
Lecture - 20 
Spark Streaming and Sliding Window Analytics (Part-II)

Spark Streaming Workflow.
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 So, is party streaming but, flow has four high, level stages and let us sees all these stages in, in a brief
manner. So, the first  is to stream, the data from various sources and these sources, are such as akka
system, Kafka system, flume AWS or Park West for the real-time streaming, data input. So, this particular
streaming data, is to be input using these different sources, akka Kafka flume and Park West, they will
give the live feed, of streaming data,  to the to the system. Now second type of sources,  of  the data
include, they are called the static data sources. So, they include, HBase that we have discussed, my sequel
post grass SQL, then Mongo DB Cassandra and they are for the static are the batch streaming data, feed
into the SPAR streaming system. Once these once these data, is streamed into the spark system, the spark
and we used to perform on, on it the machine learning using, the machine learning, API that is ma lib,
further the spark SQL, can also be used to perform further, operations on this particular data, finally the
streaming output can be stored, into the into the various data storage system, like HBase and Cassandra,
SQL Kafka elastic search HDFS local system and so, on. 

Refer slide time :( 02:40)



So, therefore the, the spark is streaming workflow, looks like this that input, of the streaming data, comes
from Kafka flume HDFS Genesis Twitter. And finally after processing they will be stored, on to the either
HDFS databases dashboard and so on. So, incoming these, incoming data, streams are now divided into
the, into the batches of input data, which is given back to the spark engine, for computation and they will
process,  it  and gives back output  this  particular  data.  Now this batch the input  data streams,  is  now
divided  into  the,  discrete  chunks  of  data,  for  example  the  streams,  which  is  handled  by  the  spark
streaming is called the,’ Discretized Stream’, or add stream. So, d stream is, is the batches, of data of X
seconds. So, here the batch, is of let us say one second, so from zero to one second, batch is called as,’
RDD’, at the rate type one. So, the batch of timing from time one, to time two that is that next one second
is called the,’ RDD,’ at the rate time 2 and so on. So, the batches, are do I into the into the discrete chunks,
in this example this is the batches, of one second it is divided into the batches of one second in this
example, it can be minimum half a second batches, for better latency from n to n. So, once this particular,
data  stream  or  d  stream  is  decided  or  is  broken  by,  the  Spark  streaming  system,  then  various
transformation can be applied, which is also a part of the Sparky streaming system, for example a flat
map operation, can be applied on every d stream. So, for example when a flat map operation is applied, it
will give different words, which are input or which are divided, in the form of d stream of one second
duration, similarly this flat map is when applied on all the case then it will extract the words from the
input stream.
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 And this can be shown, here in this example, of getting the hashtags, prom on the Twitter. So, Twitter
stream is input into the, into the system into the spark streaming system. So, this is called. So, Twitter
stream is given into the system and then after dividing, into the different D streams, it will perform the
transformation, on top of it which is called the,’ Flat Map’. And the flat map will be defined on, the
tweets, which is given into the system and the flat map, will perform the get, tag the hashtag it will get, as
the status and this hashtag will be, extracted as per the transformation. So, the transformation will modify,
one D steam to create, another d stream in this particular manner and finally it will, from this tweet d
stream it will extract the hashtags, in this particular example. So, this is shown over here that, this tweet D
streams when a flat map is applied, it will give the hashtag D streams which is hashtag in, in the terms of
for example number of hash cat hash dog and so on different topics, it will extract and it will generate the
new RDD
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 out of every batch, therefore after that these hashtags, will be saved, into the Hadoop as a file and this
will be the output, which is to be. So, output operation is to push this particular transform data, in the
form of a hashtag to the external storage. And here that is shown over here, but not every time we are
going to store, we can perform various analytics on this transform hashtag. And maybe that sometimes
this  transformed  hashtag,  analytics  will  require  to  update  the  website  or  perform  various  other
applications, depending upon whatever we want to do on this output so, for each. So, therefore various,
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 different programming languages are supported. So, the example which we have seen was written in
scalar, the same application it can be written using the Java. So, Java API also is available, with the
Sparky streaming system. 
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And now let us see about the fault tolerance. So, RDDs our, remember the sequence of operation and that
created it from the original fault tolerant data. So, therefore RDDs are knowing, using lineage about the
sequence of operation, how they are created, from the original. So, this we know from the spark, fault
tolerance system and when the batches of input data are replicated in the memory of multiple worker,
nodes and therefore we are trying to achieve the fault tolerance in this case. So, whenever the data is lost
to  the  worker  failure  it  can  be  recomputed,  using  lineage  from the  input  why because  these  RDDs
remember all that things.  So, so therefore this fault tolerance can also be ensured here, in the part of this
spark system, in a spark streaming. 
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So, let us see the key concepts. So, key concepts so, far we have seen about the D stream which is a
sequence of RDDs representing the stream of data and these D streams are created out of the stream of
data, from Twitter HDFS Kafka flume and so on. And there are various transformations, can be applied on
D stream, which can modify, one from, from, from the given D stream to another form of these team. So,
the standard RDD transformations, which are operations which are available for the transformations, are
the map, count by value reduce, join and so, on similarly there are other stateful operations, which are
available in the form of transformations such as window operations. And count by value and window and
so, on we will see all these stateful operations. Now besides the transformation, there are actions or the
output  operations, also to be performed on the D streams,  which are available as part of the sparkie
streaming system. Now these output operation, will send the data to the external entities, will save as
Hadoop files will say to HDFS, for each do anything with each batch of results. So, we will see that
whenever an action or an output operation, which we are going to perform either, it will save or to the
HDFS file save as, a file or It will further actions, using for each command. 
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So, again we will now count the hashtags, in this particular example. So, that means once we get, the
hashtags that we are going to count these hashtags. So, the se hashtags which is now available, using this
spark streaming system. Now we are going to perform an action or the operation as an output. So, the
output here is to be the count by value. So, it will count how many hashtags about these hashtags, are
there into the stream processing into the data. So, here we can see, that we perform this count, by value.
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 Now we will also see some more functionality, in the terms of this example, which will count the hashtag
over the last 10 minutes. So, is so, basically for that we have to use, the been doing operation. So, we
have to use the window of one minute and within the one minute after every five seconds, we are now
monitoring,  this  hashtag  and  then  performing  the  count  by  value.  So,  this  particular  command  this
operation, will have the windows window has two different arguments, one is the length of the window,
window size and window length. And so, here it is in the window of one minute duration for every five
second, we are going to count, this by value. So, just window is can be seen here, the window has sliding
window operation, has the window length and the window interval, sliding interval. So, we can see, using
this particular diagram, that this is the window length, this is of one minute and sliding interval, is of that
another duration. So, sliding interval, will give the data for processing so, whenever we say count by
value.  So,  this  particular  window  length  and  sliding  interval,  together  will  give  the  data  for  this
computation. 
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So, here, we can see that in this particular example that that we are going to count, all the data in that
particular window. Now one important thing is that, when the window, slides can see the sliding interval,
there are two things one is called,’ Window Length’. And the sliding interval.  So, when the window
slides, then the, this particular old data will be out of that window and a new data will enter into the
system. So, the values which we are now counting every time is going to be changed in this way. So, what
will be the new count, word count, count by value that is required to subtract, this is the previous value
and the new value is to be added this concept, requires, the window based different algorithm, to do the
analysis.
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That we will see in the further slides. So, smart window based, reduction we will see different commands
are  there  so,  techniques  to  incremental  e  compute  count,  generally  generalizes  to  the  many  reduce
operations,  that  needs  a  function  to  inverse  the  reduce  that  is  subtract  for  counting.  I  could  have
implemented counting as, the hashtag reduced by key and window. So, within that particular time that
will, do this operation that is after sliding the new value will come and the old value will be subtracted.
And this is performed in the reduced by key and window operation.
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 Arbitrary stateful computation, this is also very important computation, in the spark streaming system,
why because this allows you to, maintain a count of particular words or event which is occurring, into the
stream of data. So, this is to maintain the stateful computation. So, especially by function to generate the
new state, based on the previous state and a new data. So, for example maintain per user mood as the state
and update it when, when it sees that tweet. So, update mode definition, of a function can be defined as,
the new tweets and the last mood, which it has seen and then it will update to the new mood and so, this is
an  update  function  so,  whenever.  So,  this  particular  function,  will  do  this  update  mood,  using  the
parameters which is given in the in the tweet so, so whenever a new tweet it comes, it will perform this
update move function. And this will be the update state by the key and so, whenever the Twitter tweets by
the user is given. So, here the mood will be extracted and, and the state variable, is maintained to measure
the to understand the mood. So, here that is that is why it is called a,’ Stateful Computation’. So, state is
man is maintained all the time so and this state will be updated whenever not did the stream of data is,
coming and now there is a change of mood. So, it will be extracted out of the stream and updated as the
state. 
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So, arbitrary combination of batch and stream, computation example we are going to see now. So, there
will be an intermix RDDs and the d stream computation, operation. So, for example join incoming stream
with the with a spam, HDFS file to filter out the bad tweets. So, using this particular way of joining, we
can see that so, so the tweet RDDs is now, joined with the  HDFS file system and we will  perform
various, filter on top of it and this will transform, the tweets and the transform to X will be given as the
output. So, all these functions are written in the scalar, to understand these particular operations or the
commands or the programs. So, I advise you to refer the scalar programming language, to have a better
understanding of the streaming. 
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So,  spark  streaming these  3dstreams batches  and RDDs.  So,  again let  us  summarize  all  this  is  that
whenever  the  data,  input  data  stream  is  coming,  input  streaming  data  is  coming.  So,  in  the  spark
streaming system,  it  will  divide into the  batches,  of  one second duration in this example,  and these
batches are now performed various transformations. And an action and given back to the spark engine for
giving the output. So, these steps are repeated for each batch continuously, because we are dealing with
the streaming data. So, the data is continuously coming, in the form of streams. So, is partly streaming has
the ability to remember the previous RDDs and to some extent.
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 Therefore this d stream and RDDs together that is d stream, is basically the, the streaming data, and
RDDs are the batch data, together if we add it will become the more power for example we can apply or
we can introduce the online machine learning. So,  that  means we can apply the, the RDDs, when it
becomes an RDD we can apply the machine learning that the library is on top of it hence, it becomes a
online machine learning, technique that means machine learning applied, on the d streaming using this
model. So, continuously learn and update the data model this can be performed, using update state by the
key and transformations. So, also there is a in this manner, we can combine the live stream data, with the
historical data, we generally we can generate, the historical data model with the spark etcetera. Now we
can use the data model to process, live data streams using transformations, we can also do the CP style
processing, such as window based operations reduced by window etc. 
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So, from D stream to the spark jobs, we can see that every interval, an RDD graph is computed from D
stream graph.  And for  each output  operation  spark action,  is  created  for  each action a  spark job  is
computed. So, this is shown here in this particular example, graph that it is a D stream graph that input
streams are coming and all  these input different streams, we can perform a union on it. And we can
perform different transformations and then perform various actions. So, these block of RDDs are then
with the data received from the last batch interval is given back to the spark system, in the form of RTD
graph.  And  RDD  again  will  perform  these  RDDs  and  perform  the,  union  and  again  apply  the
transformation and give the output. So, this particular from a spark is streaming, weather and when the
when the jobs are given for this part then again another level of transformations, can be applied before it
can output.
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 So, there are input streams which we have already seen let us summarize that that out of the box ,we have
provided for the input sources, Kafka HDFS flume ARCA actors raw TCP sockets and it is very easy to
write a receiver, for your own data source. So, these are different receivers, which are inbuilt and you can
also write down, your own receiver for your data source also generate your own RDDs from the spark and
push them as the stream.
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 So, current as park streaming input output, we can say now summarizes as cough-cough loon Twitter 0nq
and so on, the basic sources are sockets file a character and so on. So, the output operations are print save
as a file, save as object file save as Hadoop files, for each RDDs for each RDD, can be used as a message
queue and DB operations and many more things.
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 So,  d  stream classes  different  classes  for  different  languages are  ported Scala  and Java these three
miles36 different values, value members and multiple type of rest reams and separate Python API will be
provided.
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 Now  Spark  streaming  operations  are  summarized  here,  as  the  RDD  operations  and  some  or  the
transformations, such as map and flat map that we have seen filter also we have seen repartition, Union,
count reduce, count by value reduced by key join, code group, transform and update state by key are
different transformations, available in the spark RDDs. Now it's park swimming window operations are
available,  such  as  window count  by, window count  really  reduced by  window, reduced by  key  and
window  count  by  value  and  window,  similarly  for  output  operations  in  spark  streaming,  various
commands such as print save as a text files save as object files, save as Hadoop files for each RDD and so
on. 
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So, therefore the batches of input data are replicated, in the memory for fault tolerance data lost, due to
the worker can be recomputed, from the replicated input data. And all transformed transformation or fault
tolerant and follow the exactly ones transformations.
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 So, fault tolerance, is that is the receive data, is replicated among, multiple spark executors the default is
to and this must protect the driver program there is only one driver running. So, if the driver node is
running, on the spark streaming and application fails driver, must be restarted on another node. And this
can be handled using the zookeeper, our yarn, this was engine requires a check point directly here, in the
streaming context which. So, check pointing saves the state on the regular intervals, typically every five
to ten batches of data; the check point’s being made. So, a failure would have to replay, the five to ten
previous batches,  to recreate the appropriate RDDs. So,  checkpoint  done to SDF s or equivalent  so,
streaming back pressure exclaiming black pressure will be enabled and all these will achieve the fault
tolerance. So, in nutshell we can say that a check pointing and replication together, will ensure the, the,
the recovery of the failures. 
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So, performance if we see that even the grape and the Whatcom performance. So, on sub second latency,
it is four it is achieved in one second and two second a very good performance that we are seeing here.
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 Compared to the other systems, this is also showing, the better performance that is a spark system, is
having good performance and storm is  basically achieving and the but  the  higher throughput,  a low
throughput and a spark is having achieved the better throughput. 
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So, fault tolerance recovery systems are there so, it recovers from false or stragglers within one second.
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So, this also is reported and,
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Now let us see the spark program, versus spark streaming program and here again those issues we have
seen that. So, whether it is coming from, the spark streaming or coming from the Hadoop file,  these
particular things are going to be handled in the sparks training system,
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 both as a batch, as well as streaming data. So, all these things we have already, discussed there, that is for
having the unified stack and explore, the data interactively to identify the problems and use the same code
in the spark for processing, large logs and use similar code in the Spark streaming for the real time. And
in the code we can see that, we can apply the, the filter and then we can also, invoke this particular, fault
tolerant aspect and then invoking the spark context and once the spark context is invoked then, the driver
and the executors are allocated
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 and they are basically able to get ready for the computation.


