth six and it has 47 nodes, in this case.
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Then we can view this model, to make the prediction at any other data sets. So, in parameter great builder,
we can use several parameters. For example, maximum depth and some other parameter of the decision
tree, for example, minimum instances per node and select some other grid here. But, in this example, we
did not do it, due to the simplicity and if we evaluate only one parameter, the training is much faster. 
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So, conclusion in this lecture, we have discussed the concept of random forests, gradient boosted decision
trees and we have also covered a, case study using a spark ml programming, on decision trees and, and
other learning tree ensembles. Thank you.


