Cloud Computing and Distributed Systems
Dr. Rajiv Misra
Department of Computer Science and Engineering
Indian Institute of Technology, Patna

Lecture — 18
P2P Systems in Cloud Computing

Peer to Peer Systems in Cloud Computing.

(Refer Slide Time: 00:18)

Content of this Lecture:

* In this lecture, we will discuss the Peer to Peer (P2P)
techniques in cloud computing systems.

* We will study some of the widely-deployed P2P systems
such as: Napster, Gnutella, Fasttrack and BitTorrent and
P2P Systems with provable properties such as: Chord,
Pastry and Kelips.

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

Preface content of this lecture we will discuss peer to peer systems and we will see the internals or
under the hood of peer to peer systems as a techniques, which will be applied in various cloud
computing systems. We will study some of the widely deployed peer to peer systems such as Napster,
Gnutella, Fasttrack, BitTorrentand peer to peer systems with the provable properties that is from

academia they are Chord, Pastry and Kelips.

(Refer Slide Time: 00:58)

Need of Peer to Peer Systems

e First distributed systems that seriously focused on
scalability with respect to number of nodes

e P2P techniques be abundant in cloud computing systems

» Key-value stores (e.g., Cassandra, Riak, Voldemort) use
Chord p2p hashing

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

So, let us see the need of peer to peer systems. So, distributed systems that focuses on scalability with
the number of nodes is one of the basic issues which is required to support large number of clients. So,
to support large number of clients or highly scalable large scale distributed system is required. And
therefore, we will see one such system which is widely being accepted is called peer to peer system. The
techniques of peer to peer system we will discuss which we will see that is currently being applied in
various cloud computing systems such as key value stores that is Cassandra, Riak, Voldemort uses the

chord peer to peer systems like consistent hashing and virtual ring.

(Refer Slide Time: 02:00)

P2P Systems

Widely-deployed P2P Systems:

1. Napster
2. Gnutella
3. Fasttrack
4. BitTorrent

P2P Systems with Provable Properties:

1. Chord
2. Pastry
3. Kelips

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

So, widely deployed peer to peer systems are such as Napster, Gnutella, Fasttrack, BitTorrent; we will
discuss these particular widely deployed peer to peer systems their internals details that is under the

(Refer Time: 02:18), the techniques which will focus on how these systems are evolving. Then we will

discuss peer to peer systems which are basically resultant from academia such as chord, pastry and

kelips.

(Refer Slide Time: 02:38)

Napster Structure

\/, -

Filename Info about

Store a directory, i.e.,
filenames with peer pointers

Public enemy.mp3 | Beatles,
@123.34.12.32:

napster.com e 1003 v~
Servers o < 1P por—
Client machines \
(“Peers”) L "
ient dnr pee s
) B =
\M’iﬁod«d

e : Store their own Cherks
\Qﬁ » » files

Cloud Computing and Distributed Systems P2P Systems in Cloud Computing

Let us see the Napster peer to peer system design. So, Napster is designed in the form of the peers; that
means, the clients are the peers which are shown here as P. So, the clients are peers in this particular
system which are shown as this particular Ps. Now these clients or these peers used to store the files
which are being uploaded by the clients. Besides this there is a set of Napster servers which will store

the dictionary or at the directory of filenames with peer pointers of where they are stored.

For example, the structure of the directory which the napster dot com servers used to store will be of
this format that is filename and the peer pointers about the file name. For example, public enemy dot
mp 3 is the name of the file and this information about this particular file on which machine that is [P
address this particular file and the port address where this file is stored. So, this particular structure is

maintained by the Napster servers. So, it has the servers and the clients they are called peers.

(Refer Slide Time: 04:43)

Napster Structure

Client
o Connectto a Napster server:

+ Upload list of music files that you want to share

« Server maintains list of <filename, ip_address, portnum>
tuples. Server stores no files.

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

So, the client used to connect to the Napster server it can upload the list of files that you want to share.
The server does not stores any file, but it maintains the list of file names its IP address and the port

number this particular tuple in their directory.

(Refer Slide Time: 05:05)

Napster Operations

Client (contd.)
¢ Search
» Send server keywords to search with
+ (Server searches its list with the keywords)

« Server returns a list of hosts - <ip_address, porthnum>
tuples - to client

« Client pings each host in the list to find transfer rates
« Client fetches file from best host
¢ All communication uses TCP (Transmission Control Protocol)

«» Reliable and ordered networking protocol
Cloud Computing and Distributed Systems P2P Systems in Cloud Computing

Search operation when a client want to search for a particular file with the keyword, then it will send

this keyword to the server. Server searches its directory with the keyboard and forms a list of successful
results and returns this list of hosts that is nothing, but IP address and port number where this files are
available and these information that is the list will be sent to the client. Client pings directly to these
hosts which are provided in the form of list to find out the transfer rate which is being provided by the

different host; transfer rate by mean that the bandwidth which is available to download the file.

So, the client fetches the file from the best possible host which basically will give the fast download;

here there will, here the communications are in the form of TCP that is the reliable communication.

(Refer Slide Time: 06:23)

Napster Search

2. All servers search their lists (ternary tree algorithm)

Store peer pointers

napster.com for all files
Servers e, /

Client machines
(“Peers”)

® Store their own
5. download from best host files

Cloud Computing and Distributed Systems P2P Systems in Cloud Computing

Now, let us see the servers, the Napster dot com servers are basically maintained in the form of a ternary
tree algorithm; that means, each node of a tree is having 3 different child, in contrast to the binary tree

having 2 childs.

Now, this particular servers will store the peer pointers for all the files and whenever the client will
query this particular file with the servers, this will be checked here in its directory and send back the
response that is a list of IP addresses and the port number, which has those files. Then this particular
peer we directly contact to those peers which is having the file and find out the best one; best host to

download from.

(Refer Slide Time: 07:37)

Nodes Joining a P2P system

e Can be used for any p2p system

« Send an http request to well-known url for that P2P
service.

« Message routed (after lookup in DNS=Domain Name
system) to introducer, a well known server that keeps

track of some recently joined nodes in p2p system

« Introducer initializes new peers’ neighbor table

Cloud Computing and Distributed Systems P2P Systems in Cloud Computing

Now, coming to the nodes joining to this peer to peer system. So, it sends a http request to a well known
url for the peer to peer service. For example, napster dot com; so, the message routed after the lookup
from the DNS system to that introducer which is nothing, but a well known server that keeps track of
recently joined nodes in the peer to peer system. So, introducer initializes the new peers neighbour

table.

(Refer Slide Time: 08:15)

Issues with Napster

o Centralized server a source of congestion
o Centralized server single point of failure
o No security: plaintext messages and passwords

« napster.comdeclared to be responsible for users’
copyright violation

« “Indirect infringement”
« Next P2P system: Gnutella

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

Now, let us see the issues which are basically affecting the Napster. So, the servers are primarily the
centralized servers and hence it will be a source of congestion; also due to the centralized server there is
a possibility of single point of failure. And here also there is no provision of the security and the napster

dot com declared to be responsible for the copyright violation that is called indirect infringement.

(Refer Slide Time: 09:00)

o Eliminate the servers e
¢ Client machines search and retrieve amongst themselves
o Clients act as servers too, called servents

e Gnutella (possibly by analogy with the GNU Project) is a
large peer-to-peer network. It was the first decentralized
peer-to-peer network of its kind.

e [Mar 2000] release by AOL, immediately withdrawn, but
88K users by [Mar 2003]

e Original design underwent several modifications

Sarcvants

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

So, we will see the next peer to peer system which will eliminate these problems; to eliminate these

problems Gnutella peer to peer system has in his in its design eliminated the use of servers.

Therefore the client machine search and retrieve among themselves therefore, the client will act as a
server too and therefore, they are called as the servants. So, Gnutella is a large peer to peer network and

it was first decentralized peer to peer network of its kind.

(Refer Slide Time: 09:48)

Store their own
files
bt
P“.
Also store
“peer pointers ”

Servents (“Peers”) prnt]
P

Ca g Senan L

(== each link is an implicit Internet path)

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

So, let us see the design of Gnutella. So, Gnutella design is organized in the form of the overlay graph.
So, overlays are constructed over the underlying internet path that is the servants which are shown or
which are the peers in Gnutella. They are forming an overlay graph with comprising of other peers who

are connected through a path that is through internet path.

So; that means, if this particular peer is having the links or the connections with the neighbouring peers;
that means, this particular peer A has a internet path with B and C: similarly all other peers will have the
path and form and overlay a graph. Now this particular peers will store their own files and also store the

peer pointers of the neighbouring peers that is the neighbouring peers which are storing the files.

For example, this particular peer has 1 2 3 4 and 5; 5 different peers. So, this particular peer will store
his own files plus all the peer pointers that is the information about the files which are stored in these
neighbours in the 5 neighbours are maintained over here and that is why it is the client plus the server

that is called servant.

So, Gnutella has given the concept of an overlay graph.

(Refer Slide Time: 12:09)

How do | search for a particular file?

s Gnutella routes different messages within the overlay graph
e Gnutella protocol has 5 main message types
1. Query (search)
2. QueryHit (response to query)
3. Ping (to probe network for other peers)
4. Pong (reply to ping, contains address of another peer)
5. Push (used to initiate file transfer)
e Intothe message structure and protocol
« Allfields except IP address are in little-endian format

» 0x12345678 stored as 0x78 in lowest address byte, then
0x56 in next higher address, and so on.

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

And then provide then provide the routes for different messages to flow on the overlay graph for
searching purpose and other operations. Therefore, Gnutella protocol has supported 5 different
messages types the first one is the query; that means, whenever a particular client want to search a

particular file that is done through the to the message type called query.

So, in the query the keyword which keyword of that is the name of a file will be given for searching.
The response to that query will be collected through the QueryHit, then as per as to maintain the overlay
graph ping and pong there are 2 different message types; they will probe the network for the other peers
in the overlay graph and pong will be the reply to the ping. Finally, the fifth message type called push
will be used to initiate the file transfer even if the responders are behind the firewall. The information
which are encapsulated or packed into the message that is the message structure and the protocol

follows the little endian format.

(Refer Slide Time: 13:41)

How do | search for a particular file?

Descriptor Header Payload

lDescriptor ID |Pay|oad descriptor | T |Hops |Pay|oadﬁle_nigth. :[:::

0 l 15 l 16 17 18| l 22

| Number of bytes of

: Type of payload

ID of this 4 f-p 4 message following

0x00 Ping l \ :
search 0x01 P this header
transaction 0X40 Pong Decremented at i

X us
0x80 Quer £qel fiopy Viezsagg Incremented at
Y dropped when ttI=0 b h
0x81 Queryhit each hop

ttl_initial usually 7
to 10

Gnutella Message Header Format

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

So, this is the structure of the message header it starts with the descriptor ID that is for each search
transaction it is having a unique ID, then follows is the type of the message that is whether it is ping

pong push query and QueryHit that we have already explained.

Then comes next field which is called TTL Time To Live; now this Time To Live will control the
flooding of the messages on the overlay graph that is it will be decremented at each host and the
message will be dropped when TTL becomes 0. Then comes the number of hops it will be incremented

at each hop and then it will be having the payload.

(Refer Slide Time: 14:39)

How do | search for a particular file?

Query (0x80)

| Minimum Speed | Search criteria (keywords) |

0 T

Payload Format in Gnutella Query Message

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

So, this is the structure of the Gnutella query message.

(Refer Slide Time: 14:47)

Gnutella Search

Quyy' s flooded out, ttl-restyicted, forwarded only once

“Who has Publicenemy.mp3¥
Y .

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

- | -
- T

Now, let us see how the search operation is supported in the Gnutella. So, the query message will be
containing the search keyword and let us say that it want to search this particular file that is
publicenemy dot mp 3. Now this particular message will also have the TTL that is 2; that means, this
message will be flooded, but it will be TTL restricted that is up to 2 hop within that 2 hop; it will search.
So; that means, this particular message this is one hop and this is another hop since this particular peer

is having at the third hop therefore, it will not reach to this point; so, also for this particular peer.

(Refer Slide Time: 15:47)

Gnutella Search

QueryHit (0x81) : successful result to a query

| Num. hitsl portl ip_address Ispeed|(ﬁ|eindex,fiIename,fsize) |servent_id I

1
0 1 3 % /i) . [-
Info about Results
responder

Unique identifier of responder;
a function of its IP address

Payload Format in Gnutella QueryHit Message

Cloud Computing and Distributed Systems P2P Systems in Cloud Computing

So, these messages will be forwarded only once. So, the QueryHit means the peers when they receive
the query message they will search and give the response in the form of QueryHit and it will this

particular result in the form of a QueryHit will be routed on the reverse path.

(Refer Slide Time: 16:09)

Avoiding excessive traffic

e To avoid duplicate transmissions, each peer maintains a
list of recently received messages

e Query forwarded to all neighbors except peer from which
received

e Each Query (identified by DescriptorlID) forwarded only
once

s QueryHit routed back only to peer from which Query
received with same DescriptorID

o Duplicates with same DescriptorID and Payload descriptor
(msg type, e.g., Query) are dropped

e QueryHit with DescriptorID for which Query not seen is
dropped

Cloud Computing and Distributed Systems P2P Systems in Cloud Computing

To avoid the excessive flooding the Gnutella has made various provisions; to avoid the duplicate
transmissions and the query is to forwarded to all the neighbors except the peer from which it is
received. And it will be forwarded only once QueryHit will be routed back only to the peer from which
the query is received with the same descriptor ID duplicates with the same descriptor ID are dropped

QueryHit with descriptor ID for which query not seen is also dropped.

(Refer Slide Time: 16:46)

After receiving QueryHit messages

s Requestor chooses “best” QueryHit responder
« Initiates HTTP request directly to responder’ s ip+port
GET /get/<File Index>/<File Name>/HTTP/1.0\r\n

Connection: Keep-Alive\r\n
Range: bytes=0-\r\n
User-Agent: Gnutella\r\n
\r\n
« Responder then replies with file packets after this message:

HTTP 200 OK\r\n

Server: Gnutella\r\n
Content-type:application/binary\r\n
Content-length: 1024 \r\n

\r\n

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

So, after receiving the QueryHit message that is a response the requester chooses the best response and

then the responder will reply the file packets after this particular message.

(Refer Slide Time: 17:07)

After receiving QueryHit messages (2)

e HTTP is the file transfer protocol. Why?

« Because it’s standard, well-debugged, and widely used.

o Why the “range” field in the GET request?
« To support partial file transfers.

o Whatif responder is behind firewall that disallows
incoming connections?

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

This Gnutella uses HTTP as the file transfer protocol; now if the responder is behind the firewall that

disallows the incoming connections.

(Refer Slide Time: 17:19)

Dealing with Firewalls

Requestor sends Push to responder asking for file transfer

Has Publicenemy.mp3
But behind firewall

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

Then a push message is being used. So, the requester send the push to the responder asking for the file

transfer.

(Refer Slide Time: 17:31)

Dealing with Firewalls

Push (0x40)

| servent_id | fileindex |ipfaddress| port |
\\ //') "‘
\‘ 5 Y |

\ A |
i |

same as in |

received QueryHit
Address at which

requestor can accept
incoming connections

Cloud Computing and Distributed Systems P2P Systems in Cloud Computing

And it will allow this particular access in this particular scenario.

(Refer Slide Time: 17:35)

Dealing with Firewalls

¢ Responder establishes a TCP connection at ip_address, port
specified. Sends

GIV <File Index>:<Servent Identifier>/<Fi.Ie Name>\n\n

o Requestor then sends GET to responder (as before) and file is
transferred as explained earlier

o Whatif requestor is behind firewall too?
« Gnutella gives up

« Canyou think of an alternative solution?

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

If the requester is also behind firewall then the Gnutella gives up.

(Refer Slide Time: 17:45)

Ping-Pong

Ping (0x00)
no pavload

Pong (0x01)

IPm‘t lipiadclress Num. files shared [Num. KB shared

* Peersinitiate Ping’s periodically

* Pingsflooded out like Querys, Pongs routed along reverse path
like QueryHits

* Pongreplies used to update set of neighboring peers

» to keep neighbor lists fresh in spite of peers joining, leaving
and failing

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

Now, ping and pong there are 2 different type of messages used in Gnutella for maintenance of the

overlay graph.

(Refer Slide Time: 17:54)

Summary: Gnutella

o Noservers

e Peers/servents maintain “neighbors”, this forms an overlay
graph i

e Peers store their own files

e Queriesflooded out, ttl restricted

e QueryHit (replies) reverse path routed

e Supports file transfer through firewalls

e Periodic Ping-pong to continuously refresh neighbor lists

« List size specified by user at peer : heterogeneity means
some peers may have more neighbors

« Gnutella found to follow power law distribution:
P(#links = L) ~ L*I" (k is a constant)

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

Now, to summarize Gnutella has no servers; that is the client also does the operation of server hence
they are called servants. This avoids the single point failure of that particular server and also ensures the
scalability; large scale peer to peer system possible using Gnutella to support large number of clients.
This peers of the servants are maintained in the form of a overlay graph and peers store their own files

the queries are flooded out, but they are TTL restricted.

Here the periodic ping pong will refresh the neighbor list; that means, it will ensure the maintenance of
the overlay graph. Now as far as Gnutella is concerned it follows the power law distribution that is the
probability of number of links of a particular peer has will be of the order that is reciprocal of L raised

to power minus k which is a constant.

(Refer Slide Time: 18:59)

e Ping/Pong constituted 50% traffic
« Solution: Multiplex, cache and reduce frequency of
pings/pongs
e Repeated searches with same keywords
« Solution: Cache Query, QueryHit messages

« Modem-connected hosts do not have enough bandwidth for
passing Gnutella traffic

- Solution: use a central server to act as proxy for such peers
« Another solution:

=>FastTrack System

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

Here the problems in the Gnutella is that ping pong constitutes a 50 percent of the traffic which can be
solved with the help of multiplexing. Similarly, the repeated searches with the same keyword also can
be reduced using a caching method and also there is a many host which do not have the enough
bandwidth for passing the Gnutella traffic; so, we will see another solution which is called a FastTrack

system.

(Refer Slide Time: 19:36)

Problems (Contd...)

e Large number of freeloaders
» 70% of users in 2000 were freeloaders

« Only download files, never upload own files

e Flooding causes excessive traffic

« Is there some way of maintaining meta-information
about peers that leads to more intelligent routing?

=>» Structured Peer-to-peer systems

Example: Chord System

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

(Refer Slide Time: 19:41)
e Hybrid between Gnutella and Napster

o Takesadvantage of “healthier” participants in the system
¢ Underlying technology in Kazaa, Kazaalite, Grokster

e Proprietary protocol, but some details available

e Like Gnutella, but with some peers designated as
supernodes

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

So, with the fasttrack system this is an hybrid of Gnutella and Napster to take the advantage of the
servants which are basically the healthier in the participation; that means, whose reputations are high as

far as uploading is concerned.

(Refer Slide Time: 20:04)

A FastTrack-like System

Peers

Supernodes

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

So, fasttrack is like Gnutella overlay structure, but here there will be a heterogeneous kind of nodes; that

means, some nodes which are called supernodes will have more responsibility than the normal peers.

(Refer Slide Time: 20:17)

FastTrack (Contd...)

e Asupernode stores a directory listing a subset of nearby
(<filename,peer pointer>), similar to Napster servers

e Supernode membership changes over time

* Any peer can become (and stay) a supernode, provided it has
earned enough reputation

» Kazaalite: participation level (=reputation) of a user
between 0 and 1000, initially 10, then affected by length of
periods of connectivity and total number of uploads

- More sophisticated Reputation schemes invented,
especially based on economics

o Apeer searches by contacting a nearby supernode

Cloud Computing and Distributed Systems P2P Systems in Cloud Computing

So, supernodes stores the directory listing a subset of the nearby host similar to the Napster and
supernode membership changes over the time; it is not any peer can become a supernode, but the peer
which is having an enough reputation can become the supernode. So, peer searches by contacting a

nearby supernode here in this case.

(Refer Slide Time: 20:48)

BitTorrent

Website links to Tracker, per file (receives heartbeats, joins

.torrent and leaves from peers)

%

1. Gret tracker
2. Get peers (seed
’

I L full file)

Pee 3. Get file blocks
(new, leecher) Peer Peer
(seed)

(leecher,
has some blocks)

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

Now, comes the next peer to peer system which is called a BitTorrent. So, BitTorrent has used various
reputation mechanisms to ensure that more number of peer should involve in this particular system.
Therefore, the peers are given different responsibilities that is the peer which is having the full file at
that node stored is called a seed and the peer which is having some blocks of a file, but not full file is

called leecher.

And when a new peer joins which does not have these particular store files; they are called again the

leecher and also for every file there is a tracker where the files are stored.

(Refer Slide Time: 21:48)

BitTorrent (2)

o File split into blocks (32 KB — 256 KB)

» Download Local Rarest First block policy: prefer early download of blocks that
are least replicated among neighbors

. Exception: New node allowed to pick one random neighbor: helps in
bootstrapping

« Titfor tat bandwidth usage: Provide blocks to neighbors that provided it the
best download rates

» Incentive for nodes to provide good download rates
+ Seeds do the same too
¢ Choking: Limit number of neighbors to which concurrent uploads <= a number
(5), i.e., the “best” neighbors
« Everyone else choked
« Periodically re-evaluate this set (e.g., every 10 s)

» Optimistic unchoke: periodically (e.g., ~30 s), unchoke a random neigbhor —
helps keep unchoked set fresh

Cloud Computing and Distributed Systems P2P Systems in Cloud Computing

BitTorrent is split the file into the blocks of size 32 kilobyte to 256 kilobytes and it applies the algorithm
which is called the local rarest first block policy; that means, it will first prefer the early downloads of a

blocks that are least replicated among the neighbors.

Then it applies another algorithm which is called tit for tat for bandwidth usage; that means, it provides
the blocks to the neighbors that provided at the best download rates. So, whosever is providing the best
downloads in this case, it will also be supported in that manner that is the incentives mechanism. Third
algorithm is called which is used here in BitTorrent is called choking that is it will limit the number of

neighbours to which the concurrent uploads are handling up to 5 to avoid the choking.

(Refer Slide Time: 22:59)

DHT (Distributed Hash Table)

» Ahash table allows you to insert, lookup and delete objects with

keys — & prea ((1)— bukex

e Adistributed hash table allows you to do the same in a distributed

setting (objects=files) — nede, hoskg Clusar
e

« Performance Concerns:
« Load balancing <
« Fault-tolerance ~~
« Efficiency of lookups and inserts
« Locality v~ — M

e Napster, Gnutella, FastTrack are all DHTs (sort of)

e Sois Chf}ﬂi, a structured peer to peer system

Cloud Computing and Distributed Systems P2P Systems in Cloud Computing

Now, we will discuss the distributed hash table. So, we have seen the hash table which is maintained in
particular process and which supports the 3 different operations called insert lookup. And it will delete

the objects with the key values that we have seen is maintained by a particular process.

The idea of hash table is to support these operations very efficiently let us say with the order 1
complexity. However, on the other hand the distributed hash table also allows the same set of operations
insert lookup and delete, but in a distributed settings that is it is not confined in one process, but it is to
be maintained over the distributed systems. Now, here in the hash table these keys are stored in the form
of buckets, but here in the distributed hash table; these keys are stored on the nodes or you can also call

them as a hosts or the cluster.

So, cluster can be very big; now as far as distributed hash table is concerned it has to deal with the
performance concerned that is a perfect load balancing has to be ensured fault tolerance. In the sense if
the nodes are failing and a new nodes are joining; then it should continue to give the services of insert,
lookup and delete operations. Similarly, the efficiency of lookup and inserts are to be ensured and the
property of locality; that means, whenever insert lookup and delete insert lookup operations are
supported it has to be supported with the nearest cluster node in a close proximity that is with a smaller

distance these insert and lookup they are being supported.

Now we have seen Napster Gnutella and fasttrack they are some sort of DHT, but not exactly DHT
because here these performance were not a prime concern. Therefore, we will see the chord protocol
peer to peer which is a structured peer to peer system which is a real sense is a distributed hash table
why? Because it addresses all the performance concerns and on the other hand it supports an efticient

insert, lookup and delete of these particular system.

(Refer Slide Time: 26:08)

Comparative Performance

Lookup | #Messages

Memory
Latency fora lookup
0o(1 0o(1
Napster)) 0(1)
(O(N)@server)
Gnutella O(N) O(N) O(N)

Chord _ O(log(N)) O(log(N)) O(log(N))

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

Now, as far as comparative performance of Napster Gnutella and chord if we compare here the memory
which is required here for the chord will be of the order log N the lookup will be of the order log N and
the number of message for the lookup also is of the order log N which is quite improvement compare to

the Gnutella system which is of the order N.

(Refer Slide Time: 26:42)

e Developers: . Stoica, D. Karger, F. Kaashoek, H. Balakrishnan,
R. Morris, Berkeley and MIT

« Intelligentchoice of neighbors to reduce latency and message
cost of routing (lookups/inserts)

e Uses Consistent Hashing on node’ s (peer’ s) address
« SHA-1(ip_address,port) 160 bit string
; d
« Truncated to@./tf/_ Gy efpred o
. Called peer id (number between O and 27 —])
R R —
- Not unique but id conflicts very unlikely

« Can then map peers to one of 2’” logical points on a circle

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

So, let us discuss the chord system chord is developed by the Berkeley and MIT scientists; here the
chord provides a intelligent choice of the neighbours to reduce latency and the message cost of routing

or lookups for inserts.

The chord uses consistent hashing on the peer nodes address; chord uses consistent hashing on the
nodes address. So, it does using the SHA 1 function which will take IP address and the port address and
will give 160 bit string which will be truncated to m bits; m bits m is the system defined parameter.
These particular m bits will generate the numbers ranging from 0 to 2 raised power m minus 1 and these

numbers are called peer id’s.

These particular peer ids are not unique, but it will avoid the conflict if this particular numbers are large
compared to the; to the peers. So, it can map the peers to one of these 2 raised power m logical points in

the form of a circle.
(Refer Slide Time: 28:42)

Ring of peers

Say m=7

6 nodes

Cloud Computing and Distributed Systems P2P Systems in Cloud Computing

Let us take the example of this way of organizing the peers, let us say m is equal to 7 and we have less
then less number of nodes that is only 6 nodes are there. So, m is equal to 7; that means, here comes 127

after 127; the 0, 1, 2 and so on they will start.

So, 16 will come and join at this particular location, node number 32 will join here at that location 45,

80, 96, 122 will be joining in the form of a ring.

(Refer Slide Time: 29:30)

Peer Poixnters (1): Successors

Say m=7

Peer potnher
- Swiom i~

(similarly predecessors)

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

Now, every peer will maintain a peer pointer which is nothing, but a successor; peer pointer is the
successor. Similarly, the predecessors can also be there, but chord uses only the successor. So, every

peer will maintain the pointer of its successor and this will constitute a logical ring structure.

(Refer Slide Time: 30:13)

Peer Pointers (2): finger tables

Finger Table at N80 0 M
v v o]
I fifil N112 N16 P!)
40 96 ' 2o+ (1) Swenm
(" &
1 96 m
2 96
220 | N32
4 96
SETON
Sl - f 30+2°
N45 (me)
\/ 0+
Y / = LAY
ith entry at peer with id 7 is first peer with id >= 5 +2'(mod2"

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

So, besides successor; another form of peer pointer which is maintained is called a finger table, here the
size of the finger table is limited to the size of m here let us say that m is equal to 7. So, the size of
finger table is starting from O to 6 that is total 7 entries are there. The finger table uses the rule which
says that the ith entry at the table with id n is the first peer id which is greater than or equal to this

equation that is n plus 2 i mod m.

For example for peer with ID 80 this particular table is constructed where in the Oth entry; i is equal to

0. So, that becomes n is equal to 80 plus 2 raised power 0; mod 2 raised power 7 that is 80 plus 1 that is

81. So, 81 will be next to the N 80; so as far as this rule is concerned. So, it will be pointing to the first
peer with the id greater than or equal to that id that is 81. So, greater than 81 the first particular peer will
be 96; so 96 will be stored and this way up to 4 entries will basically be stored at 96.

When fifth entry will come; the value will be exceeded 96, but it will less than 112; so, 112 will be
stored according to this particular rule. Now when 1 is equal to 6 that is 80 plus 2 raised power 6 that is
64; 144 mod, 127 that comes out to be 16 and it will be stored in the 16; in this way other nodes can

also form their own finger table using the same rules.

So, there are 2 different peer pointers which are stored here in the chord; the first one is called
successor, the second one is called finger table. The finger table if you see is growing exponentially so,

that the search becomes faster search in the sense the routing becomes faster.

(Refer Slide Time: 33:38)

What about the files?

e Filenames also mapped using same consistent hash function
« SHA-1(filename) =160 bit string (key)
« Fileis stored at first peer with id greater than or equal to its key
(mod 2™)
e File cnn.com/index.html that maps to key K42 is stored at first peer
with id greater than 42

« Note that we are considering a different file-sharing application
here : cooperative web caching

« The same discussion applies to any other file sharing application,
including that of mp3 files.

e Consistent Hashing => with K keys and N peers, each peer stores
O(K/N) keys. (i.e., < c.K/N, for some constant c)

Cloud Computing and Distributed Systems P2P Systems in Cloud Computing

So, the finger table is used here in the chord for routing of the search keys for various operations. So,
that was the indexing or the mapping of the nodes to the ring structure; what about the files? Files are
also mapped using the same consistent hash function. So, the file is stored at the first peer with the id

greater than or equal to its key mod 2 raised power m.

So, let us take an example that a particular file with the key K 42 which is hashed and obtained K 42 is
stored at the first peer id, which is greater than 42.

(Refer Slide Time: 34:29)

Mapping Files

Say m=7

File with key K42
stored here

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

Here in this case let us say the 42 lies over here. So, the next node which is higher than 42 is 45. So, the
file with the key 42 will be stored on this particular node. Now this particular method is not only used

for the file sharing application, but for other applications such as cooperative web caching.

Now it uses the consistent hashing which ensures that the system with K keys and N peers will support
of the order of K by N different keys per node; that means, that is bounded by some constant therefore,

the load balancing is ensured here in the consistent hashing.

(Refer Slide Time: 35:27)

— Who has cnn.com/index.htmi ? -
T —

— (hashes tO@f e

. 2 File cnn.com/index.html with
- — key K42 stored here

Cloud Computing and Distributed Systems P2P Systems in Cloud Computing

The search let us see how it happens. So, if the key if this is the file which want to be searched. So,
applied to the consistent hashing let us say it generates a key 42. So, key 42 is basically the key of that
file which want to access or you want to search. So, key 42 lies over here; so the next node which stores

K 42 is N 45 and it will be solved in this particular manner.

(Refer Slide Time: 36:17)

At node n, send query for key k to largest successor/finger entry <= k
if none exist, send query to successor(n)

Say m=7
Y ‘ L ca At or to the anti-clockwise

of k (it wraps around the
| N96

ring)

::\ZVho has cnn.com/index.html?”
. (hashestoK42)

File cnn.com/index.html with
key K42 stored here

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

So, at node n search query for the key to the larger successor or to the finger table entry which is less
than k is being used and if none of these contains that particular file then search query is passed onto the

successor and so on.

(Refer Slide Time: 36:39)

Here
Search takes Oflog(N)) time

Proof: | Next hop

|

« (intuition): at each step, distance between queré\;aei\).d peer-
with-file reduces by a factor of at least 2

« (intuition): after Jog(N) forwardings, distance to key is at most

- Number of node identifiers in a range of 27 /9leglN) _ym / Ar
is O(log(N)) with high probability (why? SHA-1! and
“Balls and Bins”)
So using successors in that range will be ok, using another
O(log(N)) hops

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

Let us see the analysis the search takes of the order log N time. So, here as far as the node is concerned
every time in the search between the next hop and the key; the distance is reduced by a factor of at least
2. So, after log N forwarding the distance to the key is at most 2 raised power m divided by 2 raised
power log N that is nothing, but 2 raised power m divided by N, which is of the order log N with the

high probability. So, using successors in that range will be using another order of log N hops.

(Refer Slide Time: 37:33)

Analysis (Contd.)

e O(log(N))search time holds for file insertions too
(in general for routing to any key)

« “Routing” can thus be used as a building block for
* All operations: insert, lookup, delete

e Oflog(N))time true only if finger and successor entries
correct

o When might these entries be wrong?
« When you have failures

Cloud Computing and Distributed Systems P2P Systems in Cloud Computing

Now, this particular search which takes of the order log N it is also required for the file insertions, but
this particular search time that is of the order log N is valid if the finger and the successor entries are
correct; that means, if what happens when these entries are not correct; that means, the nodes

maintaining them are down; that means, the failures.

(Refer Slide Time: 38:06)

Search under peer failures
Lookup fails
Say m=7 0 | (N16 does not know N45)

— Who has can.convindex hmi?
" (hashes to K42) —

File con.com/indexnumt With
- key K42 stored here

N

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

Let us see here in this example if the node 32 which contains all the information is down.

(Refer Slide Time: 38:18)

Search under peer failures

One solution: maintain r multiple successor entries
In case of failure, use successor entries

Say m=7

—Who has con.convindextm|? y
__ (hashes to K42) A~

- File cun.convindex nem1 With
key K42 stored here

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

N

So, we have to deal with this particular solution by maintaining the successor entries by maintaining r

different multiple successor entries instead of 1 to deal with the failures.

(Refer Slide Time: 38:36)

Search under peer failures

* Choosing r=2log(N) suffices to maintain lookup
correctness with high probability (i.e., ring connected)

/' Say 50% of nodes fail
J’ Pr(at given node, at least one successor alive)=

XU I\ om
l—(E)J”\ :l\l_ﬁ> —0

* Pr(above s true at all alive nodes)=

Cloud Computing and Distributed Systems P2P Systems in Cloud Computing

Now, the question is how many successor entries are required to deal with the peer failures? Here, the
number of successor entries which are maintained to deal with the peer entries is 2 times log, which

suffices to maintain the lookup correctness with the high probability.

Let us see this particular aspect now let us assume that 50 percent of the nodes fail which is very high
percentage normally not it will not reach to that 50 percent not fail, but let us assume that. So, let us find
out the probability that at a given node at least one successor is alive. So, the probability that the
successor is failed is 1 upon 2 times 2 log N and the probability that at least one successor survives is 1

minus that figure that comes out 1 minus one upon N square.

Now, probability that this is true at all alive nodes; so we will use this particular value here N raised to
the power N by 2 that comes out to be e raised power 1 upon 2 N that comes out to be 1 that is if the

number of nodes is too large then this becomes 1. So, these are the examples given for the

understanding.

(Refer Slide Time: 40:24)

Need to deal with dynamic changes

v Peers fail
e New peers join
e Peers |eave
« P2P systems have a high rate of churn (node join, leave and failure)
* 25% per hour in Overnet (eDonkey)
* 100% per hour in Gnutella
* Lower in managed clusters

* Common feature in all distributed systems, including wide-area
(e.g., PlanetLab), clusters (e.g., Emulab), clouds (e.g., AWS), etc.

So, all the time, need to:

- Need to update successors and fingers, and copy keys

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

So, here we have to deal with the dynamic changes; that means, when the peer fails or when a new peer
joins or the peer leaves; the peer to peer system; that means, has if it is having high churn then it needs

to update the successor and the finger table and also copy some of the nodes.

(Refer Slide Time: 40:44)

New peers joining

~Introducer directs N4Q to N45 (and N32)

N32 updates successor to N40

N40 initializes successor to N45, and inits fingers from it
N40 periodically talks to neighbors to update finger table

Saym=7 0 .
N16 Stabilization

Protocol
(followed by
all nodes)

@/

o] e P

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

Let us see the example how the new peers join in chord system, here let us see the example that the new

peer N 40 wants to join. So, it has to contact to the introducer and introducer will give the addresses of

some of the peers. Here let us assume that the 2 addresses the introducer gives to N 40 they are N 45

and N 32. So, N 32 will updates its successor as N 40 and then N 40 initializes the successor to N 45

and initialize its finger table from it.

N 40 periodically talks to the neighbours to update its finger table for that it uses a stabilization protocol

and it will try to ensure the proper updation.

(Refer Slide Time: 42:05)

New peers joining (2)

N40 may need to copy some files/keys from N45
(files with file id between 32 and 40)

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

Besides this N 40 may also need to copy some of the files or the keys from N 45 that is the files with the
ids between 30 and 40. So, between N 32 and 45 all the files or the keys are required to be divided here
in N 40 for example, N 40 will be storing the keys between N 32 and N 40.

So, for example, the keys K 34 and K 38 will be copied here which was earlier maintained by N 45 and
this will be copied here in N 40.

(Refer Slide Time: 42:57)

New peers joining (3)

o Anew peer affects O(log(N)) other finger entries in
the system, on average [Why?]

o Number of messages per peer join= O(log(N)*log(N))

e Similar set of operations for dealing with peers leaving

« For dealing with failures, also need failure
detectors.

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

So, this way the new peers will join. So, that the new peer affects of the order log N other finger table
entries in the system on an average. So, the number of messages per peer join will be of the order log N
times log N; so, that will be of the order log N square. So, similar set of operations are required to deal

with the peers leaving the systems or dealing with the failure detectors.

(Refer Slide Time: 43:28)

Stabilization Protocol

e Concurrent peer joins, leaves, failures might cause
loopiness of pointers, and failure of lookups

» Chord peers periodically run a stabilization algorithm
that checks and updates pointers and keys

« Ensures non-loopiness of fingers, eventual success of
lookups and O(log(N)) lookups with high probability

« Each stabilization round at a peer involves a constant
number of messages

» Strong stability takes O(N*) stabilization rounds

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

So, stabilization protocol the concurrent peer joins leaves and failures might cause loopiness of the
pointers and failures of the lookup, periodically runs this stabilization protocol and checks the updates

the pointers and keys.

(Refer Slide Time: 43:55)

« When nodes are constantly joining, leaving, failing

» Significant effect to consider: traces from the Overnet system show
hourly peer turnover rates (churn) could be 25-100% of total number of
nodes in system

« Leads to excessive (unnecessary) key copying (remember that keys are
replicated)

« Stabilization algorithm may need to consume more bandwidth to keep
up

« Mainissue is that files are replicated, while it might be sufficient to
replicate only meta information about files

« Alternatives

— Introduce a level of indirection, i.e., store only pointers to files
(any p2p system)

— Replicate metadata more, e.g., Kelips

Cloud Computing and Distributed Systems P2P Systems in Cloud Computing

So, strong stability takes of the order N square stabilization round. So, churn in the chord system sees
that the nodes are constantly joining and leaving; here it leads to the excessive key copying and

stabilization protocol also requires the bandwidth. So, the issues; is that the files are replicated. So, the

alternative is to provide another level of indirection store only the pointers instead of replicating the

entire files. So, this particular issues will be handled in the next peer to peer system that is called Kelips.

(Refer Slide Time: 44:36)

Virtual Nodes

e Hash can get non-uniform =» Bad load balancing

« Treat each node as multiple virtual nodes behaving
independently

« Eachjoins the system
« Reduces variance of load imbalance

Cloud Computing and Distributed Systems P2P Systems in Cloud Computing

Here there is a concept of the virtual nodes for proper load balancing. So, if there are too many number
of keys are stored at a particular node; then there is a concept of virtual nodes that they may be

partitioned into the virtual nodes and hence it will introduce the load balancing.

(Refer Slide Time: 44:55)

o Virtual Ring and Consistent Hashing used in Cassandra.,
Riak, Voldemort. DvnamoDB. and other kev-value
stores

e Current status of Chord project:
« File systems (CFS.Ivy) built on top of Chord
« DNS lookup service built on top of Chord
« Internet Indirection Infrastructure (I3) project at UCB

» Spawned research on many interesting issues about p2p
systems

https://github.com/sit/dht/wiki

Cloud Computing and Distributed Systems P2P Systems in Cloud Computing

Therefore the concept of the virtual ring which was given here in the chord system and also the concept
of consistent hashing which was used in the chord system; virtual ring and consistent hashing together
these concepts are used in the modern key value store that is in the cloud computing systems like

Cassandra, Riak, Voldemort and DynamoDB that we will see in the further lectures.

(Refer Slide Time: 45:26)

o Designed by Anthony Rowstron (Microsoft Research)
and Peter Druschel (Rice University)

e Assignsids to nodes, just like Chord
(using a virtual ring)

e LeafSet - Each node knows its successor(s) and
predecessor(s)

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

Now, we will see another peer to peer system that is called pastry, which is developed by the Rice
University and Microsoft research. Pastry also assigns ids to the nodes just like the chord and uses the

virtual ring, here there is a leaf set that is each node knows its successors and predecessors.

(Refer Slide Time: 45:53)

Pastry Neighbors

o Routing tables based on prefix matching
« Think of a hypercube

¢ Routing is thus based on prefix matching, and 1s
thus log(N)

« And hops are short (in the underlving network)

Cloud Computing and Distributed Systems P2P Systems in Cloud Computing

But there is a difference here the routing table in pastry is based on prefix matching which is nothing,

but the based on the hypercube structure. So, routing is thus based on prefix matching and is log N.

(Refer Slide Time: 46:16)

Pastry Routing

e Consider a peer with id 01110100101. It maintains a neighbor
peer with an id matching each of the following prefixes
(* = starting bit differing from this peer’s corresponding bit):

*
.

. 0*

. 01%

. 011%

» .. 0111010010*

e When it needs to route to a peer, say 01110111001, it starts by
forwarding to a neighbor with the largest matching prefix, i.e.,
011101*

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

Let us consider how the routing in the pastry is done using prefix matching; consider a peer with the id
shown over here and it maintains the neighbour peers with an id matching each of the following

prefixes.

So; that means, star means that it is by starting bit differing from this peers corresponding bit for
example, if it is starting with a star; that means, if the bit is 0 so; that means, it is starting from 1; that
means, its neighbour. Similarly O star means the neighbours first bit is matched with this peer 0, the

second bit should be 0 instead of 1 in our peer.

So, this way the one which is having the largest prefix match will be will be the neighbour and

therefore, in the routing it will be forwarded to that particular neighbor.

(Refer Slide Time: 47:23)

Pastry Locality

e For each prefix, say 011*, among all potential neighbors
with the matching prefix, the neighbor with the shortest
round-trip-time is selected

e Since shorter prefixes have many more candidates
(spread out throughout the Internet), the neighbors for
shorter prefixes are likely to be closer than the neighbors
for longer prefixes

e Thus, in the prefix routing, early hops are short and later
hops are longer

e Yetoverall “stretch”, compared to direct Internet path,
stays short

Cloud Computing and Distributed Systems P2P Systems in Cloud Computing

So, using this prefix matching the neighbour with the shortest round trip time will be selected; using the
properties of this structure that is nothing, but the hypercube. Since the shorter prefixes have more
candidates the neighbour for the shorter prefixes are likely to be closer than the neighbours for the
longer prefixes. Therefore, prefix routing provides and that is the early hops are shorter and the later

hops are longer; overall stretch compared to the direct internet path stays short.

(Refer Slide Time: 48:04)

Summary: Chord and Pastry

e Chord and Pastry protocols:

« More structured than Gnutella

« Black box lookup algorithms

« Churn handling can get complex

» Oflog(N)) memory and lookup cost
* O(log(N)) lookup hops may be high
* Can we reduce the number of hops?

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

So, if we compare the chord and pastry; both are more structure and churn handling can complex the
memory requirement is of the order log N and lookup host is of the order log N can be reduced this

number of hops.

(Refer Slide Time: 48:26)

Kelips : A 1 hop Lookup DHT

o k “affinity groups” 3
k~VvN :] B
S 0 B
e Each node hashedtoa - 0
group (hash mod k) _/~ i D13
e Node’ s neighbors 120 |
B~ ™61
/+ (Amost) all other nodes 4
in its own affinity group %
_/+ One contact node per 0
foreign affinity group LAl [
Affinity #1 #k-1
Group# 0
¥

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

So, the next peer to peer system is called Kelips is to provide one hop lookup DHT method; that means,

instead of log N in the previous methods; it will provide of the order 1 hop lookup that is Kelips. So,

Kelips supports affinity groups; so, it supports k affinity groups. So, k is of the order root N. So, here
affinity group are number from 0 to k minus 1 and the value of k is root N. So, each node is hashed to

one of these groups that is hash mod k.

Now, nodes neighbours are almost all the nodes in that affinity group for example, 160 is having the
neighbour with its other group members that is in this affinity group. So, they maybe k minus 1 because
this membership is root N. Beside this this particular node is also having one contact node for foreign
affinity group. So, this is; so this is the affinity group its neighbour affinity groups; that means, with all

other affinity group with one member it is also having in its neighbourhood lists.

(Refer Slide Time: 50:13)

Kelips Files and Metadata

¢ Publicenemy.mp3 hashes to k-1

o File can be stored at any (few) . Everyone in this group stores

node(s) <Publicenemy.mp3, who—hgs;filre>
¢ Decouple file replication/location 0 15 BT
; i : : : ‘'l _ L
(outside Kelips) from file querying L {14\
(in Kelips) 0 | 1 u
¢ Each filename hashed to a group [; DIS
150 :

« All nodes in the group replicate 120 | LN U :
pointer information, i.e., <] | 167 i
<filename, file location> | 1

: ; o '-

« Spread using gossip 30 . : j

« Affinity group does not store { mf
files Affinty 57 Bk

Group #0

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

So, therefore, let us see how the file is stored the file can be stored at any of these few nodes. Now let us
decouple the file replication with the location from querying in the Kelips. So, each file name is hashed
to a group and all the nodes in the group replicate the pointer information not the entire file; this

information is spread using the gossip protocol.

(Refer Slide Time: 50:48)

Kelips Lookup

* Publicenemy.mp3 hashes to k-1

* Lookup + Everyone in this group stores
« Find file affinity group < Publicenemy.mp3, who-has-file>
«» Go to your contact for the file . e
affinity group 0 llj |l
« Failing that try another of your a 0 t |1 @
neighbors to find a contact m|[% .‘ DIS
e Lookup =1 hop (or a few) i‘(f-O ! O
. Memory cost O(V N) 1D29 I-T\ . |
» 1.93 MB for 100K nodes, 10M [e
files ml| l
| I 30| | 4
*+ Fitsin RAM of most 0 ;
workstations/laptops today . B
(G machines) Affinity Group#0 #1 Akl

Cloud Computing and Distributed Systems P2P Systems in Cloud Computing

So, affinity group does not store these particular files; similarly as far as the lookup is concerned it will
find the affinity group and go to the contact for the file affinity group failing, that try another neighbour
to find out the contact. So, lookup will be of the order that is of the order 1; so, 1 hop.

(Refer Slide Time: 51:18)

Kelips Soft State -

* Publicenemy.mp3 hashes to k-1
* Everyone in this group stores

& Membership lists < Publicenemy.mp3, whofhas—file_>
« Gossip-based membership ‘7'
e o 0 13 'm_ |
« Within each affinity group B 1 74}
« And also across affinity groups -] 1 f all
« O(log(N)) dissemination time . 1%0 318
129 |}~ i
o File metadata B [,$ f SE i
« Needs to be periodically | ," "
refreshed from source node = |:'|
« Times out i | mf
Affinity Group #0 #1 # 1

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

Memory cost is of the order root N; membership lists are being maintained using gossip based
membership protocol within each affinity group is maintained and also across the affinity group and;

that means, it requires of the order log N dissemination time; file metadata needs to be periodically

refreshed and when time out.

(Refer Slide Time: 51:39)

Chord vs. Pastry vs. Kelips

o Range of tradeoffs available:

« Memory vs. lookup cost vs. background bandwidth
(to keep neighbors fresh)

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

So, as far as if we see the trade off with chord pastry and Kelips. So, it is the memory versus lookup

cost versus background bandwidth to keep.

(Refer Slide Time: 51:53)

P2P Systems

Widely-deployed P2P Systems:

1. Napster
2. Gnutella
3. Fasttrack
4 BitTorrent

P2P Systems with Provable Properties:

1. Chord
2. Pastry
3. Kelips

Cloud Computing and Distributed Systems = P2P Systems in Cloud Computing

So, in conclude we have seen that there are widely deployed peer to peer systems Napster, Gnutella,
Fasttrack and BitTorrent; they differ and they improve further up to the BitTorrent. We have also seen
the peer to peer systems came out from academia with all provable properties such Chord, Pastry and

Kelips.

Thank you.

