
Cloud Computing and Distributed Systems
Dr. Rajiv Misra

Department of Computer Science and Engineering
Indian Institute of Technology, Patna

Lecture – 09
Design of Zookeeper

Design of Zookeeper. Preface, content of this lecture, we will discuss the Design of a

Zookeeper, which is a coordination service or distributed application. We will discuss its

fundamentals, its design goals, the architecture of apache zookeeper, and various uses its

applications.

(Refer Slide Time: 01:29)

To understand what a zookeeper does, it does a very simple task, which is called

coordination, but coordination is important and it is not so simple. In this figure, this

shows a situation of a traffic condition in a particular city. This kind of traffic situation

requires a coordination, so that the progress at all points of time can be there in the traffic

flow. So, the that important, and we will see in our situation in our scenario of distributed

systems and a cloud computing systems, how this particular coordination is useful in the

applications.

(Refer Slide Time: 01:43)

This is a simple distributed system scenario, where there is a master and a couple of

slaves. These slaves, they send their heart beats or their results to the master, all of them

and master will then application issues. This particular kind of scenario, you can you

have seen in like HDFS, where there is one master and a couple of slaves, and these

slaves reports these slave reports to the master.

(Refer Slide Time: 02:32)

Now, if you require a fault tolerant distributed system, then the scenario will be changed

from the previous master that is the primary and the backup that means, the masters

should be more than one. So if one fails, automatically the other resume its role in there

is a requirement of a coordination service, the slaves and the master to ensure the fault

tolerant distributed system at all points of time. So, real distributed fault tolerant system

have a coordination service, which always which ensures the existence of the master and

a few backup masters. So, if a primary master fails, then the backup can he still continue

to serve the application without any disruption.

(Refer Slide Time: 03:51)

Let us see some of the basics, which we are going to use in our discussion. What is a race

condition? Here, it is shown that there is a bank account, having an amount 17 in a

particular account, and two persons A and B; they want to increment this particular

account value. So, they read both at the same point of time, so both of them will get the

same value in the account, and then both of them will increment write, so where is the

problem. So, if two people are incrementing on 17, the final value should be 19. But, due

to the race conditions, the final value is not correct that is it comes out to be 18 that is 1

increment is lost, this is called a race condition.

(Refer Slide Time: 04:55)

Another problem, which we have seen in the traffic jams lights. In the system, when two

processes are waiting for each other. So, for example, if there are three processes, who

are circularly waiting for each other, then they may lead to a dead lock, because they are

waiting, they are holding state and waiting for each other. And that will kept on waiting,

and this situation is called deadlock. So, race condition and deadlocks are two important

things; two important problems, which require to be solved, while the coordination is to

be achieved.

(Refer Slide Time: 05:39)

Now, one application, which requires the coordination is let us say the email processors.

Suppose, there is an inbox, from which we need to index mails. Indexing is a heavy

process has an id. So, now you would handle the coordination between multiple

indexers, process, and the email indexing.

(Refer Slide Time: 06:15)

Now, if the indexers are running as multiple threads on a single process, then the most of

the operating system and the programming constructs provides the synchronization in the

programming language, and that can be solved. But, if multiple processes are running on

multiple machine, which needs to be coordinated, we need a central for the coordination,

this particular indexer or indexes are running over multiple machines. So, this particular

central storage, which is responsible for the coordination, for all concurrent related issues

will serve this purpose in the pure distributed system model. This particular central

storage can be modelled or can be modelled as the zookeeper application.

(Refer Slide Time: 07:18)

So, we have seen enough of examples for the coordination. Let us see, what are the other

use cases of the coordination. The first one is called group membership, so that means,

are executing different tasks so for a particular application, and its corresponding task,

they may form a group. These nodes may join, they may leave, therefore a group

membership is required, and for that a coordination service is very much needed to

ensure the group membership across several applications, which requires different tasks

or different data nodes.

Similarly, another use case is about the leader election. So, we have seen in the fault

tolerant distributed system, so there exist more than one master for tolerating any kind of

failure that is called single point of failure. So, let us say that primary and backup

masters are being provided out of several servers; one of them will be the primary that is

called leader, so that particular leader will be elected through a election. So, if there are

three different servers maintaining the coordination service, one another use case is about

the dynamic configuration.

So, the multiple services if it is running on a particular cloud or a distributed system so

for each services, the nodes or the servers which are joining and leaving, therefore a

service look up registry is very much required. And that is to run each service a separate

configuration that is the number of nodes, which nodes are running those services are

required that is called dynamic configuration. And the dynamic configuration is a

coordination problem.

Similarly, about the status monitoring, that is the monitoring will of various processes

and services in the cluster is also a coordination problem. Queuing is also a coordination

problem to some extent that is one process is giving an output, which will be fade as the

input to the other piped process. Therefore, forming a queue, this particular way of

piping, several processes for the application or a pipeline for a application is nothing but

a coordination problem.

Barriers is also an application of a coordination problem, so that means, all the process

will join at a barrier, and then they may leave from the barrier after all the processes joins

it, that is also a coordination problem at the barrier end. Similarly, the critical sections,

that means, to coordinate that across since the particular critical section, it has to be only

one process at a time can be executing into the critical section; it is also a coordination

problem.

(Refer Slide Time: 10:49)

So, how this, so, this is done through the apache zookeeper. Let us see how it achieves

this kind of coordination, which is applied over wide variety of applications. So,

zookeeper is a highly reliable distributed coordination kernel. Kernel in the sense, it is

not providing all these services, such as locking, configuration management, leader

election that we have already seen. But this is the core, which can be in sense; it is a

highly reliable distributed coordination kernel, so it provides lot of APIs. And using this

API, this application can be build or can use the coordination service to build the

applications.

Zookeeper is a replicated service that holds the metadata of the distributed applications.

So, when we say metadata, that means, it is distributed application. It manages, hence the

data is small, which zookeeper manages. Several key attribute of this matter is that it is

of small size, and it is of performance sensitive, it is dynamic, it is critical. In very simple

words, it is the central store of key value store using the distributed system to coordinate

for different distributed applications. So, it need to be able to manage to handle the load,

the zookeeper itself runs on many machines.

(Refer Slide Time: 12:34)

So, zookeeper will provide simple primitives, which are easy to program for the clients

to use for their applications. It uses a very simple data model like a directory tree that we

have seen in a many file system or a directory structure of a file system. Zookeeper is

basically used for synchronization in a distributed application. It is used for locking that

is called distributed locking the consistency, and also maintain the configuration that is

dynamic configuration. Such a coordination service, which is provided by the zookeeper

ensures that does not suffer from race conditions and deadlocks.

(Refer Slide Time: 13:24)

Therefore, the design goal is to make to ensure the simplicity that is in the form of the

hierarchal namespace, which looks very similar to the standard file system hierarchy.

However, the namespace has the data nodes, which are called znodes, similar to the files

or directories. These data is kept in memory. And therefore, it achieves the high

throughput and low latency numbers.

Since, this particular aspect that is the namespace is a metadata, therefore it can be kept

in the memory because of its small size. This will give the high; that is it is used in the

large scale distributed system; it is also to be highly available. Why, because there is no

single point of failures, because it is replicated, and also it is strictly ordered; why,

because it ensures the synchronization. So, in the zookeeper, all three things that is high

performance, highly available, and strictly ordered access is supported.

So, high performance is basically used in a large scale, that means, it is supporting large

number of reads questions, which are served by many servers that means, leaders and its

slaves; therefore it achieves the high performance for its operations. It is highly available

that is there is no single point of failure that means, so because there is a master and there

is a backup master also, which ensures the failure tolerance. It is strictly ordered access

that is synchronisation is guaranteed, since there is a leader elected at all points of time.

Therefore, this ensures the strictly ordered access and also ensures the sync rate

environment.

(Refer Slide Time: 16:13)

The 2nd design goal is about the replication. So, all the servers have a copy of the state

in the memory. So, a leader is elected at the startup. Followers are those servers, who are

not elected as a leader. So, they also have the updated state at all point of time, and it is

the responsibility of the leader to ensure that all the servers. So, the clients for any

update, it has to follow through the leader.

So, update responses are sent, when the majority of the servers have persisted the

change. So, majority means, it is following the quorum based approach for updates.

Therefore, for fault tolerance, we require 2f plus 1 machine to tolerate f failures. So, to

tolerate one failure, so it required how many machines, 3 machines. So, we will see that

minimum three machines are required to tolerate one failure. If two are failing in three,

then basically it is not the majority, hence this will violate this condition.

(Refer Slide Time: 17:57)

So, the replicated structure, we have seen we will divide into two different classes; one is

called client, we will keep the TCP connections and also gets a watch event, it will

always through that it will be recognize that it is having a connection to the zookeeper. If

the connection breaks, then basically it is no longer the client. Similarly, the severs will

know each other; and server will keep in memory image of the state; it will also use the

transaction logs and takes the snapshot in a persistent storage.

Here in this particular figure, we have seen all the servers, which are knowing each other.

And through the election, one of them will be the leader, and others are the followers.

Clients can connect to any of this particular leader or the follower, and keep on sending

the heartbeat, so that they will know that they are basically the clients of these services.

(Refer Slide Time: 19:31)

The 3rd design goal is the ordering. So, zookeeper stamped each update with a number.

So, the number reflects the order of the transaction; and used to implement the higher

level abstraction, such as synchronization primitives.

(Refer Slide Time: 19:55)

4th goal is about the speed. So, this achieves, when it performs the best. Performance,

when the reads are more than the writes, at the ratio let us say 10 is to 1. Then in that

scenario, it is benchmark that it basically has achieved 10,000 operations per second,

generated by hundreds of clients.

(Refer Slide Time: 20:27)

Let us see the data model used in the zookeeper. The way you store the data in any data

store is called a data model. Now, here in the it uses a file system like interface, so

zookeeper will think of data model, as if it is highly available file system where the

nodes are called znodes, which will store the data in an entity. The data is in JSON

format. And it does not supports the append operation, it can only be updated. Now, data

access is done through the read and write operation, which is to be done in an atomic

manner; either it will be full or it will give (Refer Time: 21:29) Znodes can have the

childrens.

(Refer Slide Time: 21:32)

So, this is a typical data model, which is called here the nodes are called z. So, this

particular hierarchy of znodes will stop, and then followed by a znode slash zoo; goat

and cow, they are the child of slash zoo znode.

(Refer Slide Time: 22:01)

There are three different type persistent, ephemeral, and sequential (Refer Time: 22:08)

until deleted. And this is a default type of znode. Ephemeral node get to the client users

also. Ephemeral nodes cannot have in their names.

(Refer Slide Time: 22:20)

These numbers are automatically appended. The counters keep increasing monotonically,

and each node keeps a counter. Example here, first time when a node v is created znode v

is created; its number is 3. Then second time, they are sequential.

(Refer Slide Time: 22:47)

Let us see the architecture of zookeeper. So, zookeeper can run in two different modes

for the testing purpose in into the lab. Therefore, it does not supports many important

features like high availability, and so on and also it is not used in the in the practice. So,

the other mode which is called a replicated mode, which will be launched it runs on a

cluster of machines, which is called ensemble. It ensures high availability; and it

tolerates as long as the majority of machine are responding.

(Refer Slide Time: 23:37)

See that this particular architecture is supported by two different phases; the phase one is

called leader election, and it is done through the Paxos algorithm. Here, we can see that

the set of machines in the zookeeper, we call it as ensemble. And here, there are number

of clients are there, who are accessing the zookeeper service. So, among that servers or

the machines, more than one machines are there, so among them, they will that is called

ensemble. If we go to the previous slide, (Refer Time: 24:25) replicated service will run

on a cluster of machines, which is called ensemble. So, this zookeeper service will run

on which is called ensemble.

And among them, one of a leader, this leader election is done through the exchange of

ping messages based on their id’s, their heartbeats (Refer Time: 24:59) elect one of them

to be the leader. And all other machines will become for the leader and followers. So, as

you know, that three machines that means, it is able to tolerate 1 machine failure that is

here, it is following 2f plus 1. This phase that is the leader election phase is finished,

when the majority sync their state with the leader, that means, they will sync their states

with the leader. And if the leader fails, the remaining machine can hold the election

within 200 milliseconds. So, if the majority of the machines are not available at any point

of time, the leader automatically leader automatically will cease to work.

(Refer Slide Time: 26:07)

Write requests are forwarded to the leader, followers in this manner. Now, when the

majority have persisted the change, let us say out of 4, 3 is the majority. When they have

persisted the change, and they will inform it to the leader about it, then the leader will do

the commit of this particular write operation. And for this the client will be informed

about the success. The protocol for achieving the consensus is atomic like two-phase like

two-phase commit.

(Refer Slide Time: 27:14)

Let us see, so if you have three different nodes, when A dies, then among B and C,

because out of three, two are the majority. So, if A fails, either B or C can become (Refer

Time: 27:39).

(Refer Slide Time: 27:40)

And if two are failed, A and B let us say they are failed, remaining only one. What will

happen, whether c will become a leader or not? No. Why? Because, because 1 is not the

majority in 3 set ensemble, so that means, to work in this particular scenario, a majority

should always be present, otherwise it will not have a leader in its operations.

(Refer Slide Time: 28:30)

So, this will become a follower, there will not be any leader present in that case.

(Refer Slide Time: 28:35)

Let us say if you do not agree to it regarding the majority, let us see what problem will

happen. Let us say that you have an ensemble two different data centers; data center one

has three; another data center also has three. So, there are total how many, six are there.

(Refer Slide Time: 29:05)

Now, if this particular link is broken, both these data will elect the leader.

(Refer Slide Time: 29:14)

They will elect their own leader in this particular scenario, when there is no link. This

will non-ensure any consistency, and it will be utter chaos situation. That is why, a

majorities. 4 is required to be in the majority number, (Refer Time: 29: 43) they basically

are disconnected. Then they will be only 3 that means, not in the majority. Therefore, this

particular leader cannot be there be that means, both of them should not have any leader

the slave. So, the majority is very much important to ensure coordination at all points of

time.

(Refer Slide Time: 30:19)

Now, then there is a concept of a session, let us try to understand how the zookeeper

delete the ephermal nodes and take care of the session management. So, a client has a list

of servers in the ensemble, till it is successful. So, the server create a new session for a

client; a session has a time period that is decided by the caller.

(Refer Slide Time: 30:51)

Server has not received the request within a particular timeout, it may expire the session.

On session expiry, ephermal nodes are lost. The client sends the server; and a failover is

main agnostic of the server reconnections, because of the operations will fail during the

disconnections.

(Refer Slide Time: 31:08)

So, these are the transitions of these states, which the watcher will keep track and keep

on informing about the coordination.

(Refer Slide Time: 31:29)

Now, here we consider we have seen or we are looking in the slide that there are many

servers available; similarly on the other side, we have many clients. Not all servers are

responding to the client for a particular service. So, for a particular service, the client will

contact to the zookeeper, and zookeeper will find out who are the servers. It will try to

find out the ephemeral servers, who are active in by the zookeeper. So, zookeeper comes

in between that is on one side, lot of servers are there; on the other side, lot of clients are

there, and zookeeper is in between to coordinate between them for an applications.

(Refer Slide Time: 32:20)

So, (Refer Time: 32:22) require, because the server are keep coming up and going down

at different point of and the client, who are the available server (Refer Time: 32:33) who

will basically do this coordination. To do this coordination, clients are provided with the

very simple interface that is a file system kind of interface. So, client will think that it is

writing on a particular file node or a znode. So, the operations to access large number of

servers becomes quite simple.

(Refer Slide Time: 32:58)

So, zookeeper is becoming a central agency here. So, each server will create its own

ephemeral node that is znode under a particular directory that is slash servers. So, the

client would simply query for the most recent list of servers in this manner.

(Refer Slide Time: 33:21)

So, client will query about the severs. So, all the ephemeral servers who are basically

active at that point of time, will get respond by the zookeeper in the form of a list. For

example now, so this list now after some elapse after some point of particular servers are

not active or let us say that (Refer Time: 33:56) the server that is called cow remains

visible at that point of time as an ephemeral node only the cow. So, the zookeeper will

coordinate between the set of servers and the client to ensure the availability of the

servers. And this is the coordination activity of zookeeper without more detail

botheration at the client sent.

(Refer Slide Time: 34:32)

Therefore, there is guarantees in their coordination service. The first one is called it

ensure the sequential consistency are applied through the leader, and which ensures the

sequential consistency, which is the strongest form of consistency. The second

guarantees is done, which is called atomicity that means, all this operation read and

write, they are all atomic that is updates or eithers fail or successful the consistency and

avoids the race condition.

Single system image the client will see only a view of the system as a file system;

therefore it will provide a very simple interface to program in such a large scale

distributed system. Durability that once an, that is whenever in memory update is done, it

has to be made persistent and also it will be stored in the log, so that it can be recovered

even inspite of the failures. Timeliness also is guaranteed that a client to see the stale

data, the server will shut down here in this particular case.

(Refer Slide Time: 35:58)

There are different set of operations, which are supported in the form of APIs. Create that

we have already seen, delete also, we will delete the znode, exists or ls, getACL,

getData.

(Refer Slide Time: 36:16)

There are (Refer Time: 36:16) for multiple updates, so that are batch together, and they

are supported in the form of transactions.

(Refer Slide Time: 36:25)

Different APIs are there.

(Refer Slide Time: 36:29)

Now, there is also a construct, called watches the clients to get notification, whenever

there is a change in znode. So, watches are triggered only once.

(Refer Slide Time: 36:41)

So, watch triggers are being supported through the APIs, using access control list.

(Refer Slide Time: 36:46)

So, access control list will determine who can perform certain operations on that

particular data that is znode. So, ACL is a combination of authentication scheme, an

identity for that scheme, and a set of permissions. For example, the authentication

schemes, which are used in the access control of the operations are digest that is the

simplest form of authentication, where the client is authenticated only by the user and

password. sasl is a authentication scheme, where the client is having the session token

that is it is being authenticated using Kerberos. And hence, that particular token is

available, and he is authenticated already by the Kerberos to used in the system. ip based

authenticcation the machine from which the client is accessing, that also is one of the

authentication scheme used in ACL that is Access Control List.

(Refer Slide Time: 38:07)

The reliable configuration service. Another one is called distributed lock service.

(Refer Slide Time: 38:13)

And when not to use them is for storing the big data, because number of copies all are

stored in memory. Therefore, and also it is supporting the strong consistency, which is

not to be used in a big data scenario.

(Refer Slide Time: 38:30)

Zookeeper applications. There are many zookeeper, let us scan through one by one. The

first type of application, which we are discussing is about fetching service. Now, we have

seen that the crawling is an important part of the search engine, so the different search

engines let us say Yahoo crawls billions of web documents. And the fetching service is a

part of the crawler. Essentially, it has a master processes that commands page fetching

processes.

So, the master provides that forming their status and the health. The main advantage are

the recovering from the failures of the masters, guaranteeing availability, despite failures,

decoupling the clients from the servers, allowing them to directly to direct their request

to the healthy servers by just reading their status from zookeeper. Thus, fetching service

uses the zookeeper mainly to manage the configuration metadata, although it also and the

leader election.

(Refer Slide Time: 39:55)

Another application of zookeeper is katta. So, in katta, it is a distributed indexer that uses

zoo-keeper for the coordination. So, katta device the work of indexing into the shards,

the master server assigns the shards, to the slaves and track the progress. The slaves can

fail, so the master can redistribute also fail. Servers must be ready to take over katta uses

zookeeper to track the status of the slave and the master that is it mention it ensures the

group membership, and also handles the master failover that is using the leader election.

So, zookeeper is used in two different forms that is as the group membership, and as the

leader election. So, katta also uses zookeeper to track and propagate the assignment of

the shards to the slaves that is configuration management. So, all three different use cases

we can see.

(Refer Slide Time: 40:53)

The next application yahoo message is a distributed publish subscribe system. The

system manages thousands of topic that the client can publish messages and receive the

messages from the topics are distributed among the set of servers to provide scalability.

Each that ensures messages are replicated to two machines to ensure the reliable message

delivery. The servers that message broker use a shared in a coordination essential for

correct operation;, zookeeper to manage the distribution of topics that is called

configuration management, the failures of the machine that is the failure detection

through the zookeeper and also the group membership, and control system operations in

detail, the example shown over here about this message broker.

(Refer Slide Time: 41:46)

(Refer Slide Time: 41:51)

Now, for more details about the zookeeper, wait-free coordination from the people at

Yahoo. So, for more details about the zookeeper, you are welcome to see this particular

paper.

(Refer Slide Time: 42:09)

Conclusion. Zookeeper takes a wait-free approach processes in the distributed systems,

by exposing wait-free objects to the clients. Zookeeper achieves the throughput of

operation per second for read-dominant workloads by using fast reads with watches, both

of which are the importance of the coordination in different distributed applications. We

have also seen many applications, which require zookeeper for either the leader election;

or the group membership; or for the failure detection particular lecture. Zookeeper is

now being used at different services, which are running either by the blue chip

companies uses this zookeeper as a service.

So, in this lecture, we have covered the basic fundamentals that is how the failure toil the

zookeeper. This Particular (Refer Time: 43:36), if it is going to be tolerant with one fault,

then at least 2 f plus 1 number of servers are required. So, we have seen that to tolerate

the failure of one master, at least three different servers are required. To tolerate two

failures, it requires seven different servers.

We have also seen the role of majority in the zookeeper; majority is also a kind of

quorums. So, if majority is not available, then there is no leader and all of the servers

will become the followers. Hence, to ensure that the zookeeper is doing its coordination

service for the application, it is very much required that the availability of majority

ensemble is very much needed for the correct behavior or the working of a zookeeper.

The zookeeper is not done in one server; at least three servers are required because of the

fault tolerance. So, the scaling of zookeeper is very much needed as the size of the

application grows. So, also the tolerances many servers are required to run the zookeeper

service. Design goals; and also seen the architecture that is there are two different

phases; one is called the leader election, where in it will elect the leader out of the

ensemble, and the second phase atomic broadcast, we have seen that for doing the

updates or the writes the clients have to contact through the server through the leader.

So, the leader will now updates the slaves. And if the majority has agreed, then only the

update is finalized. Why the majority or the quorum that we have already seen that it will

ensure the consistency that means, if we take the intersection of any two majority or the

quorums, there must be one at least one common member, who has already updated. So,

for the writes, if it is followed the majority or the quorum that means, they will support

the strong consistency without asking from call.

So, all the concepts, which we have seen is being applied here in the zookeeper and we

have also seen different applications of the zookeeper, and this gives a good

fundamentals, how the cloud system and distributed system in a fault tolerant way are

used in the production scenarios.

Thank you.

