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Lecture — 10
Time and Clock Synchronization

Time and Clock Synchronization in cloud data centers.
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Preface

Content of this Lecture:

e In this lecture, we will discuss the fundamentals of clock
synchronization in cloud and its different algorithms.

e We will also discuss the causality and a general framework of
logical clocks and present two systems of logical time, namely,
lamport and vector timestamps to capture causality between
events of a distributed computation . 3
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Preface; content of this lecture. We will discuss the fundamentals of clock
synchronization, in cloud and also it is different algorithms. Before that we will discuss
the importance of time in the distributed system and the cloud systems. We will also
cover causality a general framework to avoid the physical clock synchronizations using
logical clocks. And we will cover the different logical clock such as Lamport clock,
vector clocks to capture the causality between the events in the distributed system and

the cloud system.
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Need of Synchronization

¢ You want to catch a bus at 9.05 am, but your watch is off
by 15 minutes

« What if your watch is Late by 15 minutes?
* You'll miss the bus!
» What if your watch is Fast by 15 minutes?

* You’ll end up unfairly waiting for a longer time than
you intended

¢ Time synchronizationis required for:

« Correctness & n Digribubed Sewn, Chud Sgems
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« Fairness

So, let us see the importance of time. So, time is one of the most crucial in the distributed
system, and as also in the cloud system. But the support for the time and the clock
synchronization is nontrivial, it is difficult. In this particular discussion, we will first
understand why the timing is required to be maintained in the distributed systems and in

particular the cloud computing systems.

Let us see that you want to catch a bus at 9. 05 am, but your watch is off by 15 minutes.
In case your watch is running late by 15 minutes and the bus will depart at 9 o clock. So,
definitely you are going to miss the bus. On the other hand, if your watch is running fast

by 15 minutes, then you will reach earlier and unfairly waiting for a longer time.

So, this brings up the synchronization of the clock. And we have also seen that if the
clock is running late, then you are going to miss a bus; that means, to run the applications
and that to ensure the correctness, the clocks need to be synchronized. Hence the
correctness is required using the time synchronization of the clocks in the distributed
systems. Similarly, if your watch is fast by 15 minutes, then you will reach earlier and
you will be unfairly waiting for a longer time. This leads to a fairness that is the

compromise with the fairness.

So, time synchronization here also requires that to ensure the fairness in distributed

system and a cloud computing system. So, therefore, to ensure the correctness and



fairness in the distributed systems and the cloud systems, to ensure correctness and

fairness, there is a need to synchronize the clocks running in these systems.

Now, the question is we will see how this particular synchronization is to be done in such

a system.

(Refer Slide Time: 05:17)

Time and Synchronization

¢ Time and Synchronization

(“There’s is never enough time...”)

e Distributed Time

« The notion of time is well defined (and measurable) at
each single location

/" But the relationship between time at different locations

is unclear (Dbl '%’ de‘“)
— Dstnbwtdd Chag
¢ Time Synchronization is required for: %’dﬂ"ﬂf“’"‘

« Correctness

« Fairness
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Now, synchronization of a clock in a single system is a quite trivial, but if there is a
distributed system and a cloud computing system where the time is distributed, then the
synchronization of the clocks to have a consistent distributed timing at all different
location is nontrivial is very, very difficult. So, we are going to see the second case here
in our model, which is nothing but a distributed system and the cloud computing system,

to ensure a distributed clock synchronization.

So, as we have already seen that time synchronization in this environment that is in the
distributed model ensures the correctness and fairness in the different services and

applications.
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Synchronization in the cloud

Example: Cloud based airline reservation system:

a flight, say PQR 123.

e Server X timestamps the purchase using its local clock as
6h:25m:42.55s. It then logs it. Replies ok to the client.

e That was the very last seat, Server X sends a message to Server Y
saying the “flight is full”.

e Y enters, “Flight PQR 123 is full” + its own local clock value,
(which happens to read 6h:20m:20.21s). SN e

e Server Z, queries X's and Y's logs. Is confused that a client
JEEE——— —

purchased a ticket at X after the flight became fu
e This may lead to full incorrect actions at Z & é\"f: Y%"
Claks &R ¢ ge ok gpvcemd-
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For example, let us say that we are running an airline reservation system using cloud.
And we will see the scenario where the synchronization of the clocks are required. So,
assume that there is a server x on the cloud and there is another server y and a client
request for a reservation. So, the client will send a request to purchase the ticket, which is
the last ticket on a particular flight which is maintained at the server x. Server x
timestamp the purchase as 6 hours and 25 minutes. That was the last ticket then after the
purchase of the ticket and that timestamp at which time this particular ticket was sold out

to the client, it will be logged and it will send the reply ok, back.

Since that was the last seat, server x responds to the client and when the next request
now comes from the through the server y about booking an another ticket for the same
flight which is already full. So, the server x will send the message that it is full to the
server y. Now y will enter that the flight is full and will store this information with it is
own local time. So, his clock will give another time that is 6 hour 20 minutes. Now
another server z queries to x and to y regarding this particular flight seats, but when it
gets this information that server x has booked the ticket, the last ticket at 6 hours 25

minutes and y at the time 6 hour 20 minutes the flight was full.

Then in that case the server z will be confused, why because the earlier time that is 6. 20
the server y is showing that the all the seats are filled whereas, later time that is 6. 25 the

server x could book a ticket that is the last ticket. Why this problem is there because both



these server x and y their clocks are running different timings. Hence their clocks are not
synchronized. So, this particular problem arises because the clocks at x and y or not

synchronized.
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Key Challenges

¢ End-hostsin Internet based systems (like clouds)
» Each have its own clock

« Unlike processors (CPUs) within one server or
workstation which share a system clock.

o/ Processesin internet based systems follow an wusa.o

synchronous model.
« No bounds on Q
————K/I—e—ssages delays \s/
— Processing delays /"~ =

» Unlike multi-processor (or parallel) systems which follow
a synchronous system model
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Now, what are the key challenges in clock synchronization problem in distributed

systems and the systems like cloud?

Now, here the hosts which are the part of a cloud system and which are internet based
connection with each other. Each host in this scenario has it is own local clock and unlike
the CPUs within one server or a workstation, which share a common clock here there is
an internet based connectivity. So, they have the network and through the network they
can communicate they do not have any shared global clock. So, that becomes a problem.
So, the processes in the internet based system follow an asynchronous distributed system
model. Asynchronous model we have seen in the earlier lecture that they are messages

when they come communicate.

For example, these 2 clocks are running in 2 different cloud systems. They can only
communicate through the messages. And these messages the delays are not predictable or
is no these delays are not bounded similarly the processing delays are also are not
bounded in such a system. This asynchronous model is different than the synchronous
model where they were in such a system there is a common shared memory where the

messages delays are bounded. So, in this scenario the clock synchronization that is in the



cloud system, the clock synchronization across different hosts is nontrivial and we will
see that in the asynchronous model how the clock synchronization will create a problem

and then you will see the technologies or techniques to solve it.
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¢ An asynchronous distributed system consists of a number of
processes.

e Each process has a state (values of variables).

o Each process takes actions to change its state, which may be
aninstruction or a communication action (send, receive).

e

o Aneventis the occurrence of an action.( ) e Sand )
) s

e Each process has a large clock — events within a process can
be assigned timestamps, and thus ordered linearly.

e But-in a distributed system, we also need to know the time

order of events across different processes.
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So, let us see the definitions of this asynchronous distributed system model. So, let us
consider that the distributed system which is an asynchronous model consists of number
of processes and each processes has it is defined state. So, state of a process comprises of
it is data, it is stack, it is heap, it is program counter and different registers. So, it is all
collapsed and we call it as the state of a process. Now these process takes different
actions to change it is states which maybe a instruction or a communication messages so;
that means, there are 3 different ways by states can change the first is when the
instruction is executed, the second one when a communication takes place that is in the

form of a send or a receive of a message

So, intern we define there are 3 different events in the state transitions of such a model,
they are the internal events in the form of instructions; then send of a message is a event
and a receive of a message is an event. So, each process has a large clock and the events
within a particular process which is called a internal events can be assigned with a
timestamp of it is local clock and all the events which is called internal events ordered

linearly, but in a distributed systems where there are a large collection of such host which



runs their own clocks. So, we need to know the order we need to know the time to order

the events across the different processes
(Refer Slide Time: 15:35)

Space-time diagram

Internal
Message event
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receive event
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Figure : The space-time diagram of a distributed execution.
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Let us see the example using this particular diagram that a particular process one, it is
events 1 2 3 4 5; they are being time through our local clock. Similarly this event P 2 also
has it is own clock and can order the events 1 2 3 4 and 5, similarly P 3 also has the local
clock which can time this events and using that time all these events can be linearly
ordered that i1s shown here in this space time diagram; however, if we take all the events
and want to order them, then there is no global clock which can order all the events there
is no global clock which can even which can order all the events in the distributed

system.
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Clock Skew vs. Clock Drift

Jo Each process (running at some end host) has its own clock.

-J(‘Slock Skew = Relative difference iJrLclock values of two
processes. _%;@__ w2

* Like distance between two vehicl 0ad. . =

J |e_|s ce éwe‘ w vA|cesonr @;
« Clock Drift = Relative difference in clock frequencies (rates T
of two processes Yo" iR
' b Afpraesy.

* Like difference in speeds of two vehicles on the road.
\/o A non-zero clock skew implies clocks are not synchronized > %}~

Je Anon-zero clock drift causes skew increases (eventually). _&ac .,

e« When comparing two clocks at two processes.

Y. If faster vehicle is ahead, it will drift away.
« If faster vehicle is behind, it will catch up and then drift away.
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So, to do this to see how this, in the absence of a global clock how the events are to be

ordered in a distributed system; we will see through a systematic theory.

So, let us see some more definitions in this respect. First we will see the 2 definitions one
is the called clock skew the other is called clock drift. Now as you know that each
process is running it is own local clock. So, when you compare the clocks of 2 different
processes. So, there are 2 things which will immediately be; one is the current timing of
both the clocks. Now if these times are not same they are different then it is called a
clock skew. So, clock skew is nothing but the difference in the timings across 2 different
clocks running in different processes, just like on the road 2 vehicles are running. So, that
distance between these 2 vehicles is called the skew similarly the clocks are running with

a different timings. So, the difference in the timings is called a clock skew.

Now, second thing second definition is about the clock drift. Now these clocks runs with
a different speed. Speed of a clock 1 speed of a clock 2. Sometimes it is also called as a
rate and some people also called as a frequency by which these clocks are running. If
they have the same speed or a rate or the frequency, then there is no clock drift, but if the
frequencies or the speed is different, then it is called a clock drift. So, that relative
difference in the clock frequencies of the rate or the rates of the 2 processes is called a

clock drift. For example, 2 vehicles which are running on the road with a different speed;



let us say it is 80 kilometer per hour, and the other one is quite slow that is 40 kilometer

per hour.

So, their speeds are different. So, although the 80 kilometer per hour that is a fast
running vehicle is behind the slow running vehicle, but after sometime it will cross and
then will run away then; that means, drift apart drift away. So, the speed is also
important. So, the timing the difference in the timing is called a skew and the difference
in the speed is called the drift. So, in this particular clocks or multiple clocks, where
more than 2 clocks are there, then these 2 factors are going to play important role in the

synchronization.

So, therefore, a non 0 clock skew implies that the clocks are not synchronized; that
means, they are giving different timings. Just like in the previous example we have seen
one clock was giving the time 6:25, the other clock was giving the time at 6:20. So, they
are running at different timings. So, non-zero clock skew implies that the clocks are not
synchronized. A non-zero clock drift causes this skew; that means, the difference in their
timing to increase eventually. For example, if a faster vehicle ahead, then it will drift

away. And if the faster vehicle is behind, then it will catch up and then it will drift away.
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Clock Inaccuracies

e Clocks that must not only be
synchronized with each other but also
have to adhere to physical time are
termed physical clocks.

Clock time, C

e Physical clocks are synchronized to an
accurate real-time standard like UTC \/
(Universal Coordinated Time).

e However, due to the clock inaccuracy, a
timer (clock) is said to be working within
its specification if (where constant p is the
maximum skew rate specified by the
manufacturer)

d
1-p&—s1+
—— i =L
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Figure: The behavior of fast, slow, and
perfect clocks with respect to UTC.

So, having understood the clock skew and clock drift, let us see the clock inaccuracies.
So, as far as the physical clocks are concerned that we use;so, not only they have to

synchronize with each other, but also has to adhere that physical time, that is the physical



time a common time or accurate time. That is called physical clocks. So, how to get that
particular correct time so, that you can synchronize your physical clocks? So, physical
clocks are synchronized to the accurate real time, with a standard like UTC universal
coordinated time which is supposed to maintain the correct time at all point of time;
however, due to the clock inaccuracies a timer of the clock is said to be working within

the specifications. So, let us see what are the specifications.

Now, if a constant rho is the maximum skew rate, specified by the manufacturer. It has to
be bounded within 1 plus rho and 1 minus rho. So, let us see that dC by dt, if it is 1, then
it is the perfect clock; that means, it is synchronized with the standard time. Now if dC
by dt is less than 1, then it is a slow clock, and if it is fast, then it is a fast clock. And if it
is bounded by these values rho; that means this is 1 plus rho and this is 1 minus rho.
Then this is acceptable as far as manufacturer is concerned, but beyond that it need to

designated as clock inaccuracies.
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How often to Synchronize

o Maximum Drift rate (MDR) of a clock

e Absolute MDR is defined to relative coordinated universal
Time (UTC). UTC is the correct time at any point of time.

* MDR of any process depends on the environment.

e Maximum drift rate between two clocks wit%similar MDR

is 2*MDR. = gamR " wOR
ZIMO8: wdd - 3 "D (D

¢ Given a maximum acceptable skew M between any pair of
clocks, need to synchronize at least once every:
M/ (2* MDR) time units. A = V‘{Q‘MDR

* Since time = Distance/ Speed. /\
‘W‘"d _ Claks o be fr»d«-a)
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Now, the question is how often you need to synchronize the physical clocks that depends
upon a parameter which is called a maximum drip rate MDR of a clock. The absolute
MDR is defined to be the relative to the coordinated universal time UTC. So, MDR of
any process depends on the environment. So, the maximum drift rate between the 2
clocks with the similar MDR is equal to 2 times MDR. Because if we consider 2 clocks,

maybe one clock is running behind with the rate MDR and the other clock is running



ahead of MDR, then total drift rate here in this case will be 2 times MDR. That is the
maximum drift rate. Now given the maximum acceptable clock skew that is m, as you
know this is the time, between any pair of the clocks. So, therefore, the amount that time
duration when they are required to be synchronized will be this m divided by the script
that is 2 times MDR. So, this is the interval. When the clock needs to synchronize; after

every such interval, the clocks needs to be synchronized.
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External vs Internal Synchronization

e Consider a group of processes
¢ External synchronization

« Each process C(i)’s clock is within a bounded D of a well-
known clock S external to the group
o Tr il N
« |C(i)-S|< Dat all times.
. External clock may be connected to UTC (Universal
Coordinated Time) or an atomic clock.

é. Example: Christian’s algorithm, NTP
¢ Internal Synchronization
« Every pair of processes in group have clocks within bound D

« |C(i)- C(j)| < D at all times and for all processes i,j.
— v
./ « Example: Berkley Algorithm, DTP
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So, having seen this kind of equation, now you will consider two different types of
synchronizations. Now if we consider a group of processes in our model of a distributed
system, and the cloud system there are 2 kinds of synchronization possible. One is called
external synchronization; that means, if the processes used to synchronize their clocks
with an external clock; that means, not in a group that is external clock which maintains

the correct time then it is called external synchronization.

For example, if a process C i’s clock is within a bound D of a well-known clock S
external clock S then C i minus S; that means, in the absolute form that clock drift is to
be bounded by D at all points of time; that means, it has to be synchronized, that is C 1’s
clock has to be synchronized whenever there is a violation of this condition. This
external clock S is nothing but, it is always synchronized at any point of time using
universal timing which is also called as a universal coordinated time UTC or the timing

which is basically maintained as per the atomic clock.



There are two algorithm for this external synchronization, we will cover in this
discussion. The first one is called Christian’s algorithm the second one is called network
time protocol NTP. On the other hand, the group of processes will synchronize their
clocks within bound D without the external clock. So; that means, between any 2 process
1 and j if their clock values is having the difference or skew, then it has to be bounded by
D at all points of time. This synchronization can be achieved using the algorithm which
is called the Berkley’s algorithm. And we will also see the algorithm which is called a

data centre time protocol DTP.
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External vs Internal Synchronization

o External synchronization with D => Internal
synchronization with 2*D.

¢ Internal synchronization does not imply External
Synchronization.

* In fact, the entire system may drift away from the
external clock S!
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Now, when a small note, to see here is that external synchronization with the bound D
will basically implies that, it is the internal synchronization with a 2 times D where as if
it is external synchronization that does not implies anything with the external
synchronization. Because of the fact that entire system may drift away from the external

clock; basic fundamentals of external time synchronization.
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Basic Fundamentals

e External time synchronization

e All processes P synchronize with a time server S.

P o Setclocktot / [

What'’s the time?
LA‘U"LW

S

{rr =-. kA
Check local clock to find time t

 What’s Wrong:
. Bythe time the message has received at P, time has moved on. +~
« P’stime set to tis in-accurate. v/~
« Inaccuracy a function of message latencies.

« Since latencies unbounded i hronous system, the inaccuracy

cannot be bounded.
1not be bounded.
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So, let us see through this example. So, all the processes let us say that P will
synchronize using a standard time server S which maintains the accurate time. So, such
process P sends a message to S what is the time. So, S will check the local time to find
out the time let us say t, put in the message and send the message back to the process P

here is the time t. So, when the message received by P, it will set it is clock as time t.

So, in this particular manner what is the problem, what is the wrong? So, the problem is
that, by the time the message is received at P, the time has moved on; take this particular
example. So, this is the time let us say at this instant of S the time is t, but when the
message is send to t, this particular time, when this is set as time t the time of the server
S will be now t 1; that means, it is a different time, but here the time which is said by P
will be the old time hence by the time the message is received at P the time has moved

on. So, P S time if it is set to t will become inaccurate.

Now, the inaccuracy is a function of message latency. So, inaccuracy is this particular
function of a message latency; that means, if you know this latency and is inform to P.
So, P can set this particular value. So, that it can also be accurate or it can reduce the
level of inaccuracy. Since latencies are unbounded in an asynchronous system the
inaccuracies also cannot be bounded. Hence this particular simple method of
synchronizing the clock through a time server S using an asynchronous system to using

message passing will have an inaccurate time set.
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(i) Christians Algorithm

e P measures the round-trip-time RTT of message exchange
e Suppose we know the minimum P = S latency minl

e Andthe minimum S = P latency min2
> Minland Min2 depends on the OS overhead to buffer messages, TCP
time to queue messages, etc.
e Theactual time at P When/ecewes response is between
[t+min2, t + RTT-min1]

P ! | Set clocktot Time

What-s the me? C—*” "-,, t+m‘-u.
/ 77 ele : the ti
5

"M\n\ W q }49“\\—1\,‘»,7{ Ying
At-

"“ﬂ\ Check local clock to fmd time t RYT-wain - miny
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Let us see how different algorithms resolves this particular inaccuracy. Christian’s
algorithm, P measures the round trip time which is called a RTT for the message
exchange. So, suppose, we know the minimum latency from sending the message from P
to S, let us say this is minimum latency. And the minimum latency if it is travelling from
S to P is called as min 2. So, min 1 and min 2, these latencies highly depends upon the
operating system overheads to buffer the messages then TCP time involved to queue the

messages etcetera.

So, the actual time at P, when it is received the response is between t plus min 2 and t
plus RTT minus min 1. So, let us see the what is the minimum response. So, minimum
response is. So, the actual time at P when it receives the response, the minimum of that
bound is t plus because, here this is the time t which is stored and send. So, this particular
latency will be added. This is the minimum of latency which is involved and what is the

maximum of these values?

So, maximum of these values will be the time t plus this is the round trip time RTT. That
is this particular entire time is RTT. So, out of RTT let us say this particular time which is
called min 2. If we abstract out of min 1 RTT minus min 1 will be this much of the
maximum time. So, t plus RTT minus min 1 will be this particular time and this will be

added here. So, that will be t plus RTT minus min 1. So, this is the bound; that means,



the inaccuracies. So, the actual time at P when it receives the response false, the

minimum of this particular time t plus min 2.

And the maximum that is upper bounded by this particular time t plus RTT minus min 1.
So, P will set it is time to the halfway through this particular interval; that means, t plus
RTT. So, what is that interval? If we recall that interval will be t, plus RTT minus min 1,
minus t minus min 2. That is RTT minus min 1 minus min 2. So, this is the interval and

half way of this will be divided by 2. So, let us see.

(Refer Slide Time: 37:28)

Christians Algorithm

e The actual time at P when it receives response is between
[t+min2, t + RTT-min1]

¢ Psets its time to halfway through this interval

« To:t+ (RTT+min2-minl)/2 RTTy w2 -
¢ Erroris at most (RTT- min2- min1)/2 L—’@ndwn.*m‘“n)/
» Bounded evev T
RTT
1 ;
p [ | Setclocktot Time

What’s the Xyme?

Here’s the time t!

Check local clock to find time t
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So, half way will be that RTT plus min 2. So, the error will be at most RTT minus min 1
minus min 2 divided by 2 that is this halfway. So, this will be the error and it is bounded

by this corresponding value.
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Error Bounds

server
request reply

client

To \—y—’ T; time
mm mm
Earliest time Latest time

message arrives message leaves

I"Clnge - TI_TO-ZTmin

accuracy of result = + 7;;
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So, again let us see through this particular illustration that this is a server, which
maintains the time. And this is the client which want to synchronize it is clocks.
Assuming that minimum 1 minimum 2 is equal to minimum. Both are equal in that case
without loss of generality; for the sake of simplicity let us understand this. So, the
earliest time when the client message will be received is that this start from t 0, plus t
min. Similarly, the server will response and the reply will be received the latest time will
be when the server sends plus t min. So, that particular range will be that t 1 minus t 0 is
the round trip time. And 2 times that minimum value because both are same. It is same as
the equation which we have seen. And if we divide by 2 this becomes as this is RTT

minus this is t min in. So, this is the accuracy of the result of Cristian’s algorithm.



(Refer Slide Time: 39:39)

Christians Algorithm: Example

e Send request at 5:08:15.100 ( T0) o If best-case message
i (T ) ¥ time=200 msec
e Receive response at 5:08:15.900 { | 1 To=5:08:15.100 A

— Response contains 5:09:25.300 (Tserver)\/ T1= 5:08:15.900 A

Elapsed time is T1-To s Tserver=5:09:25:300
. 5:08:15.900- 5:08:15.100 = 800 msec ¥ Tenin =D Fisce
e Bestguess: timestamp was generated S

+ 400msecago /. K )q &Tsener
\f Server T ?
e Settimeto Tserver-l\-ﬁlapsed time :
It
» 5:09:25.300+ 400~ 5:09.25.700_/ "™ ind
900 - 100 : 800 . 4| et - - >
Error=1t = 200 = tT- 200 = +2000 ‘}ozo— 7”771 o T

e

30
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So, here as far as error bounds are concerned, we know that in the synchronization of the
clocks we always increase the clock value, but never decrease it. So, if you ever found to

be the requirement to decrease the value then you do not do it leave it as it is.

So, it is allowed to increase or decrease the speed of the clock then. So, if the error is too
high, it will take multiple readings and average them. Let us understand through another
example. Here the server sends this is let us say the client will send at t 0 the request, t 0
1s 5:08. It will receive the response at 5:08:15:900. The response contains the timing of
the t server. So, itis t 0 and t 1 and t server time 5:09:2 5:300. Total elapsed time is in
that particular message that is a difference of timing t 1 minus t O that comes out to be

800 milliseconds.

So, if you guess as per the Christian’s time so; that means, RTT divided by 2; that means,
the guess says that around 400 milliseconds, the message was being originated by the t
server. So, the time which will be set by the client will be the time which is sent by the t
server, plus this particular average elapsed time that is 400. So, the server time is 5:09:2
5:300. This is the t server plus this offset value is added, comes out to be this much time.

So, the clock will be set the client will set the clock value as this one.

Here we can see that t min value is 200 milliseconds why because it is a 400. So, it is

200 and 200 becomes 400 we are in this particular case.
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(ii) NTP: Network time protocol

e (1991, 1992) Internet Standard, version 3: RFC 1305
¢ NTP servers organized in a tree.

¢ Eachclient = a leaf of a tree.

e Each node synchronizes with its tree parent

Primary servers

Secondary servers

Tertiary servers

e

Client
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Now, we will see another time synchronization protocol which is called a network time
protocol, NTP, which is a 1991 and 92 it becomes an internet standard, RFC 1305. Here
it is assume that the network time servers, they are organized in a form of a tree at each
client will be at the leaf of a tree. This particular tree hierarchy of the servers are such

that every child will synchronize with it is parent server.

So, on the top let us see you have a primary server which is assumed to be synchronized
it is time. And secondary server will synchronize their time with the primary server and
tertiary server will synchronize their time with the secondary server and client, will
synchronize their time from tertiary server and so on. Let us see the details of network

time protocol.
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NTP Protocol
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Here let us see that so, every child will now synchronize it is time with the parent. So,
child will send a message. Let us start the protocol. And at time ts 1 the parent will send
a message 1 and this particular message 1 will be received by the child at time tr 1. Then
child will send another message 2 at the time ts 2 and this particular message will be

received by the parent or the server is at tr 2.

Then this particular parent will pack these 2 messages tr 1 and tr 2 here and send in a
message, which will be received by the child. So, child will now have it is own timing tr
1 ts 2. And these 2 messages which is received from the message that is tr 2. So, tr 1, tr 2,
tr 1 ts 2 all 4 values it has now received. Let us see how this network time protocol uses

all 4 values to synchronize the clocks.
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Why o = (tr1-tr2 + ts2- ts1)/2?
o Offseto = (trl-tr2 +ts2-ts1)/2

e Let’s calculate the error.

e Suppose real offset is oreal

» Child is ahead of parent by oreal. ez 04 -%
« Parentis ahead of child by —oreal. #

« Suppose one way latency of Message 1is L1.

(L2 for Message 2) Y
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So, using these 4 values it will calculate the offset. So, using this formula tr 1 minus tr 2

plus ts 2 minus tr 1 divided by 2. Let us see how this offset value is calculated.

So, for that let us calculate the total error. Let us assume the real offset is oreal. And we
also assume that the child is ahead of the parent by this value oreal. And the parent is
behind the child by oreal, which is written as minus oreal; that means, parent is a head of
child by minus oreal. Suppose one-way latency of a message 1 is 1 1 and the message 2 is
1 2 then let us calculate the trl. So, here let us calculate tr 1. Trl is equal to tr 1 plus let us
say this particular latency is 1 1 plus, the child is ahead of the parent by oreal. Similarly,
we can calculate tr2. Tr2 is equal to ts2 plus this latency is 1 2, minus oreal; that means,

the parent is ahead of a child by minus oreal.

So, this is equation number 1 this is equation number 2. Now we subtract 2 from 1, we
will get tr2 minus trl is equal to ts2 minus trl plus 1 2 minus 1 1 2 times minus oreal. So,
it comes out to be oreal is equal to this will go on the other side. And ts2 minus trl then
minus tr2 plus trl. This is one factor plus | 2 minus 1 1. And this will be divided by 2. So,
this particular value if we rearrange it comes out to be trl minus tr2. Then plus ts 2
minus trl divided by 2, that we have already obtained this value plus 1 2 minus 1 1
divided by 2. Now this is an offset. So, oreal is equal to offset plus 1 2 minus 1 1 divided
by 2.
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Why o = (tr1-tr2 + ts2- ts1)/2?

e Then
e trl =tsl + L1 + oreal.

o tr2 =ts2 + L2 — oreal.

¢ Subtracting second equation from first
» oreal = (tr1-tr2 + ts2- ts1)/2 — (L2-L1)/2
+ =>o0real=o0+ (L2—L1)/%
« => |oreal —o|< |(L2-L1)/2]| < |(L2+L1)/2|
* Thusthe error is bounded by the round trip time (RTT)
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So, here, we have obtained up to this stage. Oreal is equal to offset o plus 1 2 minus 1 1
divided by 2. So, if offset we will take on the left side. So, oreal minus offset absolute
value will be less than 1 2 minus 1 1, divided by 2. And this values is also bounded by 1 2
plus I 1 divided by 2. So, this is the error bound. So, this particular error is bounded by
the round trip time that is RTT.
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(iii) Berkley’s Algorithm

:{' L..A/'th/ [
« Gusella & Zatti, 1989 . Pt

e Master poll’s each machine periodically Freomsso

« Ask each machine for time v~

— Can use Christian’s algorithm to compensate the network’s
latency.

e When results are in compute,
« Including master’s time. W

e Hope: average cancels out individual clock’s tendency to run
fast or slow

o Send offset by which each clock needs adjustment to each
slave

* Avoids problems with network delays if we send a time-stamp.
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Now, we will see another algorithm that is called Berkley’s algorithm. And this is the

algorithm for internal synchronization where as the previous algorithm which we have



seen was an external synchronization. Here out of the group of processes, one of these

processes will be elected as the master using any leader election algorithm.

And this master will poll each other machines periodically. That is it will ask each
machine for it is time. Now as far as the message latency is concerned which basically
will be obtained through the previous algorithm, which is the Christian’s algorithm. Now
when these results are computed, then using the master’s time it will be computed as the
offsets. Why because the average cancels out the individual clocks tendency to run fast
or slow. So, only the offset will be calculated by which is clock needs to be adjusted to

each slave.
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Berkley’s Algorithm : Example

2. Compute fault-tolerant average:
3:25 + 250 + 3.00

3 3.05

3. Send offset to each client
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Let us take this particular example, to understand this let us see 1, 2, 3, 4. In the system
there are 4 processes. Out of them one is the master plus 3 slaves. So, the master will ask
their timings, master will ask the timings of the slaves. So, slaves will send the timing to

the master in this particular way.

So, for example, slave one is having time 3:25, slave 2 is having time 2:50, slave 3 is
having time 9:10. When all these values will reach to the server is having time 3 o clock.
So, server can find out the skew of these particular timings. Now 3:25 and 2:50
according to server’s time is good enough; that means, around that around his timing
they are running their clocks maybe with some skew. As far as 9:10 is outlier. So, it will

not consider in averaging this particular time like here. Now then it will calculate the



average; that means, it will perform the averaging using his value and this average comes
out to be 3 0 5. So, with this 3 o 5 this particular time requires this particular offset for

server for the slave number one, this outside for the slave number 2 that is plus 15.

And this offset will be calculated for the slave number 3 and this will send to the each
client. And hence the Berkley algorithm will synchronize will do the internal

synchronization.

(Refer Slide Time: 53:18)

(iv) DTP: Datacenter Time Protocol

Globally Synchronized Time via Datacenter Networks

Ki Suh Lee. Han Wang, Vishal Shrivastav, Hakim Weatherspoon
Computer Science Depariment

eathor@cs.cormelledu  ACM SIGCOMM 2016

Corne
kslee .hwang.vishal,

o DTP uses the physical layer of network

devices to implement a decentralized clock
synchronization protocol.
m e Highly Scalable with bounded precision!
- —~25ns (4 clock ticks) between peers
—~150ns for a datacenter with six hops
m — No Network Traffic

— Internal Clock Synchronization i o

e End-to-End: ~200ns precision!
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Now, we will see another time protocol which is also the internal synchronization. That
is called data centre time protocol. So, this particular protocol is published in a paper that
is called globally synchronized time via datacenter network, which is published in ACM
SIGCOMM 2016. Here it considers the layers of the network also into an account for
calculating different parameters. So, DTP uses the physical layer of the network.

So, the for example, humans use causality at all points of time. Take the example that I
enter the house only if I unlock. So, it that means, unlocking of an event the time of that
should always be less than the time when you enter the house. So; that means, unlocking

happens before the entering into the house.
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Ordering events in a distributed system

e To order events across processes, trying to synchronize
clocks is an approach.

o What if we instead assigned timestamps to events that
were not absolute time ?

¢ Aslong as those timestamps obey causality, that would
&

work e "
» If an event A causally happens before another event B, then
: <t =
timestamp(A) t|rgeitﬁ_rrM3) o
« Example: Humans use causality all the time
* lenter the house only if | unlock it t L“"“"“Q £ t@m‘v‘\n)
* You receive a letter only after | send it D) umlodd) — M""J

b
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The second example is that you receive a letter only after I send it. So, the sending of a
letter happens before the receive of a letter so; that means,. So, this particular way
humans are basically using the physical clock and now they are basically ordering the
event, for example, here unlocking first and then entering the house or sending letter first
and then receiving it later. So, without using physical clock, if you can obey this

causality, then that concept can be used without even.
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Logical (or Lamport) ordering

Lesiie Lamport

e Proposed by Leslie Lamport in the 1970s.
e Usedin almost all distributed systems since then

¢ Almost all cloud computing systems use some
form of logical ordering of events.

e Leslie B. Lamport (born February 7, 1941) is an American computer
scientist. Lamport is best known for his seminal work in distributed
systems and as the initial developer of the document preparation
system LaTeX. Leslie Lamport was the winner of the 2013 Turing
Award for imposing clear, well-defined coherence on the seemingly
chaotic behavior of distributed computing systems, in which several
autonomous computers communicate with each other by passing
messages.
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The synchronisation of physical clock; this concept was called as logical ordering given
by the or it is also called as a lamport ordering, which was proposed by Leslie lamport in
1970. Almost all distributed system and the cloud system since then are applying this

concept.
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Lamport’s research contributions

e Lamport’s research contributions have laid the foundations of the theory of
distributed systems. Among his most notable papers are

“Time, Clocks, and the Ordering of Events in a Distributed System”, which received the PODC
Influential Paper Award in 2000,

« “How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs”,which
defined the notion of Sequential consistency,

+ “TheByzantine Generals' Problem”,

. “Distributed Snapshots: Determining Global States of a Distributed System” and

+ “The Part-Time Parliament”.

« These papers relate to such concepts as logical clocks (and the happened-before
relationship) and Byzantine failures. They are among the most cited papers in the
field of computer science and describe algorithms to solve many fundamental
problems in distributed systems, including:

» the Paxos algorithm for consensus,

» the bakery algorithm for mutual exclusion of multiple threads in a computer system that require
the same resources at the same time,

« the Chandy-Lamport algorithm for the determination of consistent global states (snapshot), and
« the Lamport signature, one of the prototypes of the digital signature.
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So, these are the details of the lamport’s contribution. And for which he has got the

Turing award that is time clocks and the ordering of events in a distributed systems.
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Logical (or Lamport) Ordering(2)

¢ Define a logical relaggﬂ Happens-Before among pairs of events
(\ si N "

. Happens-Before\ld\enoted as >
T T e———

e Threerules:

1. On the same process: a — b, if time(a) < time(b) (using the
local clock)

2. If p1 sends m to p2: send(m) — receive(m)
3. (Transitivity)If a b and b —cthen a —»c¢
o Creates a partial order among events

« Not all events related to each other via —>
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So, let us see the logical ordering or a lamport ordering, which defines the logical
relation which is called happened before relation between the pair of events and is
denoted by an arrow. So, this happens before relation is denoted by an arrow. This
happens before relation follows 3 different rules. The first rule says that on the same
process a has happened before b if the time of a is less than time b, using the logical

clock.

The second rule says that if p sends a message m to p, then send off message m has
happened before the receive of a message m. Third rule is the transitivity which says that
if a has happened before b and b happened before ¢ then a is happened before c. These 3
rules will create a partial order among all the events in the distributed system. Not all
events are related to each other that is why it is a partial order via happened before

relation.
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Example 2: Happens-Before

P1

P2

® Instruction or step

> Message
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Let us see through an running example. Here we have P 1, P 2, P 3. P 1 is having the
events A B C D E, where A is internal event, B is a sendoff a message. F is a receive of a
message at the process P 2. Similarly, event j is the received of a message from P 1 at P
3. Let us see that A is happened before B. So, A has happened before B, this we can get
through the timing of the internal clock, why? Because A and B they are all they are
internal event. Hence the time of A is less than time of B. So, it follows A is happened

before B relation.



The second one is b has happened before F. So, b is a send off an event. So, the time of
the sending off an event which is maintained by P 1 is less than the time when the
message is received as far as the rule 2 is concerned. Hence, B is also happened before f,
similarly A is happened before F. So, by transitivity property; that means, A is happened
before B and B is happened before F therefore, A is happened before F through the
transitive property. So, there is a causal path, this is also called a causal path. So, there

exist causal path, it will connect all the events using this happened before relation.

Similarly, let us say that H has happened before G. Here this is the H has happened
before G. So, there must exist a causal path which connects H to G; that means, H is a
send off event and e is a receive of a message. So, H has happened before E Similarly E
and F they are internal events of P 2. So, E has happened before F and F and G their
internal events of process P 2, F has happened before G. So, using transitivity property H
has happened before G. Similarly, F has happened before J. So, F F has happened before

J. So, there must exist a causal path.

Similarly, H has happened before J. So, H has happened before j there exist a causal
path. C has happened before J. So, from C there exist a causal path which connects C and

J.

(Refer Slide Time: 65:15)

Lamport timestamps

e Goal: Assign logical (Lamport) timestamp to each event
¢ Timestamps obey causality
o Rules
e Each process uses a local counter (clock) which is an integer
« initial value of counter is zero /" o

® A process increments its counter when a send or an
instruction brappens at it. The counter is assigned to the
eventas its tim\e;Lamp.

e Asend (message) event carries its timestamp
e Fora receive (message) event the counter is updated by
N

max(local clock, message timestamp) + 1
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And hence this that particular lamport clock is able to capture the causal relation. Now,

the implementation of these timestamps to each event; so that let us, assign a logical



timestamp without a physical clock which will obey the causality. Let us see the
implementation using a logical clock which follows the 2 different rules the first rule
says that each process uses a local counter which is called a logical clock, which is
nothing but an integer which is in a slice 0. A process increments it is counter when it
executes the send off a message or the internal execution of an event happens within that

particular process.

The counter is assigned to the event as it is timestamp. So, the process increments it is
counter whether it is a internal event or it is a send off a message event. And this
particular timestamp will be carried with the send off a message. So, this is the rule
number one. The rule number 2 says that when a message is received, receive of a
message event will update the counter in this form. First of all, the timestamp which is
carried in the message and it is local clock, the maximum of these 2 values will be taken

up and it will be incremented, that is rule number 2.
So, this will provide the lamports timestamp.
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Lamport Timestamps
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Let us see through an example, here all the counters are in a slice to 0 as we have seen in
the implementation. Then process P 1 will have it is local clock will be in a slice to one
or will be incremented from 0 to 1 because it is a internal event. Similarly, as far as
process 3 is concerned, the send off a message hence it is clock will be incremented from

0 to 1, and this will be contained in the message and will be send.



Similarly, when the message will be received, then we will follow the rule R 2 which
says that the message which is carrying 1 and the local clock is 0 the maximum of 0 and

1 will become 1. And when it will be incremented the timestamp here will be equal to 2.
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Lamport Timestamps
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Now, when this particular message will be received, here we can take the maximum of 2
and 2 that become 2 and plus 1 that become 3. This particular event 3 plus 1 it will
become 4. And 4 when it will reach over here, 4 and this is 3 the maximum is 4 plus 1
that becomes 5 and 5 plus 1 this will become 6. And when you will it will reach over

here; so, the maximum of 6 and 1 2 2 that becomes 6 plus 1; that is 7.
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Not always implying Causality
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So, all these we have already explained. And they are obeying the causal properties for
example, A has happened before B. So, the timestamp also is less in case of A. B has
happened before F. So, the time is A B is less than F. A is happened before F. So, the
timestamp A is less than F. Now we have seen the example of the events which are
casually related they are following the lamports logical clock. But not all events are
causally related; that means, not always implies the causality among all the event that is

why it follows the partial order relation.

Let us see through the example C and F although they are timestamp is 3. So, do we infer
that C has happened before F? Similarly, H and C H and C; so, the time of H is 1 and the
time of C is 3. So, can be infer that H has happened before C. No, we cannot, why
because they are not causally related. Hence they do not follow this happened before
relation. Hence they are called as concurrent events. So, C F and H C they are the pairs
which are not obeying the causality relation. Hence they are called concurrent events

here in this case.
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Concurrent Events

¢ A pair of concurrent events doesn’t have a causal path
from one event to another (either way, in the pair)

o Lamport timestamps not guaranteed to be ordered or
unequal for concurrent events

o Ok, since concurrent events are not causality related!

« Remember:

E1l 2 E2 = timestamp(E1) < timestamp (E2),
timestamp <timestamp (E2) =
{E1 - E2} OR {E1 and E2 concurrent}

BUT
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So, a pair of concurrent even does not have the causal path from one event to another.
So, lamport timestamp not guaranteed to be ordered or unequal for concurrent events.
This is since the concurrent events are not causally related. But what we can see here as [
take away that, if E 1 has happened before E 2, this implies that the timestamp of E 1 is
less than the timestamp of E 2. This is what is known here in our logical clock given by

the lamport.

But if we see the timestamp, only and can be inform whether the events are happened
before or they are concurrent. That we cannot just by looking a timestamp we cannot
infer whether the events are happened before or; that means, causally related or they are
not causally related they are concurrent event. That is the drawback of the lamports

clock.
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Vector Timestamps

e Used in key-value stores like Riak

e Each process uses a vector of integer clocks

e Suppose there are N processes in the group 1...N
e Eachvector has N elements

o Process i maintains vector V;[1...N]

o jth element of vector clock at process i, V[, is i's
knowledge of latest events at process j i
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So, the next clock is called a vector timestamp or a vector clocks; which is used in the
key value stores like Riak. Each process uses the vector of integer clocks. Suppose there
are n processes in a group one to n and each vector has elements. So, process I will
maintain the vector i for each process one to N. Now jth element of the vector at process
1 is denoted by; this is which indicates that the process P i's knowledge about the events

at process j.
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Assigning Vector Timestamps

Incrementing vector clocks

1. On aninstruction or send event at process j, it increments
only its ith element of its vector clock

ﬁ. Each message carries the send-event’s vector timestamp
Vmessage[l“‘N]

f3. On receiving a message at process i: v |

4
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So, this particular notation we are going to use further in this understanding of vector
clocks. Assigning the vector timestamps; that is, on an instruction execution or send off
an event at process i increments only 'th element of it is vector clock. And this particular
timestamp the entire vector will be timestamp. And so, the message carries the send
events vector timestamp within it. When the message will be received at a process i, then
process I will increment it is vector. As we have seen this is as per the as per the lamports
clock. And then it will take the maximum of the vectors of j and it is knowledge about
other j excluding it is own vector; that means, the message the vector of the process j will
be used to update it is own clock. So, this is a new step that is about update the

knowledge of process j at i.

So, whenever there is a message exchange the clock values will be updated based on the
information which is being sent the knowledge of other processes. So, let us see through

an example. Here all the counters are in a slice to 0.
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Vector Timestamps
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Now, with the event at P 1, only his clock value will be incremented, similarly at for P 3
only this value will be incremented. And whenever there is a message exchange, then

these other values will also be updated.

For example, the receive of a message will increment it is local variable, but the message
contains the information about the P 3’s knowledge. So, this will be updated. So, here it

will be updated for the other value. So, better timestamp will not only update it is



knowledge, but whenever a message exchange it will update it is vector based on the
based on the information of the other processes. So, this is another example that if when
P 2 will send this message with the timestamp 2,0,0. And it will be packed as a message
when it will receive at P 2 then P 2 will increment, it is local clock as per the lamports
logical clock. Whereas, 0 and 2 they will update to the maximum of 2. So, 1 and 0 will
be updated over here. So, this is not updated, same value will be because it has more

knowledge than the pone about P 3.

Now, we will see that using vector clock we can perform some operations on the vectors.
And this will be used to compare the vectors just by looking the vector we can infer

whether the whether 2 events are causally related are there or not.
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Causally-Related

i
o VT, =VT,,
iff (if and only if)
v VT,[i] = VT,[i], foralli=1, .., N
o VT, <VT,,
iffe Vg lili=Nas il forallii= 2, N

¢ Two events gre causally related iff
VT, <VT,, €
iff VI,<VT, & =

there exists j such that
1<j<N&VT,[j]< VT, ]
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So, that means, if the vector VT 1 will less than vector VT, VT 2. This will implies that
there exist 2 vectors which are VT 1 is less than or equal to VT 2 and also there exist a
particular value which is strictly less than, then basically this particular condition holds.

And that shows that 2 events are causally related.

So, 2 events are concurrent if neither VT 1 is less than or equal to VT 2 and nor VT 2 is
less than or equal to hence they are causally related. Vector timestamp obeys the
causality relation. This also has been identifying the concurrent events. Let us take an
example. So, C and F so, vector Cis300Fis2 1 1 and 2 1 1. Now this particular value

is higher than this one where as the other elements they are less than this values. So, it is



not less than; that means, there is no neither it is neither C is vector of C neither it is less

than or equal to vector of C. F nor vector of F is less than or equal to vector of C.
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... or Not Causally-Related

e Two events VT; and VT, are concurrent
iff
NOT (VT, £VT,) AND NOT (VT, £ VT,)

We'll denote this as VT, | || VT,
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Hence they are C and F they are concurrent events. Similar H and C, you can see that

this one is less than 3 H and C. So, 1 0 is less than 3 that is fine.

(Refer Slide Time: 78:14)

Identifying Concurrent Events
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This also is fine, but one is greater than 0. Therefore, the same principle it is neither less
than or equal to; so, that means it is not following obeying the causality relation. Hence

they are concurrent events. Summary, we will see that lamport timestamp uses the



integer clocks to assign the event obeys the causality, but cannot distinguish the

concurrent event.

(Refer Slide Time: 80:28)

Summary : Logical Timestamps

e Lamport timestamp
* Integer clocks assigned to events.
* Obeys causality

* Cannot distinguish concurrent events.

¢ Vector timestamps
* Obey causality
* By using more space, can also identify concurrent events

Cloud Computing and Distributed Syétems Time and Clock Synchronization

Vector timestamps obeys the causality by using more space and also can identify the
concurrent event more space in the sense. Here the vector is required to be sent in the

message is an additional overhead of using the space.

(Refer Slide Time: 80:52)

Conclusion

e Clocks are unsynchronized in an asynchronous distributed system
e Butneed to order events across processes!

e Time synchronization:
« Christian’s algorithm
« Berkeley algorithm
« NTP
« DTP

« Buterror a function of RTT

¢ Can avoid time synchronization altogether by instead assigning
logical timestamps to events
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So, conclusion clocks are unsynchronized or the synchronization of clocks in a

asynchronous distributed system using physical clock synchronization method which we



have seen has or having the in accuracies. So, we have seen the methods for doing the
clock synchronization in the distributed system. Let us say that they are Christian’s
algorithm Berkeley algorithm network time protocol DTP, but all these particular
synchronization algorithms, they have the error which is the function of round trip time.
So, we have seen also the method by avoiding the time synchronization and also ordering

the events using the method such as lamport’s clock vectors clock.

Thank you.



