Lecture -10

Introduction to Spark

Refer slide time: (0:13)

Introduction to Spark

Introduction to Spark.

Refer slide time: (0:15)

Content of this Lecture:

e In this lecture, we will discuss the ‘framework of
spark’, Resilient Distributed Datasets (RDDs) and also
discuss Spark execution.

Preface: Content of this lecture: This lecture, we will discuss the ‘framework of Spark’. Resilient
distributed data sets and also, we will discuss the, Spark execution.

Refer slide time: (0:30)

Need of Spark

e Apache Spark is a big data analytics framework that
was originally developed at the University of
California, Berkeley's AMPLab, in 2012. Since then, it
has gained a lot of attraction both in academia and in
industry.

e It is an another system for big data analytics

e Isn’t MapReduce good enough?
« Simplifies batch processing on large commodity clusters

The need of his Spark. Apache Spark is a big data, analytics framework that was originally developed, at
University of California, Berkeley, at AMP Lab, in 2012. Since then, it has gained a lot of attraction, both
in the academia and in the industry. It is, an another system for big data analytics. Now, before this is
parked the Map Reduce was, already in use. Now, why isn't the Map Reduce good enough? That we you
are going to explore, to understand, the need of the Spark system, before that we have to understand that,
Map Reduce simplifies, the batch processing on a large commodity clusters.

Refer slide time: (1:23)

Need of Spark

Reduce

So, in that process, the data file or a dataset, which was the input? which was input, through the HDFS
system, uses, the map function, to be spitted into across different, splits and then the map function was
applied on to this particular splits, which in turn will generate, the intermediate values, which is in the
form of shuffle and is stored in HDFS and then passed on, to the reduced function giving the output, so
this is, the scenario of a Map Reduce, execution framework, as you have seen the data set, is now, stored
in the HDFS file system. Hence, this particular computation is done for the batch processing system. So
we have seen that, this particular batch processing, was done using the Map Reduce system and that was
in use earlier, before the development of a Spark.

Refer slide time: (3:04)

Need of Spark

Reduce

Expensive save to disk for fault
tolerance

Now let us see, why this particular model, of Map Reduce is not good enough to be there? Now, as you
have seen, in the previous slide that, the output of the Map function, will be stored in HDFS and this will
ensure the fault tolerance. So the output of, map function, was stored into HDFS, file system and this
ensures of the fault tolerance. So in between, if there is a failure, when it is stored in the HDFS file
system, still the data is not lost and is completely saved, that is why? It is ensuring the fault tolerance and
because of that fault tolerance, the intermediate values or intermediate results, out of the map functions
were stored into HDFS file. Now, this particular intermediate results will be now, further fed on to the
reduced function. So that was, the typical Map Reduce, execution pipeline. Now, what is the issue? The
problem is, mentioned over here, that the major issue is the performance. so that means, the performance
is degraded and it has become expensive, to save to the disk for this particular activity of fault tolerance,
hence this particular Map Reduce, framework becomes quite slow, to some of the applications, which are
interactive and required to be processed in the real time, hence this particular framework, is not very
useful, for certain applications.

Refer slide time: (5:50)

Need of Spark

e MapReduce can be expensj«’/e for some applications e.g.,
e Iterative
rd _/
e Interactive
/

S
N PR
« Lacks efficient data sharlng ‘/ﬁ -

e Specialized framewor{s did evolve for dlfferent programmm

models e @;@
Bulk Synchronous Processin Pregel) (v
- B Y | g (Pregel) gt

—

e Iterative MapReduce (Hadoop) / "

Therefore, let us summarize that, Map Reduce can be expensive, for some applications and for example,

interactive and iterative application. They are very expensive and also, this particular framework, that is
the Map Reduce framework, lacks efficient data sharing, across the map and reduce phase, of operation or
iterations. So lacks efficient data sharing in the sense, the data which is, the intermediate form of Map
Reduce is, map is stored in the file system, HDFS file system. Hence, it is not shared, in an efficient
manner. Hence, this particular sharing the data across map and reduce phase, has to be through the disk
and which is a slow operation, not an efficient operation. Hence, this statement which says that, Map
Reduce, lacks the efficient data sharing, into the system .so due to these, drawbacks, there were several
specialized framework did evolve, for different programming models, such as, so the pregel system was,
there for graph processing, using bulk synchronous processing BSP. and then, there is another framework,
which is called,’ Iterative Map Reduce’ was also made and they allowed, a different framework some a

specialized framework, for different applications to be supported.
So the drawback of Map Reduce has, given the way to several frameworks and they were involved a

different programming models, so bulk synchronous, parallel bulk, synchronous parallel processing
framework, is about there is a synchronization barrier, so the processes at different speed the joints at the
synchronization barrier and then they will proceed further on, so this is called, ‘BSP model’. so this BSP
model also, allows a fast processing for the typical graph application, so graph processing is done using
BSP, to make it more faster. Because, the Map Reduce doesn't support the graph processing within it. so
grab processing framework requires, that the data which is being, taken up by the neighboring nodes, then
basically these nodes ,the neighboring node will collect the data, will gather the data and then perform the
computation and then again scatter, these data to the other points. so this particular operation, the
communication, computation and then communication, is to be completed as one step, that is the lockstep
and hence the bulk synchronous processing, comes into the and effect where this all three operations, all
three actions, are to be performed and then only the next step will takes place using bulk synchronous
processing. Hence, this kind of paradigm, that is called,” Bulk Synchronous’ processing framework ,is

useful for the graph processing, that we will see that, how this particular different programming paradigm,
such as bulk synchronous processing and iterative Map Reduce ,for the iterative applications, for
example, the iterations of a Map Reduce, is basically you can see, in the machine learning algorithms. so
these different frameworks were evolved, out of this Map Reduce drawbacks and they, they existed, over
the several period, over the period of time, to fill up this particular gap. Now, seeing all these scenarios
and to provide the data sharing and to support the applications such as interactive and iterative
applications, there was a need for the SPARC system.

Refer slide time: (10:38)

Solution: Resilient Distributed Datasets (RDDs)

Resilient Distributed Datasets (RDDs) _- pldsof
J / —

Immuth')ble, partitioned collection of records

Built through coarse grained transformations (map, join ...

So the solution: which is Spark has given, is in the form of an abstract data type, which is called,
‘Resilient Distributed Data Set’. So the SPARK provides, a new way, of supporting the abstract data type,
which is called resilient distributed data set or in short it is our DTS. Now, we will see in this part of the
discussion, how this RDDs are going to solve ,the drawbacks of the batch processing Map Reduce, into
an more efficient data sharing and also going to be supporting, the iterative and interactive applications.
Now, this particular RDDs, are resilient distributed data sets, they are immutable, immutable means, we
cannot change. It cannot be changed, so that means once an RDD is formed, so it will be an immutable.
Now, in this particular way, this immutable resilient distributed data set can be partitioned in a various
ways, across different cluster nodes. So partition collection of Records, so partitioning can happen, in s
for example, if this is a cluster, of machines which are connected, with each other. So the RDDs can be
partitioned and stored, at different places, at different segments. Hence, the immutable partition collection
of records is possible and in this particular scenario, that is called, ‘RDDs’. Now, another thing is, once an
RDD is formed, then it will be formed using, it will be built, RDDs will be built, through a course gain
transformations, such as, map, join and so on. Now, these RDDs can be cached for efficient reuse, so that
we are going to see that, lot of new operations can be performed on it, so again let us summarize, that the
Spark has, given a solution, in the form of an abstract data type ,which is called as a, ‘RDD.’ and our

RDD can be built, using the transformations and also can be changed, can be changed into another form,
that is RDD can become another, RDD by making various transformations, such as map, join and so on.
That we will see in due course of action, these RDDs are, are immutable, partition collection of record.
Means that, once an RDD is formed, so as an immutable, immutable means, we cannot change, this entire
collection of records, can be stored and in a convenient manner onto the, onto the cluster system. Hence,
this is an immutable partition collection of the record, these RDDs can be cached, can be cached in
memory, for efficient reuse. So as we have seen that, Map Reduce lacks, this data shearing and now using
the RDDs, a Spark will provide, the efficient, sharing of data in the form of, all RDDs.

Refer slide time: (15:02)

Need of Spark

Now let us see, through an example of a word count. Word count example, to understand the need of
Spark. So in the word count application, the data set, is installed through the HDFS file system and is
being read, so after reading this particular data, set from the file system, this particular reading operation,
will build the RDDs. and which is shown here, in this block number 1. So that means once, the data is
read, it will build, the RDDs from the word-count data set. Once these RDDs are built, then they can be
stored at different places, so it's an immutable partitioned collection and now various operations we can
perform. So we know that, these RDDs, we can perform various transformations and first transformation
which we are going to perform on these RDDs, which are, which is called a, ‘Map Function’. Map
function for, the word count program, is being applied on different RDDs, which are restored. So after
applying the map function, this particular output, will be stored in memory and then again, the reduced
function will be applied, on these RDDs, which is the output? Or which is the transformations? Which is
the transform or RDDs, out of the map function? Again the reduce function will apply. And the data and
the result of this reduce, will remain in cache. so that, it can be, used up by different application .so you
can see that, this particular transformation, which is changing the RDDs from one form, to another form
that means after reading, from the file, it will become an RDD and after applying the map function, it will

change to another RDD and map function and after applying the reduce function. it will change to,
another form and the final output, will be remained in the cache memory. Output will remain in the cache,
so that, whatever application requires, this output can be used up, so this particular pipeline, which we
have shown, is quite, easily, understandable and is convenient to manage and part and to store, in the
partition, collection manner, in this cluster computing system.

Refer slide time: (18:11)

Solution: Resilient Distributed Datasets (RDDs)

Resilient Distributed Datasets (RDD?/

J S

« Immutable, partition&d collection of records

« Built through coarse grained transformations (map, join ...)

- L [? ,w
a e By Spork fye fauk \
Fault Recovery? & > ’j L :'iﬂté Q’_f!ﬁﬁ .

— e

-

. Li | &
Lineage V.

- Log the coargg_grained operation applied to a
partitioned dataset

« Simply recompute the lost partition if failure occurs!

« No cost if no failure

So, we have seen that, this RDDs has simplified this particular task and has also made this operation
efficient. Hence, RDDs is an immutable, partition collection of the records. And they are built through the
coarse grained transformation that we have seen in the previous example. Now, another question is, since
the Map Reduce was storing ,the intermediate results of a map, before it is being used in the reduced
function, into an SDFS file system, for ensuring the fault tolerance .now since, by produced since the
SPARC is not using, this intermediate results storage, through the SD FS rather, it will be in memory
storage, so there will be how this Spark ensures the fault tolerance that we have to understand now, the
concept which Spark uses, for fault tolerance is called,” Lineage’. So this park uses the lineage to achieve
the fault tolerance and that we have to understand now, so what Spark does is? It locks, the coarse-grained
operations, which are applied, to the partition data set. meaning to say that, all the operation like, reading
of a file and that becomes an RDD and then making a transformation on an RDD using map function and
then again another transformation, of RDDs using reduced function, join function and so on. All these
operations they form, the course gained operations and they are to be logged into a file, of before
applying it. so if the data is, so basically ,if the data is, lost or if the, if the system, crashes the node crisis,
they simply recomputed, these lost partition and whenever there is a failure, if there is no failure,
obviously no extra cost ,is required in this process.

Refer slide time: (20:37)

RDD RDD

Read

Read

Let us see this, through an example.

Refer slide time: (20:40)

So again, let us explain that, lineage is in the form of the course grained, you said, it’s a log of a coarse
grained operation. Now this particular, lineage will, keep a record of all these operations, coarse-grained
operations, which are applied and that will be kept in a log file. Now we will see, how using this lincage
or a log files, the fault tolerance can be achieved.

Refer slide time: (21:24)

RDDs track the graph of
transformations that built them
(their lineage) to rebuild lost data

rﬁ“'& Map Reduce

Let us see, through this particular example. That let us see, that the word count example, which we have
seen in the last slide. Now the, the same word count example, we have to, we have, we have to see that,
these RDDs, will keep track of ,oddities will keep track, the graph of transformation, that build them,
their lineage to rebuild lost data. So the, so there will be a log of all the coarse grained operation, which
are performed and which has, built these RDDs transformations. and this is called,” Lineage’. let us see,
what happens is for example, after reading this particular RDD will be formed after the read operations,
on the data set and then, on this particular data, this RDD we have performed, the map operation, RDD
transformed RDDs and this transformed RDD again, is now applied with the reduced function, to make
this particular RDD and is stored in the cache. Now, consider that if this particular node, which has stored
this transformed RDD if it is filled, obviously it has to trace back, to the previous RDD and consult, this
lineage, which will tell that, this is an output of the map function, this is an RDD transformed and RDD,
this RDD when we apply, the reduced function, it will recreate, the same RDD which is lost. So let us see,
what is written? What we have just seen?

Refer slide time: (23:17)

Solution: Resilient Distributed Datasets (RDDs)

Resilient Distributed Datasets (RDD?)/
J S

« Immutable, partitionﬁd collection of records
« Built through coarse grained transformations (map, join ...)

Fault Recovery? & .
_ e

« Lineage! &= Vs
« Log the coarse grained operation applied to a
partitioned dataset

« Simply recomputgthe lost partition if failure occurs!

« No cost if no failure

So we have to simply, recomputed, the last partition, whenever there will be a failure, how we have to
trace back and apply ,the same transformation again, on RDD and we can recomputed, that the, the RDD
which is lost in the partition ,due to the failures. So now, using lineage, concept we have seen that the
fault tolerance, is achieved in a Spark system.

Refer slide time: (23:48)

What can you do with Spark? |

e« RDD operationdf il i v ¥

5’ . Transfqrmations e.g., filter, join, map, group-by ...

« Actions e.g., coynt, print ...

—

e ,Control

/

« Partitioning: Spark also gives you control over how you can
partition your RDDs.

« Persistence: Allows you to choose whether you want to
rl\, persist RDD onto disk or not.

_/‘

Now we will see that, what more we can do here in the Spark? So RDDs transfer, which RDDs provide
various operations and all these operations are divided into two different categories, the first category is
called, ‘Transformations’. Which we can apply, as an RDD operation. second is called, ‘Actions’, which

we can perform using RDDs, operations so as far as the transformations, which RDD supports is in the
form of filter, join, map, group by all these are different transformations, which RDD supports, in the
Spark system .Now, another set of, operation which RDD supports is called, ‘Actions’. so actions, in the
sense the output of some, some operations, is whenever there then it is called,” Action’. For example,
count, print and so on. Now, then another thing which, Spark can provide is called,” Control Operations’,

to the programmer level.
So there, are two interesting control, which is being provided by the Spark, to the programmers. The first

is called,” partitioning’. So, the Spark gives the control or how you can partition your RDDs, across
different cluster systems. and second one is called the,” Persistence’. Persistence allows you to choose,
whether you want to persist RDDs on to the disk or not. So by default, it is not persisted, but if you allow,
if you choose this persistent, RDDs then the, RDDs I have to be stored in HDFS. Hence, the persistent
and partitioning both controls are, given to the, to the programmer the user in buys by the Spark system.

Refer slide time: (25:36)

Spark Applications

i. Twitter spam classification

ii. EM algorithm for traffic prediction

i. K-means clustering

iv. Alternating Least Squares matrix factorization
V. In-memory OLAP aggregation on Hive data

vi. SQL on Spark

There are various other, Spark applications, where Spark can be used first, these applications are such as,
Twitter respond classification, algorithm for traffic prediction, k-means clustering algorithms, alternating
least square matrix factorization, in memory OLAP aggregation on his, pond hive data and SQL on Spark.

Refer slide time: (26:02)

Reading Material

e Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin,
Scott Shenker, lon Stoica

“Spark: Cluster Computing with Working Sets”

e Matei Zaharia, Mosharaf Chowdhury et al.

“Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing”

https://spark.apache.org/

These are some of the applications and these are the reference, material for further studies, on the Spark
system. That we have, that is available on HTTPS, Spark dot Apache dot org.

Refer slide time: (26:18)

Spark Execution

Now we will see, about the Spark execution.

Refer slide time: (26:21)

Distributed Programming (Broadcast)

8 =
- D‘ 48 o t...‘_.ﬂ(.'-""

So a Spark execution, is done, in the form of distributed programming, that is, the first operation is
called,” Broadcast’. So there is a, there are three different entities, one is called the, ‘Driver Entity’, of the
Spark, the other entity is called, ‘Executors’. Which are there on different nodes, data nodes and then
there is a shuffle operation. So let us see the, first operation is called, ‘Broadcast’. So the driver will
broadcast, these different commands, to the different executors, that is called a, ‘Broadcast Operation’.
We’ll broadcast, to the executors.

Refer slide time: (27:21)

Distributed Programming (Take)

Now, these executors will execute and give the result back to the drivers.

Refer slide time: (27:22)

Distributed Programming (DAG Action)

And then again, the driver will give further operations or the functions.

Refer slide time: (27:34)

Distributed Programming (Shuffle)

=

And these, particular functions are, used by the shuffle and again given back to the executors.

Refer slide time: (27:42)

DAG (Directed Acyclic Graph)

Ras

J_pu"’."'
cpan
- - 6 W H‘\ﬁﬂjg/
ao¥*

This all will be performed, the entire task operations, will be performed using, the directed acyclic graph.
So directed acyclic graph is the Schuler, for the SPARC execution. So SPARC execution, as we have seen
that RDDs, can be executed using, two operations. One is called, ‘Transformations’. The other one is
called, ‘Actions’. So, in this particular RDD, we have shown you the actions, in the form of, the dotted
circle and transformation in the form of a gray circle. so you can see here, that, this shows that, this is an
RDD and from this, this particular RDD, is obtained using the transformations and further, this particular
RDD is now giving performing the action part and this is also a transformation, transformation,
transformation and these are the actions. So these actions will give the, output or the results, of the
execution. This complete schedule is, available at the driver and using this particular, scheduler the driver
in turn will supply, the different actions, different operations on RDDs, in the form of transformations and
actions as, it is defined, in the directed acyclic graph scheduler.

Refer slide time: (29:52)

DAG (Directed Acyclic Graph)

e Action S
« Count
« Take “

« Foreach 7

e Transformation
« Map vy
« ReduceByKey ./
« GroupByKey v
« JoinByKey S

Therefore, this directed acyclic graph or a dag, will take either the actions or transformations. So actions
include the, count, take, foreach and the transformation involves, the map, reduced by key, joined by key
and group by key.

Refer slide time: (30:16)

DAG (Directed Acyclic Graph)

So these are all, a diagram [have already explained, that these are all RDDs and these are all
transformations, the arrows are transformations, from one RDDs to another RDDs and if this is an, action.

On these RDDs, it will be performed on the action.
Refer slide time: (30:44)

J
1. val conf = new SparkConf().setMaster("local[2]")

val sc = new SparkContext(conf) v/
val lines = sc.textFile(path, 2) v

val words = lines.flatMap(__.split(" ')L ‘f:

2
3

4

5. val pairs = words.map(word => (word, 1)) v
6. val wordCounts = pairs.reduceﬁyﬁefyd+ f)

7. val localValues = wordCounts.take(100)

8. localValues.foreach(r => printin(r)) .~

-=_£’ l’r'_

So let us see, a simple word count application, which is written in, a Spark, using flume Java. So here, we
can see that, we have to set a master, which will, which will take care of running the entire dag scheduler.
And now then, we have to create a Spark context and we have to, read the text file and then we have to do
a flat map, which will split different words, which are separated by, the blank. after that, flat map then we
have to, do the map operation, of a word count, which will omit, the word with and the value 1 .then we
will perform the reduce by key, that means for, for, for a particular world, all such list of numbers or
instances which is emitted by the map function, will be now, doing the summation of that. And then, the
word count it will now take and then it will, print it for each value of key. The, the word count will be
printed. So this way, this dag automatically once the program is made, the dag will be constructed,

automatically and the dag will be given, to the master node. And the master in, in turn will communicate,
with the executors and shuffle, for this execution in this way, that is performed in this dak way.

Refer slide time: (32:44)

Spark Implementation

Let us, see the SPARC implementation, in more details.

Refer slide time: (32:46)

Spark ideas

e Expressive computing system, not limited to
map-reduce model

e Facilitate system memory
« avoid saving intermediate results to disk

« cache data for repetitive queries (e.g. for machine
learning)

e Compatible with Hadoop

So, Spark ideas are an expressive computing system, which is not limited by, the Map Reduce model.
That means, beyond Map Reduce also, the programming can be now done, in the SPARC. Now, this
Spark will facilitate the system memory and it will avoid saving that immediate, results to the disk, it will
cache for repeated, repetitive queries .that means, the output of the transform actions or the
transformation ,will remain in the cache, so that, iterative applications can, can make use of ,this fast our
efficient data sharing .

Refer slide time: (33:31)

RDD abstraction

Resilient Distributed Datasets
Partitioned collection of records
Spread across the cluster
Read-only

Caching dataset in memory
« different storage levels available
« fallback to disk possible

This Park is also compatible with, with the Hadoop system. RDDs is an abstraction as I told you, it's a
resilient distributed datasets, a partition collection of record ,they are spread across the cluster, they are
here only and caching data sets, in the possible, in memory and different storage levels are possible.

Refer slide time: (33:48)

RDD operations

e Transformations to build RDDs through
deterministic operations on other RDDs

« transformations include map, filter, join

« lazy operation

e Actions to return value or export data
« actions include count, collect, save

« triggers execution

As 1 told you that, the transformations and actions, there are two operations, RDD supports and
transformations include map filter joint, they are lazy operations and actions, include the count collect
sale and they are trigger executions. Spark components, let us go and discuss

Refer slide time: (34:13)

Spark Components

{ - |
; A ¥
Driver Progr af/ ‘,/ e i Task J

SparkContext 8 Cluster Manager

o S—

The Spark components, in more details. So, as you know that, is Spark, is a distributed computing
framework. So now, we will see here, what are the different components? Which together will form? The
computational environment of the Spark execution. Now, we have seen, there is a cluster manager, there
is a driver program, there is a worker nodes and within the worker nodes, you have the executors, and
within the executors what are the different tasks? And what is the cash? All these different components
together will form the distributed computing framework, which will give an efficient, execution,
environment, for the Spark program or a Spark applications. So here, so within, a driver program, when
whenever a Spark, shell is being prompt, that will be inside the driver program, will create the Spark

context.
Now, executing the Spark context means that, it will communicate with the worker nodes, within the

worker nodes the executors, so a Spark context will, create will, interact or communicate with the
executors. And within the executors, the tasks will be executed. so executors within the executable, yes
tasks will be executed and executors will be computed or will be executing on the worker nodes, so the
driver program, then interacts with the cluster manager and cluster manager intern will interact with these
worker nodes .so this all will happen, inside the Spark and Spark will dust the cluster manager. Now, there
is an option in the Spark that instead of going through the cluster manager, you can also use the yarn and
other, such resource manager and Scheduler. Now, let us see, what do you mean, by the, driver program,
Spark context, server and cluster manager, worker node, executor, then tasks and through ,this to

understand this.
Refer slide time: (36:56)

Job example |

val log = sc.textFile("hdfs://...")
val errors = file.filter(_.contains("ERROR"))
errors.cache()

errors.filter(_.contains(“I/0")).count()

Let us see, a simple application. Now, we have seen here, the driver program and this driver program will
create a Spark context, it will create a Spark context SC. and this in turn will now, communicate with the
executors, which are running inside, which are running inside. So, so this particular driver program, intern
knows the, the different worker program communication and the Spark context, will now communicate to
the executors. And these executors in turn, will communicate or will, will execute the tasks. So these tasks
are, nothing but, the various transformations, the RDDs, through the dag, they are being transformed and
they are done through the tasks. So different executors various tasks are being created and executing. So
this will create the job execution and let us go back and, and see that, these

Refer slide time: (38:18)

Spark Components |

 § ,
.DﬂvorProgtam '] o [Tm'T_Tmf

SparkContext | ‘@——# Cluster Manager

- T "mﬁhﬁh

So this particular way, the driver program, will execute, the dag and server Spark context SC. will be
created which in turn will communicate, inside the worker node with the executors and these executors in
turn will execute, various, transformations and actions and the result will be remained in the cache.

Refer slide time: (38:46)

Job example |

val log = sc.textFile("hdfs://...")
val errors = file.filter(.contains("ERROR")) {,
errors.cache()

errors.filter(_.contains(“I1/0")).count() 55,

So that was, about the Spark components.

Refer slide time: (38:49)

RDD partition-level view

Dataset-level view: Partition-level view:
log: HadoopRDD (I 1 '
oo
JiadoopROD C2CJCC

g ERNO il 1

shouldCache = true)

arrors

Task 1 Task 2

source https //cwiki.apache. org/conflusnce/display/SPARK/Spark +Internals

So we have seen that, in this manner, the operation of Spark is being performed. Now, another view of
partition level view, we can see here that, the partitioning so that means, RDDs are partitioned

Refer slide time: (39:09)

Job scheduling

RDD Objects DAGSchedt:lI?r TaskScheduler Worker
— L —— S Cluster ——
S— Uﬂc’. % TaskSet - manager Task —
’ manager
rddl. join(rdd2) split graph into launch tasks via execute tasks
-grouply(..) stages of tasks cluster manager
Filter(.) g -
build operator DAG submit each retry f;lled or store and serve
stage as ready straggling tasks blocks
’/"
df

source https //cwnki.apache.org/confluence/display /SPARK/Spark+internals

And different tasks are being executed. similarly job scheduling, that means, once an RDD, is that means
operations are, given automatically it will build, the dag and dag will be given to the dag scheduler and

that, dag scheduler will split the graph into the stages of, task and submit each stage as it is ready. So task
set is created and given to the task a scheduler and as far as the cluster manager, is concerned it launches,
the tasks, via the cluster manager and retry the field or straggling task. And this task is, given to the
worker that we have seen in the previous slide and this particular workers will create the thread and
execute them, there.

Refer slide time: (39:59)

Available APIs

e You can write in Java, Scala or Python
e Interactive interpreter: Scala & Python only
e Standalone applications: any

e Performance: Java & Scala are faster thanks to
static typing

There are different APIs, which are available and you can write, these APIs is using Java program, scala
or a Python. There is also an interactive interpreter: available, access through, the scalar and Python.
Standby applications are, there are many applications and performance: if we see that Java and C are
faster and thanks to the static typing

Refer slide time: (40:26)

Hand on - interpreter

e script
hitp./icern.ch/kacper/spark. (xt

e run scala spark interpreter
$ spark-shell

e or python interpreter
$ pyspark

Now let us see, the hands-on session, how we can perform, using Spark. So a S Spark, we can run, as a
scalar, so Spark shall, will be created.

Refer slide time: (40:44)

Hand on — build and submission

« download and unpack source code

wget hitp //cern.ch/kacper/GvaWeather targz: tar -xzf GvaWeather.tar.gz
e build definition in / - N -
GvaWeather/gvaweather. sbt

e source code
GvaWeather/src/main/scala/GvaWeather scala
e building gy -

cd GvaWeather

sbt package

« job submission \/'

spark-submit —mas local —class GvaWeather \
targetUscala-2.10/gva-weather_2 10-1.0 jar

And we can download, the ,the, the file, that data set file and then, it can be, built using ,the package and
then this particular task or a data file can be submitted ,to the, to the master node of that Spark system. So,
so directly Spark, can store it into the system and now it can perform, various operations, on this
particular data set, using a scalar program.

Refer slide time: (41:20)

e Concept not limited to single pass map-reduce

e Avoid sorting intermediate results on disk or
HDFS

e Speedup computations when reusing datasets
3 W \f"ﬂqﬁf WY ~ “33%:;}.:%

8, Z eV \ SR Pt |
. BV _ - 00 _»r Ly

ﬁg“":d('i \ et

Now summary, the concept of, of Map Reduce are ,limited to the single path Map Reduce ,is basically
limiting various other applications .and this particular, concept is avoiding, the sorting intermediate
results, storing intermediate results on the disk or on HDFS. And also, speed-up computations are
required, when reusing the datasets. and all these features are available, as part of ,this part that we have
seen using RDDs. So using RDDs, now Spark provides, the not only Map Reduce, operations, beyond
Map Reduce, it can also use .second thing is, it can be in memory, operations, not necessarily to be stored,
in SDFS in to store the intermediate results. So this way of in-memory computations, will make the
speed-up and brings about the efficiency, data sharing across different iterations. So iterative and
interactive applications both are, easily supported and Map Reduce and non Map Reduce applications are
also supported, by the Spark system. So all this is possible, with the help of RDDs and their operations. so
we have seen that ,now ,the RDDs are saw a Spark is very much required and all the drawbacks of Map
Reduce and Hadoop, is now not there with the SPARK and therefore the Spark now has, now ,various
new applications. For example, the Spark system will, Spark.

Refer slide time: (43:49)

Conclusion

e RDDs (Resilient Distributed Datasets (RDDs) provide

a simple and efficient programming model— <&/,
1

Tl o
e Generalized to a broad set of applications

e Leverages coarse-grained nature of parallel
algorithms for failure recovery

;var\-'f- (’OR“

(o™ et

So the Spark is a core, as a core, can be used for building different applications, such as, Spark MLIib,
that is the machine learning or the Spark, then Spark streaming ,that is the real-time applications, over the
Spark and Spark graphics, the graph computation or the Spark. So, now Spark can use SD, SDFS or may
not use SDFS, Spark is independent. Therefore, let us, conclude this discussion, that RDD, is resilient
distributed datasets, will provide a simple and efficient programming model, for different supporting
various applications, which are the batch and interactive and iterative applications, all are supported using
this concept, which is called,” RDDs’. Now, this is generalized, to a broad set of applications. And it will,
leverage the coarse-grained nature of parallel algorithm, for fault recovery. So that is why, this is a
hundred times, faster, compared to the, traditional Map Reduce. So, Spark is 100 times faster, that is what
is compared, with the performance, by the Spark, production clusters. Thank you.

	Lecture -10
	Introduction to Spark

