
Cloud Computing and Distributed Systems
Dr. Rajiv Misra

Department of Computer Science and Engineering
Indian Institute of Technology, Patna

Lecture – 16
Design of Key-Value Stores

(Refer Slide Time: 00:16)

Design of Key Value Stores; preface content of this lecture, we will discuss the design

and under the (Refer Time: 00:22) of new generation storage that is called key value

store or it is also called as a NoSQL store, which is being provided as a services by the

cloud storage system. We will also discuss one of the popular storage system provided by

the cloud providers which uses underlying the key value store that is called Cassandra;

we will also cover different consistency solutions.

(Refer Slide Time: 01:07)

So, as I told you that the new generation storage system which are being provided by

most of the cloud systems are now providing the abstraction of a key value store. So, let

us understand what do you mean by key value store. So, key value store can be

understood by different services which are running on the internet. For example, the

Flipkart used to sell the items; every item is having a particular unique number that is

called item number. And this item number has various information such as the product

cost, name of the product, manufacturer, who purchased rate and how much quantity is

available.

Item number becomes the key and all the information related to that item becomes the

value. Similarly, if let us say we want to book a flight ticket through some service then

the flight number will become the key and related to that flight number that information

about the flight and the availability of seat and other information becomes the value.

Similarly, the Twitter; tweet every tweet is having an id call tweet id and tweet id is

having the information about the tweet all the details about that particular tweet who

send it and so on. Similarly, online banking provides the information in the form of the

account number. So, account number becomes a key and who owns that account, how

much money is there in the account and other details are the value. So, every business

here deals with this a key and the value kind of notion; hence we will see that key value

abstraction is very much required in different businesses. And we will see how this

abstraction is provided in a new generation storage system to using the cloud.

(Refer Slide Time: 03:43)

Key value abstraction though looks very simple can be implemented using the traditional

approaches like dictionary data structures which supports insert, lookup, delete by the

key; for example, hash table and binary tree. But the drawback or the problem with that

is scheme is that it can run on single server machine as a process.

So, for a small data set this all was workable, but when the data becomes huge then the

single server will not work; hence the distributed system is required to manage the key

value store that is and also large number of clients who are accessing this huge amount of

information for that the distributed system is required. So, instead of hash table the

concept of similar to the hash table is being supported in distributed hash table in pear to

pear systems that we have already seen can be used in the designing of such key value

store.

(Refer Slide Time: 05:00)

As far as key value store let us see whether is it a kind of database. Yes it is a kind of

data base let us understand what is let us recall; what is the RDBMS: Relational Data

Base Management System provided the language to access the data through the keys

called MySQL and in RDBMS data is stored in the form of tables; which follows the

schema that is the these tables are structured.

And every row is called a data item has a primary key that will uniquely identify a row

or a tuple in that particular table. This kind of database supports the operations called

join across multiple tables to fetch the data from it.

(Refer Slide Time: 06:12)

Let us see this particular example here; we have shown 2 different tables one is the users

table the other is the blog table in the RDBMS format. The user table has the primary key

as user id and the blog table has the primary key as the id in the blog table. This primary

key a blog table is also being provided as blog id in the user table hence this is called a

foreign key in the terms of RDBMS. Now you can generate the SQL queries for

example, the query comprising of one table is shown over here. So, the name field which

is having the John in this table user will print the zip code which is being queried by a

customer. Similarly, from the blog table the id whose value is 11 his url will be printed.

Now comes a query which requires 2 different tables user and a blog to be joined where

in the user blog url is equal to the blog url. So, here we can see this particular entry is

common this is also common and so also this common. So, they will join using Cartesian

product and then it will find out the users zip code and the blog num posts.

So, this is called a join operation; if 2 different tables are required for a Cartesian product

and then it can basically satisfy the query and supports it. So, in this relational database

we have seen the tables, we have seen the join operation, we have seen the schema which

is being provided by RDBMS. And on top of it the SQL language which will basically

allow us to do these operations on the database.

(Refer Slide Time: 09:10)

However, in the earlier times that was all fine to involve the database and serve a

particular organization, but now today’s workload is across the globe. Hence the

workload is quite heavy to be tackled by RDBMS; there are different requirements of in

today’s work load. For example, data is very large and cannot be structured that is called

unstructured; that means, it cannot follow any schemas.

The second mismatch in today’s workload is that lot of random reads and writes are

required. So, it is a heavy reads and heavy write operations are being supported

compared to the read. So, heavy write operations are supported sometimes and foreign

key is rarely required and join is very infrequent in today’s workload.

(Refer Slide Time: 10:24)

So, to deal with this workload these are the following characteristics which are required

to be handled in the modern storage system; that is the speed single point of failure to be

avoided total cost of operation. And a total cost of ownership should be low fewer

system administration and incremental scalability and scale out not the scaling up.

(Refer Slide Time: 10:56)

So, scale out means that we can incrementally grow your data center or your cluster by

adding more machines; that becomes the cheaper way of managing the data center. On

the other hand, earlier times the entire cluster capacity was replaced by with more

machines that is called scale of that is not required these days in the data center scenario.

(Refer Slide Time: 11:30)

So, let us see that the solution here is the key value abstraction; key value is store which

is also called as a no SQL data model. So, no SQL is not only SQL or not only SQL

which provides the operations in the form of APIs that is the get by a key and a put the

key and a value.

So; that means, get with the key; that means, it will fetch the value of the key which is

maintained by the data store. Put the key value means that it is going to be updated with

the new values using the put operation which is supported by an API. So, as far as the

new generation data is store such as Cassandra provides a similar kind of language which

is similar to SQL, but not exactly SQL it is called Cassandra query language which will

allow to use the key value store as per as tables are concerned here the tables are called

column families in Cassandra. But it is called table in Hbase it is called collection in

MongoDB that is an NoSQL data storage.

These terms are now redefined now these particular tables are unstructured; that means,

they will not follow any schema; that means, that is all the columns may be missing from

some of the rows and so on. And, also this kind of NoSQL database do not supports join

operations or do not have the foreign key concept they can have the index tables just like

RDBMS.

(Refer Slide Time: 13:47)

So, let us see these differences with RDBMS its highly unstructured database for

example, here although these data stores are called tables. For example, the same user

table if we consider user id will be the key and the remaining fields are called value.

Similarly in another table that is a blog table id is called a key and rest are all called

values.

This is highly unstructured in the sense it is not following the schema some of the

column values are missing from some other row that is fine. And there is no foreign key

which is being supported here, since there is no foreign key has the joins are also not

supported.

(Refer Slide Time: 14:52)

This particular new generation storage is also called as a column oriented storage unlike

in RDBMS which is stores the entire rows together on a disc or a server NoSQL; NoSQL

systems typically store the column together. So, the entries within the particular column

are indexed and easy to locate given a key and vice versa. This is useful to support the

range queries within a particular column, since they are fast and do not need to face the

entire database for the retrieval of data for that query.

Let us go and see the design of one such system that is called apache Cassandra, which

supports the new type of storage that is called key value storage or it is also called is a

NoSQL. So, Cassandra is a key value store which is supported by the distributed system.

(Refer Slide Time: 16:04)

That is called distributed key value store; obviously, it runs on the data center not on a

single server Cassandra was originally designed at the Facebook and was later very

popular and open source did by the Apache project. And many companies’ uses

Cassandra in their production clusters such as IBM, HP, Ericsson, Twitter, PBS kids,

Netflix and so on.

(Refer Slide Time: 16:39)

Let us go and see inside the Cassandra. So, the first task we will look into that how the

keys are to be mapped on the server, which will store those key and their corresponding

value that is key value store how that is being stored in which server that mapping.

(Refer Slide Time: 17:09)

Cassandra uses the concept of a ring which is being provided by the chord distributed

hash table. So, it uses chord like ring based distributed hash table to map the servers and

the keys for key value storage, but with a difference that it does not use finger tables or it

does not use routing and the key to the server mapping is done by the partitioner.

So, here for example, this is the ring which we have already seen defined for m is equal

to 7; these are the different nodes which are mapped on the ring. As far as the client is

concerned it want to read and write a key let us say 13. So, it will be done through the

partitioner maybe for per customer there is a partitioner here. So, this particular key K 13

will be hashed that is using shravan function and it will try to map here. So, as per as this

kind of storage is concerned; so, this particular will be map to the next nearest server or

the node.

So, N 16 will be storing it, but it will also store the replications of it. So, the second

replication will be stored on the next server; that is N 32 and the next server will be that

and 40 5 will be storing up all are called replicas that is K 13 will be now maintained at 3

different servers consecutive services in Cassandra.

So, that was the key to the server mapping and this not only stores a particular key, but

also maintains the replicas also here in this particular way.

(Refer Slide Time: 19:53)

Now this particular data placement follows some strategies let us see what are the

strategies which are supported in Cassandra for data placement. There are two strategies

which are supported for data placement in Cassandra one is called simple strategy, the

other one is called network topology strategy. Simple strategy uses the partitioner as we

have seen earlier in the slide. So, simple strategy using the partitioner of which there are

two different kind of partitioner here which is being applied.

So, the first kind of partitioner is called random partitioner that is nothing, but it is a

chord like hash partitioning we have seen in the previous slide. This particular way that

is called a random partitioner why random? Because, distributed hash table hashing

using hashing it basically stores the data. The second kind of strategy of the partitioner or

second type of partitioner is called byte ordered partitioner it assigns the range of keys to

the server.

So, range of keys to the servers means that these range of keys are stored at one place

and will become easier for the range queries; so that was the simple strategy for that

replication. The second replication strategy for the data placement is called network

topology strategy; that is meant for multi data center deployments. So, it says that two

replicas per data center or three replica sometimes per data center.

When it calls per data center that is first replica will be placed according to the

partitioner that we have seen in the simple strategy. And then it will go a clock wise

around the ring until you find another server on a different rack. So, rack wise replication

is done to support the rack failure that is called as network topology strategy is nowadays

very much useful in the cloud scenario. So, both strategies are supporting the replication.

So, there are 2 kinds of application we have covered one is called simple strategy; the

other one is called network topology strategy.

(Refer Slide Time: 22:34)

Now, there are snitches; that means, when IPs are mapped to the racks and data centers.

These particular configurations are stored in cassandra dot yaml configuration files. So,

there are some options for mapping first is called simply snitch. So, this particular

strategy is unaware of the topology; that means, IPs when their map we will not know

from that mapping which of the racks or a data center the IP is mapped. The second one

is called rack inferring will assumes the topology of the network by updates of servers IP

addresses.

So; that means, by looking up using rack infer we can know that IP is mapping to which

of the racks on which of the data centers and so on. Third property is called property files

snitch uses a configuration file and easy to snitch uses the easy to that is easy to regions

which data center and also the availability zone which rack and so on. Let us see the

write operations on this kind of store.

(Refer Slide Time: 24:09)

So, it need to be log free and fast for write operations. So, the client sends the write

request to one of the coordinator in the Cassandra cluster, the coordinator maybe per key

basis or per client or per query basis. So, per key coordinator ensures the writes for the

key are serialized for maintaining the consistency. The coordinator uses partitioner to

send the query to all the replica nodes responsible for the key. Now an X replicas

respond the coordinate returns and acknowledgement to the client; now what do you

mean by X replicas, why not all replicas? That we will see; now that strategy which is

applied in Cassandra.

(Refer Slide Time: 25:15)

So, the first strategy which says that always writable we say that if any replica is down,

the coordinator writes to all other replica and keep the write locally until the down

replica comes up and then it will do the backup. So, it is the responsibility of the

coordinator to take care of the replica which is down. When all the replicas are down

then coordinator will be the at the front end and it will buffer all the writes, but it is not

forever, but it will be for a few hours and one these replicas are up they will backed up.

So, this is called a hinted handoff mechanism why because here the coordinator will

manage to how these replicas updated it.

Now, another strategy is called one ring for data center that we know that if it is a multi

data center; multiple data centers are involved then for each data center there is one ring;

so, for every data center there is there is a ring. So, per data center one of these particular

nodes will be elected as the coordinator. This particular coordinator job is to co ordinate

with the other data centers and this election is done through the zookeeper which uses

paxos like consensus for leader election.

(Refer Slide Time: 27:36)

On receiving a write request at the replica node; it will log in its disc for ensuring the

failure recovery. We will see the algorithms which use the log file to recover from the

failure so, that it will be a minimal loss or the write operations which are incomplete and

if it is filled in between they can be recovered.

Make changes to the appropriate memtables; memtable is an in memory representation

of multiple key value pairs. So, typically only the append only data structure is there

since its in memory; so, it becomes a fast operations. So, this is maintained in the cash

that can be searched by the key; it is in contrast if it is these particular changes are

directly done, then it is called a write back then it is called the write through as opposed

to the write back. Now when the memtable because this is in memory when it is full or it

becomes old, then it will be flush to the disc; that means, it will be made permanent.

So, for that there will be a file which is called SStable is stored string table; this is a list

of key value pair which are sorted by the key. These SStable are immutable that is once

created they do not change, now they are indexed using a file called index file. So, that

they can be checked up for the key its position of the data in the SStable and so on; for

that efficient search a bloom filter is being applied on SStable.

(Refer Slide Time: 30:00)

Let us understand what a bloom filter is; a bloom filter is a randomized data structure is a

compact way or presenting beside of items checking for the existence in the set becomes

cheap. Because here we are checking into SStable for a particular key using the bloom

filter, to support the search operation in a fast manner; this is key bloom filter has some

probability of false positives; that means, if a item is not present in the set may

sometimes turn to be true. But if a item is present then it will never give a false

information hence it is called negative.

Never have the false negative it may have the false positive, but that is not a false

positive can be handled easily; that means, it has to look up again and search for that

particular item in the set. So, let us see how the bloom filter works for a particular key;

there are K different hash functions which are applied and every has function will hash

into the values from 0 to 127. So, for a particular key and a particular hash function one

of these bits will be mapped and it will be turn to 1; similarly this also and so on.

Since this particular SStable stores many different keys; so, all of them will be mapping

the values of 1 is off if it is already there then is no change if it is 0, then return 1s. So, on

insert therefore, the set all has bits will be turn on. So, on check if they are present all 1s,

then it will turn true if one of them is 0 then it will be false; that means, it is not present.

There are some false positives; so false positive analysis if we see and here in the

scenario when we have 4 different hash functions. And there are hundred different items

stored for searching and if these number of bits are 3200; then it is analyze that the false

positive rate is 0.02 percent. This can further be reduced by increasing these bits that is

the bitmap; if you can increase then this can further go down. So, the bloom filter is used

here to search the SStable of particular keys; hence as a index file, bloom filter is applied

for an efficient search.

(Refer Slide Time: 33:32)

Now, another operation which is supported to deal with the multiple SStable; which will

be accumulated over the period of time and the log tables is called compaction. So, the

process of compaction is to merge different SStables that is merging and updates for a

particular key and run periodically, locally at each server this compaction process.

(Refer Slide Time: 34:06)

Let us see how the delete operation is being supported in Cassandra. Delete is supported

that do not delete the item right away; instead it will add in a tombstone to the log and

eventually when the compaction and counters the tombstone then it will delete the item.

(Refer Slide Time: 34:36)

Now, let us see how the reads operations are supported read is similar to the write except

the coordinator can contact X replicas not all; in the same rack. Coordinator sends the

read request to the replicas that have responded the quickest in the past, when X replica

responded the coordinator returns the latest time stamped value from among those X

replicas. So, the values of X; that means, not all we will see now the coordinator also

fetches the values from other replicas.

So, checks the consistency in the background and if multiple replicas have different

values; that means, they are all not same. Then there is a then it will initiate the read

repair if the two values are different; this mechanism seeks to eventually bring up all the

replicas up to date eventually. So, at a replica a row maybe is split across multiple

SStables. So, reads need to touch multiple SStables; that means, read becomes slower in

that case than the writes, but it still it is the faster.

(Refer Slide Time: 36:05)

So, membership any server in the cluster could be the coordinator. So, every server need

to maintain a list of all other servers; that are currently working or interacting as a

servers. So, these list need to be updated automatically as new server join fail or leaves.

(Refer Slide Time: 36:29)

This membership is done using the gossip style failure detection. So, in this method or a

protocol the nodes periodically gossip there membership information. When we say

gossip; that means, randomly it will exchange its information to some randomly selected

neighbors; not all neighbors hence it is a gossip. On the receipt of this local membership

the list is updated and if any heartbeat is older than; than Tfail node then it is marked as

the failed.

So, it is kind of membership; that means, it will try to figure out the nodes which are

failed or which are active; hence this particular gossip style membership is maintained in

Cassandra.

(Refer Slide Time: 37:38)

Now, there is a suspension mechanism in Cassandra to detect the failures. Accrual

detector is being used here the failure detector output value which is called phi

representing the suspicion level. So, applications will set an appropriate threshold to deal

with that; phi calculations for a member is based on inter arrival times for the gossip

messages. So, phi of a particular time is equal to the log of cumulative distribution

function or a probability of t now minus t last divided by log 10.

So, phi basically determines the detection time out, but takes into account the historical

inter arrival time variations for the gossip heartbeats. In practice phi is equal to 5, this

will imply that 10 to 15 seconds is basically the detection time in case of the failures.

(Refer Slide Time: 38:53)

Therefore, if we compare the Cassandra with RDBMS now we have seen that Cassandra

is supporting the NoSQL data store in the form of key value store. So, here if we

compare for the data which is more than 50 GB; MySQL has the write latency the write

operation is 300 millisecond on an average speed is 350 milliseconds whereas, Cassandra

will take 0.12 milliseconds and read will take 15 milliseconds. So, this is in the order of

magnitudes much faster CAP theorem. So, CAP theorem was proposed by Eric Brewer

of Berkeley.

(Refer Slide Time: 39:55)

And which was subsequently proved by Gilbert and Lynch of NUS and MIT. In the

distributed system, as per as their observation is that you can satisfy at most 2 out of 3

different guarantees. What are the 3 guarantees? The first one is called Consistency will

form C in the CAP, second one is called Availability that is A in the CAP, third is the

Partition tolerance that is P in the CAP. So, what you mean by consistency? That

consistency says that all the nodes see the same data at any time or the read returns latest

value by any client called consistency.

This is ensured in the RDBMS, second aspect is called availability that is the system

allows the operation at all points of time and the operations return quickly that is called

availability that also is supported in most of the RDBMS. Third is called partition

tolerance which says that system continues to work in spite of network partition that is

failures which lead to the network partition that is called partition tolerance. So, let us

see what CAP theorems says; CAP theorems says in a distributed systems or in a cloud

system you can satisfy at most 2 out of 3 guarantees; that means, either consistency or

availability you can support in the cloud system; that means, not partition tolerance and

so on.

So, we will see that partition tolerance is important why? Because now data in the cloud

is stored over multiple data centers; which are geographically distributed hence it has to

be partition tolerance. If partition tolerance is very much required, then out of

consistency and availability one of these 2 things has to be also taken up because at most

2 can be satisfied. Availability is very much important, why?

Because these services which are serving customer will otherwise lose the revenue; so,

availability is also one of the important where we can compromise is called consistency.

So, a compromise consistency is very much to be create and developed in the modern

scenarios in the cloud computing system; so, in that perspective we will see the CAP

theorem.

(Refer Slide Time: 42:46)

So, availability that is reads and writes will complete reliably and quickly measurements

have shown that 5 millisecond increase in the latency; for the operations at Amazon dot

com or a Google can cost 20 percent drop in the revenue in the sense many customer will

move away and will buy from other commerce site.

So, at Amazon each added milliseconds of latency will imply that 6 million revenue loss

per year will happen. So, latency is very important that is availability is one of the

important factor or a guarantee in the cloud computing system. These guarantees are

being supported by the; by the service providers to their clients for example, this

Cassandra is being used by Netflix. And the Netflix requires the availability, this

guarantees by for this particular service.

(Refer Slide Time: 44:12)

So, Service Level Agreements written by the providers predominately deal with the

latency is which are faced by the by the client. The second component in CAP is called

consistency let us see why the consistency is important to deal and what are the

guarantees in what are the scenarios. So, consistency means all the node see the same

data at anytime and the read returns the latest written value by any client. So, when you

access your bank account; where multiple clients you want to update from one client to

the visible to the other clients.

That is done in the RDBMS, but in our scenario when thousands of customers are

booking a flight ticket all the updates from the client should be accessible by the other

clients hence it is called the consistency.

(Refer Slide Time: 45:14)

Third one is called partition tolerance why the partition tolerance is an important aspect

in what condition that we will see. So, partitions can happen across the data centers when

internet gets disconnected due to the internet router outages or the trans oceanic sea

cables are cut or DNS is not working. So, partitions can occur within the data centers

also for example, if the top of the racks switch is not functioning. So, the all the servers

within the data center will be in the partition. When in spite of these issues we want that

the services should continue as normal in the scenario, hence partition tolerance is one of

the important factors.

(Refer Slide Time: 46:09)

But the CAP theorem guarantees that only 2 out of 3 important parameters can be

ensured in any design of a cloud computing system. So, as far as the Cassandra is

concerned Cassandra chooses to give the guarantees of availability and partition

tolerance whereas, consistency it will be compromising it and that consistency is called

eventual consistency that we will see now. In traditional database that is in traditional in

RDBMS supports a strong consistency; that means, it supports a strong consistency over

availability under the partition; so, it is not partition tolerant.

(Refer Slide Time: 47:01)

Let us see through this particular figure that CAP tradeoff. So, here this is an RDBMS;

the RDBMS normally runs on a particular server it is not replicated. Hence, partition

tolerance is not that important, but it supports consistency and availability. Similarly the

NoSQL or a key value store like Cassandra, RIAK or Dynamo and Voldemort guarantees

the partition tolerance and also guarantees the availability.

Whereas, consistency is compromised; similarly another type of key value store that is

HBase, HyperTable, BigTable and Spanner guarantees consistency and partition whereas,

availability is concerned it can be compromised. So, we will see different products are

available around the CAP trade off.

(Refer Slide Time: 48:17)

So, let us start with the different form of consistencies which are being supported in

different products. So, eventual consistency which is supported in Cassandra let us go

and see the details of it. So, if all the writes stopped to a particular key then all its values

that is replica will converge eventually. And if the right continues then system always

tries to keep converging so; that means, since the clients may return with the still values;

if there are many back to back writes happening and they are all not converged. But it

works well when there are a few periods of low writes where the system converges

quickly.

(Refer Slide Time: 49:09)

Now, if you compare the RDBMS verses the key value stores; RDBMS supports an acid

properties in the transaction whereas, the key values store like Cassandra supports just

opposite to it that is called BASE; Basically Available Soft-state Eventual consistency

which will prefer availability over the consistency as eventual consistency is mentioned

here in the base condition.

(Refer Slide Time: 49:40)

Let us see what are the different consistency levels supported in the Cassandra and how

it is supported that we will see. So, client is allowed to chose the consistency level for

each operation that is the read and write. If the consistency level is any; that means, any

server is basically is good enough to provide the value, it is the fastest in terms of that

coordinator caches the writes and replicas quickly response to the client request.

Now in the consistency level is all; that means, all the replicas are required to be

consulted and the latest writes values will be given back to the client. It ensures the

strong consistency no doubt, but it will be a slower operation; if the consistency level is 1

then at least one replica responds and that response will be given back. It is faster, but it

cannot tolerate the failures; now if the consistency level is the quorum and quorum

across all replicas in the data center is required to get their values. So, that it may be

returned; quorums we have already seen in the previous discussions.

(Refer Slide Time: 51:18)

Let us see about the quorum how the quorum will support the consistency. So, quorum is

the majority for example, here in the figure 5 different replicas are there. So, out of 5 the

majority is 3 so; that means, out of 3; 2 different quorums can be found here in the

example.

If these 2 quorums intersects; so, there exist at least one server which is common in both

the quorums. Now whenever the client writes chooses through the quorum; so, the client

1 writes in the red quorum. So, when it writes in the red quorum then the client 2 want to

read from the bloom quorum, then in the bloom quorum all 3 different replicas will give

the values; this will be having the updated value. So, that way the client will be served

with the latest value here in this case; quorums are faster than all, but still it ensure the

strong consistency.

(Refer Slide Time: 52:34)

To several key value store and no SQL store such as Riak and Cassandra uses the

concept of a quorum to support the strong consistency. Here the reads the client is

specifies the value of R which is less than the total number of replicas of that particular

key less than or equal to N that is bounded by N. So, R is the read consistency level.

So, the coordinator waits for all replicas to respond before sending results to the client.

On the background the coordinator checks for the consistency of the remaining N minus

R replicas and initiates the read repair if needed. So, the reads client specifies the value

of R which is bounded by the total number of replicas of that key; R will specify the read

consistency level. So, the coordinator wait for R replicas to respond before sending

results back to the client. In the background the coordinator checks for the consistency of

remaining N minus R replicas and initiate the read repair if any is required.

(Refer Slide Time: 53:57)

So, that is quite simple; as far as write is concerned write will come into different flavors.

So, client specifies the write consistency which is bounded by N. So, client writes the

new value to W replicas and returns. That is why it is having 2 different flavors that is

the coordinator blogs until the quorum is reached or it will be an asynchronous in the

sense it was done write and return back. Now let us see the quorums in more details.

(Refer Slide Time: 54:40)

When R is a read replica count and W is the write replica count there are two necessary

conditions have to be followed; write plus read replica count should be greater than N

and write is greater than N by 2. So, these are the necessary conditions in the quorum.

So, select the values based on the applications; if there are very few writes and reads,

then W is equal to 1 and R is equal to 1 when there are read heavy workloads then W is

equal to N and read is equal to 1.

When there is a write heavy workload, then it is W is equal to N by 2 plus 1 and R is also

N divided by 2 plus 1. Now N write heavy workloads with mostly one client writing per

key; then W is equal to 1 and R is equal to N.

(Refer Slide Time: 55:49)

Now, let us see the Cassandra consistency level which is being supported there. So, client

is allowed to choose the consistency level for each operations; that is read or write. So,

any means any server may not be the replica; it is the fastest that is the coordinator may

cache write and reply quickly to the client; all means all replicas it is slowest. One is

means that at least one replica quorum is that quorum across all replicas in all the data

centers. Local quorum means quorum in the coordinators data center each quorum means

quorum in every data center.

(Refer Slide Time: 56:42)

There are different types of consistencies which Cassandra offers. So, Cassandra offers

eventual consistency what are the other type of consistency that is the weaker form of

consistency model that we will see.

(Refer Slide Time: 56:55)

So, we will see different range of consistency solutions which are available starting from

eventual that is the weakest, moving towards the strong consistency. Now if a strong

consistency is supported then; obviously, the response will be slower and if we want a

response to be faster, then we have to move towards eventual consistency.

So, Cassandra supports eventual consistency. So, if write to a key will you stop; that

means, all the replica of the key will converge. So, that was originally from Amazons

dynamo and Linkedln’s, Voldemort system this idea was taken up and used in the

Cassandra.

(Refer Slide Time: 57:48)

Now, there are other newer consistency models; some are striving towards strong

consistency, while still trying to achieve the high availability and partition tolerance. So,

these are some of the different schemes which are shown over here causal, red blue,

probabilistic, per keys sequential, CRDTs and so on.

(Refer Slide Time: 58:12)

So, let us see these newer consistency models which are available in the literature and

will also being applied in most of the products. So, per key sequential means for per key

all the operations have to be ordered globally. So; that means, every client has to go

through a particular coordinator and coordinator will ensure the per key sequential

operations.

That means a global ordering is being followed, but the problem is of scale; scalability.

The another one is called another consistency model is called CRDTs; it is a newer

consistency model that is commutative replicated data types. Here the data structures for

the commutated writes will give the same results. For example, if the operation plus 1 is

there plus 1 means increment of a particular value. So, whose ever if let us say 2

processes uses this particular operation.

So, it is a immaterial if we can exchange or we can interchange the order in which these

operations are being allowed; hence it is called commutative operations. So, besides plus

operator there are other such operations which are being supported through CRDTs. So,

they are effectively servers do not need to worry about the consistency, but they have to

deal with the operations and this is supported in CRDTs.

(Refer Slide Time: 59:52)

Now, the next level is called next level of consistency another newer model is called blue

red blue consistency model. In red blue consistency model, the client transactions are

separated into two different operations. Red operation that is commutative type and blue

operations; so, the blue operations can be executed that is using the commutative type in

any order across the data centers. Whereas, red need to be executed in the same order;

that means, they cannot be commutated this is called red blue consistency.

(Refer Slide Time: 60:33)

Another newer kind of consistency is called causal consistency; here the reads must

respect the partial order based on the information flow; that is given by the Princeton

University. For example, there are 3 different clients A B and C; the client A will write

down in key K 1 value 33 and after that client B will read the value of key K 1, which

will be return 33. So, this particular these 2 operations write and read they are causally

related; thereafter in client B will write down key K 2 with the value 55 and thereafter

the client C will read the value of K 2 which also will return 55.

So, the client Bs K 2 and client Cs K 2 there and read of K 2 these 2 operations are also

causally related. Finally, the client C when will read the key K 1; it must return 33 y

because there is a causal path; although it is not through the message exchange, but using

read and writes will follow the causal path and that is the relation which will bind this is

called causal consistency model.

(Refer Slide Time: 62:15)

Now, here out of this range of consistency model which one will be useful for a

particular applications is depends upon the availability; that means, which is supported

by the applications.

(Refer Slide Time: 62:31)

Let us see some of the strong consistency model the first one is called linearizability. So,

here each operation by the client is visible or is available instantaneously to all other

clients. So, this is just like RDBMS which supports this kind of consistency that is called

linearizability. Now, in a the systems like key value store, there is another consistency

which is also categorized as a strong consistency is called sequential consistency which

is given by the Lamport here the result of any execution is the same as if the operations

of all the processor for executive some sequential order and operations of each individual

processor appear in this sequence in the order is specified by the program.

So, here the order is not that order which is being provided in linearizability, but

eventually all the processor will see the same order and that is fine in some of the

applications. Now comes the acid properties there are newer NoSQL database called

NewSQL which supports the transactions acid properties such as hyperdex, spanner and

transaction chains by different vendors.

(Refer Slide Time: 64:10)

Conclusion traditional databases RDBMS work with the strong consistency and offers

the acid properties. Whereas, the modern workloads do not need such a strong

guarantees, but do need fast response time that is the availability.

Unfortunately the CAP theorem says that out of 3 any 2 can be guaranteed. We have seen

the key value store NoSQL; which is not offering CAP which is not offering acid, but it

is offers base that is basically available soft state eventual consistency. Eventual

consistency and a variety of other consistency model striving strives towards strong

consistency, we have discussed the design of Cassandra and also different consistency

solutions.

Thank you.

