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Matching and covers content of this lecture.
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In this  lecture,  we will  discuss the concept  of Matching,  Perfect  matching,  Maximal

matching,  Maximum  matching  M-alternating  path,  M-  augmenting  path,  Symmetric

difference, halls, matching condition and Vertex covers matching and covers.
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Within a set of people, some pairs are compatible as roommates; under what conditions

can  be  pair  them  all?  So,  many  such  applications  of  graphs  involve  such  pairing

solutions. Take this particular example in which filling up the jobs with the qualified

people can be represented. This particular problem can be represented with the form of a

Bipartite graph, where set of peoples is a one partite set and the jobs is another partite

set.

This particular graph will be found when we can see that there are people, who are not

qualified for all the jobs, but for few of the jobs. So, basically the number of people are

more than number of jobs, ideal in this particular situation. We have to find out, how

these particular jobs are to be field with the qualified people. So, this particular problem

setting basically assumes, the problem is to be specified in form of a bipartite graph,

where in the set of peoples is one partite set, set of jobs is another partite set. So, given

this particular problem setting, we want to find out the pairs. 

So, pairs of these two sets are nothing, but they are represented in a form of the edges.

So, we can see, here in this particular figure, the edges, which are in the red color. They

will form the matching or pairing of people and the jobs. So, jobs are filled by only one

person, which is represented with the help of these red lines. These red lines are nothing,

but the set of edges. So, matching is nothing, but a subset of edges in a bipartite graph

that we are going to explore in this lecture.



Similarly, another problem which is called a roommates the graph need not be a bipartite,

yet we have to come up with a matching or a pairing of the roommates. So, those kind of

problems;  that  means,  the matching. In a  general  graph, we will  see separately  in  a

different lecture.
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So, matching as I told you that, matching in a graph is a set of non-loop edges with no

shared endpoints. Again, I am repeating matching in a graph is a set of edges, with no

shared endpoints. So; that means, if a graph is given like this; that means, this particular

graph  is  called  P 4  having  four  vertices.  So,  one  possibility  of  a  matching  is  this

particular edge and this edge will basically, touch these two vertices. This particular edge

cannot  be  included. Why? Because, if  you  include  this  edge, they  will  shared  the

endpoints of already selected edge in M or a matched edge so, the set of edges with no

shared endpoints will form a matching in a particular graph.

So, you can also say that,  if a graph is given like this. So, these set of edges, which

should not share the endpoints, they will form a independent set of edges. So, it is not a

independent  set  of  vertices,  but  it  is  a  independent  set  of  edges  and  that  is  called

basically, the matching in a graph. Now, another thing point we have to see that this

particular edge which we say that it is a edge in the matching set or it is a matched edge.

So,  this  particular  edge  will  incident  on  this  particular  vertex.  So,  the  edges  of  a

matching, when they are incident on this particular vertex that vertex is called a saturated



vertex. Take this particular example, red color edge is a matched edge, when it incident

on this particular vertex, this vertex is, will be saturated. This vertex will be saturated,

the  other  vertex  is  on  which?  This  matched  edge  is  not  incident, they  are  called

unsaturated vertices. 

So, the matching indices, matching on the vertices, indices, the partitioning of vertices

into the saturated and unsaturated vertices so, if none of these edges, which are there in

the matched edge, if none of these edges are incident, if no matched edge is incident on

the vertex, then that vertex is called unsaturated and the vertices, when the matched edge

is incident on a particular vertex that vertex is called a saturated vertex.

(Refer Slide Time: 06:41)

Perfect  matching;  the perfect  matching in a  graph is  a  matching that  saturates every

vertex,  take  this  particular  example  graph.  Here,  you  see  the  red  colored  edges  are

basically, the matching edge, matched edges. So, these matched edges are incident on all

the vertices. Hence, this is, this kind of situation is called a perfect matching.
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The example of a perfect matching, we can see in a complete bipartite graph K n, n

having the partite set as X and Y, the perfect matching, you can see it is nothing, but a

bijection from X to Y. Now, successively finding mates for X 1 X 2 and so, on up to X n

will yield factorial n perfect different matchings. So, take this particular example. So, let

us say it is X 1 X 2 and so on up to X n on the other partite set, you have Y 1 Y 2 and.

So, on up to Y n, this X 1 and match any one of these n, different vertices on the other

side. So, there is n possibility for X 1 to starts it's matching, having matched with a

particular. 

Let us say, a vertex on the other side the remaining, the second one X 2 can match the

remaining one, which is n minus 1 and so on. So, the last one will require 1 n, this

particular  equation  is  n  factorial.  So,  different  perfect  matchings  are  possible  is  n

factorial, different perfect matchings are possible, we can also express this matching in a

form of a matrix. For example, this is a perfect matching example; this we can represent

in a form of a matrix,  perfect matching as a matrix, in this particular  matrix, if  you

inspect, what you will find that every row will have only one value of one. Similarly, this

row also has one value of n 1. 

Similarly, this one and this one in the perfect matching scenario similarly, in the column

also  you will  see every  column will  have  only one  value of  one.  So,  in  the perfect

matching matrix every row or the column and column has only one value of one. So, if a



perfect matching is represented in a form of a matrix, then the rows, in the matrix, every

row in the matrix will contain only one, one. Similarly, the columns in that particular

perfect matching matrix will contain only one place at one.
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Now, let us go and see more details, if let us say it is a general graph that is K 2, K 2 n

plus 1 that is, this particular graph does not have a perfect matching, why? Because it has

an odd order. So, there is a possibility to have a perfect matching in a complete graph K

2 n, why? Because in K 2 n, there are different ways to pair up 2 n, distinct people 1 on 2

n distinct people and that is given by a recurrence function f n. So, f n is let us assume

that will give you the number of ways to pair up 2 n distinct people. 

So, for a particular vertex, there are 2 n minus 1, choices to partner of 2 n and each such

choices. There are f n minus 1 ways to complete the matching. So, the first particular

vertex will have 2 n minus 1, ways to do the matching and the next one will have the

same, recurrence will run on n minus 1 different vertices on one side. So, knowing that f

0  is  equal  to  2,  this  particular  induction,  if  we  carry  out  to  resolve  this  particular

recurrence, it comes out to be 2 n minus 1 times, 2 n minus 3 and so on, up to 1. 

Now, there is a counting arguments for this f n value. So, that says that the ordering of 2

n people, we form a matching by pairing the first two, the next two and so on, that I have

already  explained.  Now, each  ordering  thus  yields  one  matching, each  matching  is

generated by 2 raise power n times n factorial,  different orderings since changing the



order of the pairs. So, if there is a pair, you can change the order of the pairs and also if

these pairs are identified, then the order of these pairs also you can, you can change. So,

that comes out to be 2 raise power n n factorial different orderings. Since, changing the

order of the pairs or the order within a pair does not change the resulting matching. So,

there are total numbers of perfect matchings. We can see is 2 n factorial divided by 2

raise power n n factorial different perfect matching in K 2 n graph.

(Refer Slide Time: 13:26)

So, this particular example will this particular equation. We have obtain for example, this

is K 6 or you can also say, it is K 2 times, K 2 3. So, now, we can see that, if we select

this particular edge for example,  there are 2 n minus 1 ways, there are five different

ways. So, this is 1 way 2 way, you can select this edge 3 way, 4 ways and 5 different,

because there are five different pairings possible in case 6. 

So, there are five different ways, you can select. So, having selected these one of them,

then the second one, we have to find out the perfect matching in the remaining portion of

a graph which is nothing, but we have to select f 2; that means, two more pairing of these

things and we have to run again on that particular resulting graph. Hence, we are going

to get something of this nature 5 times, 3 times f 1 number of different possible perfect

matchings.
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Maximal  matching  and  maximum  matching  let us  understand  the  contrast  between

maximum matching and maximal matching. Maximal matching in a graph is a matching

that cannot be enlarged by adding an edge. Take this example, this is a P 4 graph and let

us say, this edge is a matched edge. We cannot extend, we cannot add this edge, nor we

can add the another edge. Why? Because as per as the definition of a matching says that

the edges should not share the endpoints so; obviously, there is only one edge. There in

the matching and the other two edges cannot be extended, cannot be added. 

Hence, this example is a maximal matching. Now, maximum matching is a matching of a

maximum size. Size means  the  number  of  edges  among all  possible  matchings  in  a

graph. So, take the same example P 4. We have now, this matching edge, this matching

these two edges in the matching. So, the size here is two, the size we have seen earlier

was one. So, here we have obtained a matching of a bigger size and we cannot extend

this  particular  size  in  a  P 2  P 4  graph. Since, this  particular  matching  will  become

maximum. 

Now, this maximum matching can be the maximal also in some of the situations, but

converse need not hold in this particular example, this is a maximal matching is not a

maximum  in  this  case,  but  this  particular  maximum  matching  can  be  a  maximal

matching that is what is written over here. So, every maximum matching is a maximal

matching, but not, but the converse did not hold.
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So,  we  will  see  through  another  example, these  concepts  maximum  and  maximal

matching and their contrast. So, a matching is maximal, if no more edges are added. Take

this particular graph. Here, we have this edge, this edge, and this edge. So, the matching

size will have 1 2 and 3, 3 edges. So, 1, 2 and 3. So, the size of this matching is 3. In the

same graph we can find out another matching. Let us say; this time we are finding out,

we are including this edge, this edge, this edge, and this edge. So, we have obtained

another matching, which will include four different edges. The size of this matching is 4.

The earlier matching, which we have obtained was having the size 3.

So, now, we can inspect that in this particular matching, we cannot add any of these

edges, which are black colored. So, this is a maximal matching and also we cannot find

any other matching of a size bigger than 4. Hence, this becomes a maximum matching.

This is a maximal matching, because of two conditions,; one is that, we cannot add any

other  edge;  that  means,  we  cannot  enlarge  this  matching, second  thing  is,  this  is  a

maximal matching, because of you cannot add and this is not the maximum matching

because  their  exist  another  matching  of  a  bigger  size  hence  this  remains  only  the

maximal, but not maximum.
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So, we have seen already this particular notion that maximal and maximum is not same.

In this particular scenario here, this is a maximal matching having only one edge. This is

a maximal why? Because we cannot extend or we cannot enlarge this size, this matching

hence, it is a maximal matching is not maximum. Why? Because they are exist another

matching, which is having a size more than this particular size. So, hence, this is not a

maximum matching therefore, it becomes unequal.

(Refer Slide Time: 20:11)



So, now, we are going to see alternating path and augmenting path and their contrast. So,

given a matching M an M-alternating path is a path that alternates between the edges in

M and the  edges  not  in  M.  So,  take  this  particular  example  here, we will  take  this

particular example as M-alternating path. So, M-alternating path, which starts from this

particular edge starts from this edge, which is not in a matched edge and then picks

another edge, which is in the matched edge, then again picks this edge, which is not in a

matched edge and that is all. 

So, this becomes 1 2 and 3. So, it is end vertices, this particular path, we can see E B,

then F and then D. So, this particular path is called as M alternating path, why? Because

it alternates between the edges in M, this is in M and edges not in M, such path is called

M alternating path. Now, that alternating path, which has end points unsaturated, it is

called augmenting path M augmenting path is un saturated.

For  example,  this  E  is  unsaturated  and  D  is  unsaturated.  Hence,  this  becomes  an

augmenting path. So, let us see about M- augmenting path an M-alternating path whose

endpoints are unsaturated by M is called M-augmenting path. This is one such example,

which  I  have  shown you  that  E  B  F  D  is  M augmenting  path.  Why?  Because  the

endpoints that is E and D they are unsaturated let us see another example. 

So, another example says that a. So, another example says that a, we have selected then

F, we have reached then B, this is a matched edge, then from B, we have to go to G and

from G, we are going to see, this is a matched edge and from C we are going to H. So,

you  see  that  this  particular  vertex, H is  unsaturated  and  the  star  vertex  A is  also

unsaturated. So, both are unsaturated vertices. Hence, by this particular definition that,

this is the alternating path, whose endpoints are unsaturated by M so, that becomes an M-

augmenting path. So, we have shown you the examples of 2 M-augmenting path in this

particular graph.

Now, let me ask you another question, whether A then D and then H, whether this is an

M-alternating path or M-augmenting path. So, you see that it starts from a matched edge

alternates with another unmatched edge and then it changes to another unmatched edge.

So, hence, it is not an M alternating path nor it is M augmenting path. So, we have to be

careful, while we define M- alternating path and M-augmenting path. So, it is not that all,

the paths in a graph or in this category.
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Now, given M-augmenting path, we can replace the edges of M in P with the other edges

of P to obtain a new matching M prime with one more edge. Thus when M is maximum

matching, there is no M augmenting path, this has told you the utility of M augmenting

path; that means, if M augmenting path exists in the graph G, then there is a possibility

that we can get a bigger size matching M. So, we can extend the bigger size matching M,

if you are given now, M prime is greater than M, if there exist M-augmenting path, we

cannot extend the size of the matching, is M augmenting path does not exist in a graph. 

Hence, this is a important characterization. So, maximum matchings are characterize by

the absence of M- augmenting path, this is very-very important notion. So, that is why I

am highlighting it and repeating it again. Maximum matchings are characterized by the

absence of augmenting path, again I am repeating it. So, if there is no augmenting path

exists and we have obtained a matching. So, that will be the maximum matching. 

Now, we can prove it by considering two different matchings and then examining the set

of edges, belonging to exactly one of them and this particular operation can be defined

for any two graphs, with a same set of vertices that we are going to see now. So, that

operation is called a symmetric difference.
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So, let us take two different graph G and H, which are defined on the same vertex set, if

we take a symmetric difference is written as G symmetric difference H, which is defined

on the same vertex set V, which will include those edges, which are appearing exactly

one of these G and H. So, those edges which are common in G and H will be excluded or

in another way, we can write down this symmetric difference, if we take two matchings

M and N prime. So, matchings is also a graph defined on the same vertex set. So, M

symmetric difference, M prime will be M minus M prime; that means the edges in M, but

not in M prime union edges in M prime, not in M. So, the edges which are common will

not be the common in both M and, M primes are excluded.

So, having defined symmetric difference, let us see how using symmetric difference; we

can,  we  can  basically  characterize  the  maximum  matching.  So,  in  this  particular

example, we can understand the example or the working of a symmetric difference.
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So, let us say that two matchings are given M and M prime. So, M is represented as

dotted lines, dotted. I am marking with the, with the green color and the red color is on

the right side that is M prime, what we can see here is that. So, basically is that. So,

basically in this particular section F and G so, two more edges are there, which was not

there. So, basically these both, of these two edges are included. So, which are there in M

that  is  also there,  which are in  M prime that  is  also included.  So, this  becomes the

resultant symmetric difference. 

Similarly, this particular component will have one, two, three, four, four different edges.

So, out of that; so,  this  edge dotted is  present, second edge is  also dotted, which is

present, third edge is not present. So, third edge is not present, because it must be a

common in the other component. Let us see that, yes, it is common. So, this edge is also

present  in  M prime.  So,  hence  a  symmetric  difference  will  eliminated.  So,  that  is

eliminated; that means,  D and H is not in M symmetric difference, M prime or we can

also say that symmetric difference. 

So, D and H is not in this particular set. So, having computed the symmetric difference

of two different matchings in a particular graph, what we will obtain is you can inspect.

There are two components; one component is nothing, but; so, if you start from a point

reverse, all the edges and come back to the same point is called a cycle. So, it is the cycle



and the length of a cycle is the number of edges. So, this particular cycle is having, how

many edges? Four edges and this is called even cycle.

The other component, if we start from this point, reverse back all the edges then, we have

started from here and finish this particular vertex and not repeating, neither the edges nor

the vertices. So, this becomes a path. So, this becomes  E L path. So, when we take a

symmetric difference of two matchings, it will basically break into or it will obtain either

the even cycle or a path, or may be both. Here, in this case, it is appearing both even

cycles as well as even path.
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So, this particular example also will illustrate that, that basically M is a matching, with

the five solid edges and  M prime is  one, with the six bold edges. So, bold edges is

marked as a red colored edge and solid edge is marked with the black edges, if we take

the symmetric difference of these two matchings then we will see, there is a cycle of

length 6. So, this is a cycle and length 6 is that is the even cycle and we will get a path of

length 3 1 2 and 3. This particular edge is common e is common in the M and red color is

common in M prime. So, hence this is eliminated in the symmetric difference. So, it will

result into a even cycle and a path that is shown in this example.
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Lemma: Every component of a symmetric difference of two matchings is a path or an

even cycle that I have already shown you through an example. Let us see the proof. In

the proof, let us assume M and M prime be the matchings and symmetric difference, M

symmetric difference, M prime, let us say is F. So, F is a graph, which is a symmetric

difference of two matchings in a given graph with a same vertex set. Let M and M prime

are the matchings, every vertex has at most one incident edge from each of them, let us

understand it. 

So, this is a p four graph let us say this is one matching and this red color is another

matching. So, red color matching we call it as m prime and the green color matching we

call it as m. So, m symmetric difference m prime will form all these edges why because

there is no common edge. So, both these edges of the entire P 4 graph will be there in

this particular edge. So, every vertex has at most one incident edge from each of them.

So, let us say this particular vertex only, this edge from M prime is incident that is less

than that is not from M prime. 

This particular vertex has an edges, which are incident from M prime and incident from

M. So, at most one edge is incident from each of them. Thus, F this is called F has at

most two edges at each vertex. So, here there is a two, at most two edges or two edges

and here is one edge. So, that also is basically at most two edge. Hence, the degree of the

vertices in F is at most 2. 



So, if the degree of F is at most 2 then, it will be either the path or a cycle, if all the edges

are 2 then, it becomes a cycle, if two edges are basically two vertices or having degree 1,

then they will become a path furthermore. Every path or a cycle in F alternates between

M minus 1  M minus  M prime and edges of  M prime minus  M that we know by the

symmetric  difference. Thus, each cycle  has an even length with an equal  number of

edges from M and from M prime. So, hence we have seen that either it is a path or an

even cycle. So, if it is a cycle then it is even why? Because the edges have to be equal in

number from M and M prime hence, this is called even cycle. Hence, it is proved.

(Refer Slide Time: 36:31)

There is a theorem given by Berge in 1957, which states as follows a matching M in a

graph G, is maximum matching in G, if and only if G has no M-augmenting path. This

statement, we have already seen earlier through an example, but let us see the theorem,

this is very important theorem given by Berge. So, again I am repeating this particular

theorem, a matching M in a graph G is maximum matching, if and only if it has no M-

augmenting path. So, it  will characterize a maximum matching, it  will  characterize a

maximum matching. 

Maximum  matching  means  it  is  equivalent  to  the  graph,  which  is  having  no  M-

augmenting path. So, we have to prove in both the directions. Now, proof will use the

contrapositive  in  both  the  directions  so;  that  means  the  statement  to  prove  in  a

contrapositive of both. The directions will become that G has a matching larger than M.



So, this is the negation of this statement. So, G has a matching larger than 1, if and only

if G has an M-augmenting path. Let us prove this contrapositive statement; if this is true

then the entire statement of the theorem is true. So, let us see the sufficiency condition.

Sufficiency condition says that an M-augmenting path. So, M-augmenting path is given

and that can be used to produce a matching larger than M prom the previous theorem and

hence, this proves this particular statement that G has a matching, which is larger than M.

Now, we have to prove the necessity condition. So, necessity condition says that if G has

a matching larger than M then we have to prove that G has M-augmenting path. Let M

prime be a matching in G, which is larger than M, because this is given. Now, we have to

prove that it has an M-augmenting path. So, we will construct an M-augmenting path,

given this M prime matching that is larger than M. There are two matchings. Now, we

are given M and M prime. So, immediately we will take a symmetric difference of these

two matchings that becomes a graph F and by Lemma 3.19. We know that F consist of

paths and even size cycles. Now, since cycles or have are having the same edges from M

and M prime. Hence, for cycle both M, both the, both the edges from M and M prime is

equals. 

So, hence we have to see another component that is called a path. Since, M prime is

greater than M, we have assumed it. So, F must have a component more than more edges

of M then M prime, and that is a path, and this will forbids the cycle. So, is it, is a path

component, then we have to see the path. So, such a component can only be path that is

starts and ends with an edge of M prime. Why? Because M prime is greater. So, it has to

start and end from M prime. 

Thus, there exist and M-augmenting path. So, take this particular example; P 4 example

again we are going to take. So, this is an M and these edges will become M prime. So,

this particular M prime; that means, the augmenting path will start from a vertex from M

prime and then alternates with the edge of M and then again the edge of M prime. So,

this will become an M-augmenting path. So, M-augmenting path exist and with the help

of the edges, which are not in M, we can invert it, which are there in path, but not in M.

We can invert it and we can obtain a matching of a bigger size and hence, M-augmenting

path exist. 



So, we have proved the previous theorem, which is given by Berge that will characterize

the maximum matchings. So, maximum matching in a graph is equivalent to saying that

the graph has no M-augmenting path.
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Now, another theorem, which is called a Hall's matching condition or a Hall's theorem. It

is called; we are going to see that. First, we are going to see the use and then we will be

proving it, when we are filling up the jobs with the applicants. We may be seeing that

there are many more applicants than the jobs and successfully filling up the jobs will not

use all the applicants. 

So, one of these two partite sets, which basically are representing the jobs, will be all

used up while the other partite sets, which are representing the jobs are not going to be

utilized are going to be saturated by this pairings. This is an important notion and we

have to see this particular condition. So, to model this particular problem, we take X Y

bigraph, and we seek a maximum matching and we seek a matching that will saturate all

the vertices of X and that is a solution of this particular problem of job filling, with the

applicants.
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Now, if  you  matching  M will  saturate  X;  that  means,  all  the  jobs,  then  there  is  a

condition that for very subset of X, that is every subset of jobs, there must be at least the

number of that set of vertices that have neighbors in S. Why? Because neighbors in S

meaning to say that the jobs must have mod S or that subset size of the jobs at least that

many  number  of  people  or  applicants.  Let  us  use  the  notations  to  see  that.  So,

neighborhood of S S is a subset of X, which is going to be saturated by the matching. So,

it is simply represented as N of S. Here, denote the set of vertices having the neighbor in

S.  So,  again  in  the  problem of  the  applicants  verses  jobs.  So,  here  there  are  many

applicants and there are few jobs. 

So, so the applicant, some are the applying to these many number of jobs, others are

applying to these many number of jobs and so on. So, what we are seen that, if this is a

subset S out of capital X, then every subset S out of X will have that many number of S

in the neighborhood of S and that is called a Hall's conditions. So, we have to define the

neighborhood of S. So, this is the neighborhood S.

So, these set of vertices, which are being matched by these edges. They are basically,

matched on the neighborhood of S, that will be on the other side, that is in the applicants.

So, this particular condition is called a Hall's conditions. So, to saturate all the jobs by

the matching or the pairing of the applicants, the condition is called a Hall's condition,



which says  that  for  all  subset  of  X, which  is  represented  as  S,  which  says  that  the

neighborhood size of S, which will match S or a jobs to the applicants. 

So, neighborhood will be in the applicants, is always at least the number of jobs. So, that

is quite obvious condition that the jobs, which are going to be filled up all set of jobs

subset, if  you take, should  be  having  more  applicants, then  only, every  job  will  be

saturated and that obvious condition is basically, the necessary condition and halls has

also proved that this obvious condition, obvious necessary condition is also sufficient.

So, that we are going to see in the theorem.
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The  implication  of  this  particular  theorem, we  can  first  understand  through  some

examples and then we will understand or we will get the motivation of this usage, of this

important, important theorem, that is called a Hall's theorem. This is the first example; is

basically in this particular graph G. Does this graph has a matching of size 4? So, what is

4? If you see this set is 4. 

So, he is asking whether, they are exist a matching, which will saturate all the vertices of

X, if it is then basically S subset of X that particular condition holds, which says that this

many number of; that means, always on the other side, the neighborhood side, the size of

the neighborhood is more than any subset of that particular set of X, which we are going

to say, which we are going to check to find out a subset. Here, in X, where this particular

condition is violated to show that there does not exist a matching of size 4. Let us assume



that these two vertices form a S. So, that is B and C. So, the size of this X becomes 2,

why? Because there are two elements B and C. 

Now, the  neighbor  of  B is  3  and  the  neighbor  of  C is  there, that is  all.  So,  the

neighborhood of X; that means, neighbor of B is 3 and the neighbor of C also 3. So, the

neighborhood of X, if we see the size is basically, it is 1. Hence, this particular N of X is

not satisfying, this halls condition hence, they are does not exist a matching of size 4, in

this particular graph.
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Let us take another example, this example says that does. This graph G has a matching of

size 5. So, here you see that this part of the graph is also having the five elements on the

other side, it is five elements, both the partite sets are of the same size. Let us t, let us see

the conditions, let us find out a subset, assume that this is X. So, subset, we call it as S,

which consist of B C and D. Let us find out the neighborhood set of this S. 

So, the neighborhood of B is 3 and 1. So, 1 and 3 are present. So, neighborhood of C, it

is also 1 and it also 3. So, nothing change neighborhood of D is also 1 and also 3 nothing

change. So, the neighborhood of S will become 1 and 3 size is basically 2 and here, S is

of size 3. So, the neighborhood set ID smaller than the subset of S. Hence, this particular

condition is violated. Hence, there is violation of a Hall's condition, their does not exist a

matching of size 5.



(Refer Slide Time: 51:17)

In another example, we can see that, this particular graph whether, it has a matching of

size 4, both the sets are having of size 4. So, here the conditions are satisfied; that means,

if  you  take  any  subset. Let us  take  this  particular  subset  of  X.  So,  subset.  So,

neighborhood of let  us say  S is equal  to  A B  quickly, we have to rush through this

particular and if we found the neighborhood of this S. 

So, A is having a neighbor 1, another neighbor 2, and another neighbor 3, about B, it has

neighbor 1, nothing change. It has neighbor 3, nothing change. So, the neighborhood of

S, if you take the cardinality is; obviously, more than the cardinality of  S. Hence, the

Hall's condition, holds for every subset of X. Hence, this particular case, it basically has

a matching of size 4, if it is ask then you have to produce. This matching of size 4, let me

show you the matching of size 4, C 4, this is the matching D 3, A 2, and B 1. So, these

are the four different set of edges and which is required whether the matching of size 4

exist using halls condition, we have seen.
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Let us take another example of a Hall's theorem in this example, you have a group of five

friends and you have another five different type of chocolates, which you want to offer to

your friends and their preferences are also shown on the ah, left side of the graph in

shown mentioned, in the red color. Now, we have to find out a matching; that means, if

everyone basically, is guarantee to get a chocolate, then only we are going to distribute it,

that is a, that is the condition. Let us see whether, you are going to saturate the, all the

friends with a pairing of chocolate. 

So, let us see that the number of the size of  A is 5 and the neighborhood, you have

basically, if we count the neighborhood, how many different edges are there preferences

then basically, it is comes out to be 9. So, we can see that whether, we can evolve or we

can come out with a matching. So, there is a possibility of a matching that  A can be

matched here, with 1, his own preference then B can be matched with the preference 5. C

can be matched with the preference of 2, D can be matched with the preference of 3, and

E can be matched with the left over 5. 

So, there is a possibility of a matching so; that means, this particular  Hall's condition

exist for any subset of this particular set that is called  X. So,  X is saturated and here

simultaneously, Y is also saturated so; that means, and the size of the X and Y. They are

same. So, this kind of matching is called a Perfect matching, where in all the vertices are

saturated; that means, every person is going to get a different kind of chocolates.
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So, having seen the motivation of use of this important theorem, that is called a Hall's

theorem, which will give you the condition, whether you are able to saturate one set of

partite  set  either,  it  is  the  jobs  or  it  is  the  people,  who  are  going  to  see  different

chocolates. So, if that is the case then this condition, which is called a Hall's condition

must be valid. So, we are now going to see the proof of this Hall's conditions an X Y

bigraph, G has a matching that saturates X, if and only, if the neighborhood of S is at

least that size of S for all S, which is a subset of X. 

So, that condition, we have already seen. Now, let us see the proof. So, first we have to

see the necessity condition. So, in the necessity condition, we are given that there is a X

Y bigraph, has a matching that saturates X. So, if there is a matching that saturates X;

that means, these S number of vertices, which are matched to S meaning to say that, if

this is the set of vertices on the neighborhood, if it is match to S. How they are matched,

they are matched, through the edges. 

So, these particular edges will lie on the neighborhood of S. So, this is basically lies on

the neighborhood of  S. So, this neighborhood of  S has at least,  S number of elements

present  S number of elements  present for all  S, which is  a subset  of  X. Hence, this

particular property that is called Hall's property is satisfied that is necessity condition is

followed.



Now, let  us see the sufficiency condition in  sufficiency condition. We are given this

Hall's condition; let us say so Hall's condition. Now, we have to prove by contrapositive,

let us see the statement of a contrapositive. 

So, if  M is a  Maximum matching in  G and M does not saturate  X.  Here, it saturate  X

over basically negation is there in contrapositive then, they are exist a subset S, which is

subset of  X, such that  there is  a violation that  is  N S is  less than  S, let  us see this

particular condition, this particular contrapositive is proved, holds then basically the halls

condition, we have it is sufficiency condition. 

So, for this let us assume a vertex u, which belongs to X. So, this is the bigraph X and Y

bigraph and they are exist a vertex u and this is unsaturated vertex, by matching M. So,

that is the condition that is given. So, we have to assume that this is the vertex, which is

unsaturated by the matching M. Now, among all the vertices reachable from u by M by

M alternating path in G; let us see that u we can reach to T via unmatched edge, why?

Because it is a unsaturated, this is unmatched, we can reach to a nod on Y and let us call

it is a part of T or a neighborhood of S using a matched edge. It will take you back to the

set X and we it that this particular vertex, which is matched by the set of or a nod of Y is

present in S. Let S consist of those in X and let T consist of those in Y.
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Now, we claim that this matching M will match T with all the elements of S minus u,

because this is unsaturated. So, S minus u, if there is a matching between S minus u and



between T. So, we have to see those edges. So, the M alternating path from u will reach y

along the edges, which are not there in M and then return X along the edges, which are

there in M hence, every vertex of S minus u is reached by an edge, which is present in M

from a vertex T. So, that we can see in the purple color, which is shown; that means,

these set of vertices, which is there in Y, we call it as a T, all these particular vertices

basically, will have a matched edge and that will take you back to S minus u, which is

there in X.
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Let us go ahead. So, there is no M-augmenting path since, every T, every vertex of T is

saturated.  Thus, M-alternating path reaching Y here, extends M extends via M to the

vertex of S. Hence, these edges of M yields a bijection from T to S minus u and we have

the size of the T is same as S minus u. So, this particular matched the vertices, which are

saturated is T is same as the set S minus u both are same.
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Furthermore. So, the matching between these two sets; T and S minus 2 will yield that if

you take any subset in T that is basically, the subset of the neighborhood rather, we can

see that T is equal to neighborhood of S and suppose, there exist a Y, which is not in T

and has a neighborhood v in S. Let us say that this is v, it has a neighborhood. So, the

edge v Y cannot be in M. 

So, this cannot be in the M; that means, it cannot be in the purple color Y since, u is

unsaturated and rest of S is matched by match to T by M and adding an edge v Y to an

M-alternating path reaching v yields an M-alternating path to v and this contradicts, the

condition that Y is not an element of T ok. It is not in T, this completes the prove of

contrapositive. Hence, this v Y cannot exist you can also see that simultaneously, this

edge is a matched edge and if you add another edge, also both cannot be in the matched

edge. Why? 

Because they would be sharing a vertex over here  hence, such a v, such a v  Y edge

cannot exist in a set of matched edge. Hence, v Y cannot exist, because all set of edges,

which are in match, we have already covered it. Now, here this T is the neighborhood of

S and we have proved that neighborhood of size, of S is same as the T and here the T;

that  means  all  the  vertices  of  T,  which  are  matched  to  S  except  the  u,  which  is

unsaturated. So, S minus 1 and if we basically can see that this is less than S, hence N S

is less than S and hence, this will prove, he contrapositive.
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Remark; the Theorem implies that whenever X, Y- bigarph has no matching saturating X,

we can verify this by exhibiting a subset  X. The Theorem implies that whenever  X Y

bigraphhas no matching saturating X, we can verify this by exhibiting subset X with two

few neighbors. On the other side; that means, violation of a Hall's condition is basically

good enough to prove that it is not saturating X. 

So,  when  the  set  of  bipartition  have  the  same size, this  Hall's Theorem is  called  a

Marriage Theorem, so; that means, when X is equal to Y then this particular Theorem is

called a match, is called a  Marriage Theorem. The name arises from the setting of the

compatibility relation between a set of n mens and the set of k womens, if every men is

compatible  with k women and every women is  compatible  by k men then a perfect

matching must exist.
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This gives a corollary for k is greater than 0, every k regular bipartite graph has a perfect

matching proof is quite simple. Let G be a k regular, X Y bigraph counting the edges by

the endpoints in X and by the endpoints in Y. We can see that k times, the cardinality of

X is equal to the k times cardinality of Y. So, X is why? Hence, it is suffice to verify the

Hall's condition is valid a matching that saturates X will also saturate Y and that is the

perfect matching.
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Now, consider S is a subset of X, m is the number of edges from S to the neighborhood

of S. Since, G is k regular, m is equal to k times S. These m edges are incident to the

neighborhood of S. So, m is less than k times neighborhood of S, that is the validity of

the Hall's condition.
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Now, we have to go ahead and see another important thing, when a graph  G does not

have  a  perfect  matching, Theorem 3.1.10  allows  us  to  prove that  M is  a  maximum

matching  by  proving  that  G has  no  M-augmenting  path. All these  things, we  have

already explained. Now, exploring all  M-alternating path to eliminate the possibility of

augmenting  could take the long time instead of exploring all  M-alternating path, we

could prefer to exhibit an explicit structure in G that forbids a matching larger than M.
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So, we are going to see, what is that condition, which will forbid for getting a bigger size

matching than the maximum matching; a vertex cover of a graph is a set of vertices that

contains at least one endpoints of every vertex so; that means, a vertex cover, covers all

the set of edges, shown in this particular example as squared symbol.
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Now, since no vertex can cover 2 edges of a matching.  Therefore,  the size of every

vertex cover is at least the size of every matching. Therefore, obtaining a matching and a



vertex  cover  of  the  same size  will  prove  that  each is  optimal,  such proofs  exist  for

bipartite graph, but it is not valid for all the graphs.
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In the graph shown on the left, we mark the vertex cover of size 2, this is 1 vertex cover,

this is another these 2 vertices will cover all the edges; that means, all the edges are

touching these. So, the vertex cover of size 2 prohibits the matching, with a more than 2

edges and the matching of size 2 will prohibit the vertex cover with the fewer than 2

vertices. Hence, vertex cover is at least the size of the matching and this is the theorem,

which is given, which is known as Konigs Egervary Theorem.
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So, let me state the theorem, if G is a bipartite graph, then the maximum size of the

matching in G equals the minimum size of a vertex cover. So, here in these particular

figures, we can see that the vertex cover is shown as the green colors. So, here in this

particular graph, the size of the vertex cover is 1 2 3 4 and the size of the matching is 1 2

3, so; that means, size of the vertex cover is at least the size of the matching. 

Similarly, here we can see that, that the size of the vertex cover is 3 and the maximum

matching is also 3. So, we have reached the condition, when vertex cover is equal to the

size of matching and this  is  the condition  of a maximum matching,  and a  minimum

vertex cover; that means, we cannot basically get a matching bigger than M. Similarly,

we cannot get a vertex cover less than this particular size.

Hence, this is a condition, which is given by the Konigs Egervary Theorem.
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Conclusion in this lecture, we have discussed the concept of Matching, Perfect matching,

Maximum matching, Maximum matching, Maximal matching, M-alternating path, M-

augmenting path, Symmetric difference, Hall's condition and Konig Egervarys theorem,

and Vertex covers. In the upcoming lectures, we will discuss more on the Max, Min-Max

Theorem, and independent sets and covers.

Thank you.


